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ON THE GROUPS JM’)-1 

J. F. ADAMS 

(Received 29 May 1963) 

$1. lNTRODUCI’ION 

ATIYAH 163 has defined certain groups, which he has called J(X). For our purposes, we shall 
define the groups J(X) as follows. Let X be a good space, for example, a finite-dimensional 
CW-complex. Let &(X) be the Grothendieck-Atiyah-Hirzebruch group [7, 8, l] defined 
in terms of real vector bundles over X. Let T(X) be the subgroup of &(X) generated by 
elements of the form {r) - {II>, where r and 1 are orthogonal bundles whose associated 
sphere-bundles xre fibre homotopy equivalent. (We think of T(X) as the subgroup of 
fibre-homotopy-trivial virtual bundles.) We define 

J(X) = %(X)/T(X). 

If X is connected we have 

K&Y) = Z + R,(X), 

where R,(X) denotes the subgroup of virtual bundles whose virtual dimension is zero. 
We have T(X) c RR(X), so we may define 

3(X) = &(X)/T(X). . 

We then have 

J(X) = 2 + J(X). 

It is not hard to see that the group which we call j(X) is isomorphic to that which Atiyah 
originally introduced and called J(X) [6]. It was natural for Atiyah to concentrate on j(X), 
since the summand Z is not interesting, and since Atiyah’s theorem that j(X) is finite 
[6, Proposition (1.5)] would not be true for J(X). 

Atiyah has also shown that the groups J(X) have useful applications. If we take X 
to be a projective space (either real, complex or quaternionic) then the resulting group 
J(X) holds the answer to classical questions about the existence of cross-sections of appro- 
priate Stiefel fiberings [6, Theorem (6.5)]. If we take X to be a sphere, then the resulting 
group j(X) is (up to isomorphism) the image of the classical J-homomorphism in an 
appropriate dimension [6, Proposition (1.4)J. It would therefore be amply worth-while 
to give means for computing the groups J(X). The present series of four papers represents 
a start in this direction. 

We shall attempt to compute the group J(X) by introducing two further groups 
J’(X), Y’(X). For the moment we need only emphasise three points about these groups. 
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(i) These groups are def!ned as quotients of K,(X); that is, we shall give definitions 
of the form 

J’(X) = &(X)/V(X) 

J”(X) = Xx(X)/ W(X). 

(ii) The groups J’(X), J”(X) are computable. 

(iii) The group J’(X) is intended to seive as a lower bound for J(X), and the group 
J”(X) is intended to serve as an upper bound for J(X), in a sense which we will now explain. 

We shall say that “J”(X) is a lower bound for J(X)” if T(X) c V(X), so that the quotient 
map K,(X) +J’(X) factors through an epimorphism J(X) *J’(X). We shall prove that 
this is so for all X. 

We shall say that “J”(X) is an upper bound for J(X)” if W(X) c T(X), so that the 
quotient map K,(X) *J(X) factors through an epimorphism J”(X) -J(X). It is plausible 
to conjecture that this is so for all X; but so far we can prove this only in favourable cases, 
for example, X = RP” (real projective space), X = CP” (complex projective space), and 
X=Swithm gOmod8. 

In such favourable cases we can proceed to compute the groups J’(X), J”(X); and if 
we find that the quotient map J”(X) -+J’(X) is an isomorphism, then the group J(X) is 
completely determined, being isomorphic to both J’(X) and J”(X). 

We will now try to explain that the groups J’(X), J”( X) merely formalise two reasonable 
methods of attacking our problem. Let us start with the first. We shall sometimes wish 
to show that two bundles 4, t) represent different elements of J(X). This is the sort of 
problem which one usually attacks by introducing suitable invariants. For example, the 
theory of characteristic classes sometimes allows one to prove that two bundles e, q are 
not fibre homotopy equivalent. This method has been pressed further by Atiyah (private 
communications; cf. [6] p. 291, lines 14, 15; p. 309, lines 6, 7) and Bott [9, lo]. Instead of 
characteristic classes with values in the ordinary cohomology groups H+(X; G), they use 
characteristic classes with values in the extraordinary cohomology groups K,,(X). By using 
the best techniques available in this direction, one defines the group J’(X); if two bundles 5, 
q have different images in J’(X), then they represent different elements of J(X). 

The group J’(X), then, is essentially due to Atiyah and Bott. In particular, the notation 
J’(X) is taken from unpublished work of Atiyah; it originally stood for a somewhat cruder 
lower-bound group. We adopt the notation J”(X) by analogy with J’(X), 

Let us now turn to the second method of attack. We shall sometimes wish to show that 
two bundles t, q represent the same element of J(X), although they represent different 
elements of K,(X). This is the sort of problem which one usually attacks by giving geo- 
metrical constructions. In this direction we offer Theorem (1.1) below. 

Let 5, q be sphere-bundles over a finite CW-complex X, with total spaces E,, E,, 
and projections pc , p,, . By a ‘fibrewise map f: E, + E,,‘, we shall mean a map f such that 
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the following diagram is commutative: 

/ 
ET--- --+E, 

\ /I’ 

Let k be a positive integer. 

THEOREM (1 .I). If there is a$brewise map f : E, + E,, of degree 1 k on each fibre, then 
there exists a non-negative integer c such that the Whitney multiples Vt, k’q are fibre homo- 

topy equivalent. 

Ifweputk= 1 this is a theorem of Dold [l 1 J. Therefore one may regard this theorem 
as a ‘mod k’ analogue of Dold’s theorem. 

By using Theorem (1 .l), one can prove certain cases of the following conjecture (in 
which the operation ‘I!’ is as in [l]). 

CONJECTURE (1.2). If k is an integer, X is a jinite C W-complex and y E l&(X), then 
there exists a non-negatiue integer e = e(k, y) such that kg(Yk - 1)y maps to zero in J(X). 

More precisely, we shall prove the following cases of Conjecture (1.2). 

THEOREM (1.3). Assume that X is ajinite CW-complex and that y is a linear combination 
of O(1) and O(2) bundles. Then there exists e = e(k, y) such that k’(YL - 1)y maps to zero 

in J(X). 

THEOREM (1.4). Assume that X is a sphere S’” and that y lies in the image of 

r : K&S’“) + KR(S2”). 

Then there exists e = e(k, y) such that ke(Yk - 1)y maps to zero in J(X). 

In Part II we shall see that Theorem (1.4) leads to the result on the J-homomorphism 
which was announced in [2, Theorem (3); 3, Theorem (3)J. 

The definition of the group J”(X) will be arranged so that if Conjecture (1.2) is true 
for all k and all y in Ka(XI), then J”(X) is an upper bound for J(X). 

The arrangement of the present series of papers is as follows. The main object of 
Part 1 is to prove Theorem (1. I), the ‘mod k Dold theorem’. We shall also prove Theorems 
(1.3) and (1.4). Parts II and III are devoted to a systematic account of the groups J’(X) and 
J”(X). In Part IV we shall apply the methods of K-theory to study the homotopy groups of 

spheres. Here we are concerned not only with the image of the J-homomorphism; we 
apply the methods of K-theory to give invariana defined for every homotopy class in the 
appropriate homotopy group. 

A separate paper with G. Walker [5] will study the case X = CP”. This paper depends 
essentially orl Parts I and II of this series, but is independent of Parts III and IV. 
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The results of Parts I. If, III and [5] have been summarised elsewhere [2, 3, 41. The 
results of Part IV have so far appeared only in lectures and mimeographed form, but there 
is some overlap with work of E. Dyer [13]. 

The present paper is arranged as follows. Theorem (I. 1) is proved in $3 ; it depends 
on lemmas proved in $2. Theorems (1.3) and ( 1,4) are proved in 94. 

S2. FUNCTION SPACES 

Dold’s theorem is proved fl l] by using the topological monoid H(n) of homotopy 
equivalences from 9-r to S”-‘; the key idea is to take H(n) seriously as a ‘structural 
group’. This idea was developed further by Dold and Lashof [12]. 

We shall prove our ‘mod k’ analogue of Dold’s theorem by using the space G(n) of ai] 
maps from 9-r to S”-.’ (of whatever degree.) We write G(n, k) for the component of G(n) 
which consists of maps of degree k. These spaces are to be given the compact-open 

topology. 

Various maps can be defined on the spaces G(n), and in $3 we shall need to quote 
lemmas about the effect of these maps on the homotopy groups of G(n). It is the object 
of this section to supply these results, which are stated as Lemmas (2. I) and (2.4). 

We recall that if t I n - 3, the homotopy group x,(G(n, k)) can be identified with the 
stable homotopy group rcs of the r-stem. We will give details of the identification below; 
it is hoped that these details will remove any doubt about the sign-conventions employed; 
‘we follow ‘homology’ conventions. The conventions appear more natural if one writes 

maps of spaces on the right of their arguments, and we therefore do so throughout this 

section. 

If we are given a sphere map I : S’ + G(n. k) or a homotopy class /? c x,(G(n, k)), we 

shall write [a], or [B], for the corresponding element in z”, (assuming always that r 5 n - 3). 

Our identification of n,(G(n, k)) with rc: passes through various intermediate groups, 
and we make the same convention for these groups; if y is an element of one of these 
intermediate groups, we shall write [r] for the corresponding element in rrf. 

We now discuss the various maps defined on G(n). 

If q E Gin), we shall define g : G(n) + G(n) by composition with q, so that 

(MfM) = (ix)f)s (x E SA-r,f~ G(n).) 

If q E G(n, t), then g maps G(n, s) into G(n, sr). Our first lemma describes the induced 
homomorphism s’* of homotopy groups. 

LEMMA (2.1). If a E x,(G(n, s)), g E G(n, 0 and r I n - 3, fhen 

@‘*a] = t[ct]. 

The join product 

j : G(n) x G(m) + G(n + m) 

is &fin& by j(f, g) = f e q, where Snim-’ is regarded as the join 9-r * Sm-r of Sri--- and 
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S I-‘. The product j maps G(n, s) x G(m, t) into G(n + m, st). Our second lemma 
describes the induced homomorphism j*. For this purpose we identify n,(G(n, s) x G(m, I)) 

with the direct sum n,(G(n, s)) + n,(G(m, z)), as usual. 

Ler.ikfa (2.2). rf tl E rr,(G(n, s)), p E: Ic,(G(m, t)) and r s min(n - 3, m - 3), then 

IX& + BH = tlal + 03. 
The iterated join product 

Y 
I *(“): G(hl) x G(R,) x s.. X G(n,)+G C ni 

( 1 i=l 

is defined by 

j@) (.fi, f2, . . . , f,) =.fl + f2 * -.. * f,. 

Our third lemma describes the induced homomorphism j(“)*. For this purpose we identify 

x,(G(n,, ~1) x G(Q, $2) x . . . x G(n,, 3,)) with the direct sum 

i nr(G(ni, Si))r 
i=l 

as usual. 

LEMMA (2.3). Ifxi E n,(G(q, si))fir 1 < i 5 v and r s Min(ni - 3), then 

This follows immediately from Lemma (2.2), by induction over 

LEMMA (2.4). Let a : S’ -+ G(n, s) be a sphere mgp, and de$ne B : 

B(x) = 4x) * 44 * . . . * 44 

Then 

[p] = vsy-‘[a]. 

This follows immediately from Lemma (2.3). In fact, let 

1’ : S’+ i G(n, S) 
i=l 

v. 

S -. G(nv, 9’) b_v 

(v fbctors). 

be the map all of whose components are a; then /3 is just the composite 

Y v j(V) 

s'- X G(m, s)- G(nv, s”). 
i=1 

The reader is now warned that the rest of this section consists of routine homotopy 
theory designed to establish Lemmas (2.1) and (2.2); if these lemmas are found credible, 
the rest of this section may be omitted. 

We now proceed to give the identification of z,(G(n, k)) with IIS. Following 1151, we 
first define F(n) to be the subspace of G(n) which consists of maps leaving the base-point 
fixed. Similarly, we define F(n, k) = F(n) n G(n, k). We have an obvious fibering 

F(n, k)- G(n, k) -1 -s , 
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so 
i* : n,(F(n, AT))- xXG(n, k)) 

is an isomorphism for r I n - 3. 

The space F(n) is an H-space, under the following multiplication. We choose a fixed 
map I$ : S”-’ + S”-’ v S”-’ of type (1, 1) (preserving the base-points); we use this to 
define the product 4cf v g) of any two mapsf, g in F(n). Since the map 4 is determined up 
to a homotopy (if n 2 3), the product map q5* : F(n) x F(n) + F(n) is determined up 
to a homotopy. The product 4* is homotopy-associative and homotopy-commutative 
(assuming n 1 3), and has a homotopy-unit. 

The product +* maps F(n, sj x F(n, t) into F(n, s + t). Thus the arcwisecomponents 
of F(n) form a group under the product C#J* (namely the group Z). It follows that the 
arcwise-components F(n, s) are r-simple for each r (so that the choice of base-points for 
their homotopy groups is immaterial); moreover, the homotopy groups of the various 
arcwise-components may be identified, using left or right translations. Since the product 
is homotopy-commutative (assuming n 2 3) it is immaterial whether we use left trans- 
lations or right translations. 

We may identify the space F(n, 0) with fZ”-‘(S”-‘j, and so identify sc,(F(n, 0)) with 
K n_1 +,(S”-‘). We give this identification explicitly. Let SP x Sq denote the reduced product 
9 x Sq/Sp v Sq. Suppose given a map 

h : s, e- m 01, f3 

where e is the base-point in S and o is the constant map at the base-point. Then we 
define the corresponding map 

h’ : S”_’ x S’-s n-1 

by the following formula: 

(x9 Y)h’ = (x)((uP) (x E: S”- I, y E 9). 

Ifrsn-3, wemayidentifyn,_,+,(S “-I) with 3. For this purpose it only remains 
to indicate our sign-convention for suspension. We define the suspension of g : Sp + Sq to 
be1 xg:s’x SP-,S1xsq. 

We now return to the proof of Lemmas (2.1), (2.2). We begin by replacing the spaces 
G(n, s) by spaces F(n, s). In fact, if we alter g inside G(n, t), then we alter @ by a homotopy, 
and do not alter g*; we may therefore suppose g E F(n, t), so that @ maps F(n) into F(n). 
Similarly, the join product j maps F(n, s) x F(m, r) into F(n + m, st), provided that we take 
the base-point in S”-’ * S”-’ somewhere on the segment joining the base-points in S”-’ 
and S=-‘. Lemmas (2.1) and (2.2) will therefore follow from the following results. 

LEMMA (2.5). Zf a e x,(F(n, s)), g E F(n, ;) and r I n - 3, then . 

@*a] = t[ij. 

LEMMA (2.6). rf a E x,(F(n, s)), /.I B q(F(m, t)) und r s Min(n - 3, m - 3), then 

U*(a + 811 = Cal + 431. 
We begin with Lemma (2.5). This will evidently follow from the following result. 



ON THE GROUPS J(X)--1 187 

LEMMA (2.7). (i) If g E F(n, r) we have a commutative diagram of the following form, irz 
which i,, iti are !he ident@cations made earlier in this section: 

L 
Jb(F(rt, 0)) - x,(F(n, 4) 

Q* -I I- Q* 

%&, 0)) 
Lt i 

-x,(F(n, a)). 

(ii) Lemma (2.5) is true iy s = 0. 

Proof. We begin with part (i). The homomorphism g*i, is induced by a map of spaces 
which sends f c F(n, 0) into the following composite: 

# 
S a-l 

I”h _1 u 
-s-l v s-‘-s” -s”-’ 1 

(Here h is a fixed map of degree s.) The homomorphism i&* is induced by a map of spaces 
which sends f E F(n, 0) into the following composite: 

6 
S n-l_.Sw-i v S”” /e”k D i ,S - . 

(Here k is a fixed map of degree st.) If we take k = hg, the two maps of F(n, 0) become 
equal. This proves part (i). 

We turn to part (ii). Let 

y-(y)h : S: e- F(u, O), CO 

be a representative map for a. Then a representative map r, for [x] is 

(x9 y)- (x)((y)h) : 9-l x S-S”“. 

Also a representative map for Q*a is 

Y--+KY)qa : s: e-* F(n, 0), w. 

Therefore a representative map r, for @,a] is 

(x9 y)- (xj[((y)h)g] : P-l x S-s”“. 

Evidently r2 = r,g. But since g is a map of degree t, in the stable homotopy group ti, we 
have [r2] = t[rr]; that is, [s’*a] = ?[a]. This proves part (ii). 

We now turn to Lemma (2.6). We recall that in de&ring j we have regarded S”+m-l 
as S”” *S-l. However, for our purposes it makes no difference if we now replace 

n-l S * Sm-’ by the quotient 
SD-1 * sm-1 

(r-l * e’) u (e * Sm-‘)’ 

Here e, e’ denote the base-points in S’-l, S”-‘. Since s”-’ * e’ and e * S”-’ are cells 
with only the segment e * e’ in common, the quotient map 

S n-l 

p-1 * sm-’ - 
* ym-1 

(57-l * 2’) u (e * F-l) 

is a homotopy equivalence. We may interpret the quotient space as S”-’ x S’ x S-‘. 
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Iff, g are maps of F--l, S”-’ which preserve base-points, then f *g passes to the quotient, 
and may be interpreted as f x 1 x g. In what follows, then, the ‘join’ symbol * will be 
interpreted as referring to these quotient spaces and maps, 

We now remark that since j, is a homomorphism, Lemma (2.6) will be proved if we 
can calculate i+(a + 0) and J,,(O + 8). This calculation is equivalent to calculating the 
homomorphisms induced by two ‘translation’ maps. In fact, let f, g be tied maps in 
F(n, s), F(m, r); then we can define maps 

'fL:F(m,r) -F(n + m,sr) 

gR : F(n, s) -F(n + m,st) 

by (h)fL =f* h,(h)gR = h * g. We have 

&(a + 0) = $(a), A(0 + B) =/3/Q. 

It will thus be sufficient to prove the following results. 

LEMMA (2.8). (i) If f c F(n, s) we have a commutative diagram of the following form, 
in which i,, i,* are the identifications made earlier in this section: 

ic 
n,(F(m, ON - %(F(m, 0) 

f*” 
I 

If," 
Lt I 

MYn + m W- n,(F(;1 + m, st)). 

(ii) Similarly for gt . 

(iii) rfg E F(m, t), a E Ir,(F(n, 0)) (so that s = 0), then 

[gfa] = l[a]. 

(iv) Similarly for f,“B. 

Proof. We begin with part (i). The homomorphism& is induced by a map of spaces 
which sends h E F(m, 0) into 

f * (40 v k)), 

where k is a l&d map of degree r. Owing to the fact that we are using the ‘quotient’ join, 
we can identify S”-’ * (Smwi v F-r) with (P-r * S-‘) v (F-i * S”‘-r), and so write 

f + ($(h v k)) in the form 

(1 * 4X(./-* 4 v (f l W. 

The homomorphism i& is induced by a map of spaces which sends h d F(m, 0) into 

4'((f* h) " k'), 

where 4’ is a map of type (1,l) and k’ is a fixed map of degree sr. If we take 4’ = 1 * 4, 
k’ = f * k the two maps of F(m, 0) become equal. This proves part (i); part (ii) is closely 
similar. 

We now turn to part (iii). Let 

h : S’, e - Wb (9, w 
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be a representative map for N. Then a representative map rl for [a] is given by 

(x.9 Y)-- (x)((J?)h) : Y-l x S-S”-‘. 

A representative map for &a is given by assigning to each point y E S’ the map 

(x, 4 v)- ((x)(y)h), u, (u)g) : sn-’ x s’ x sm- l- s”-‘xslxs”-l. 

Therefore a representative map r, for [gga) is given by 

Ix, a, 4 y)- ((x)((y)h). U, (r)g) : s”-’ x s’ x sm-* x S’- sn-‘xs’ xsm-‘. 

This map may be factored in the form 

p (x, u* u, Y>--+ tu, us x, Y> = (4 0, W((Y)h)) 

-2 W((Y?~)9 u9 45 (w(tYP), u, (u)g). 

According to our deGnition of suspension, the stable class [l x 1 x r,] is equal to [ri]. 
The permutation maps p and d have the same degree (- l)(n-l)m, and the map 1 x 1 x g 
has degree t. Therefore in the stable homotopy group r$ we have [rJ = t[r,], that is, 
[gga] = t[a]. This proves part (iii); the proof of part (iv) is closely similar, except that 
we do not need any permutation maps in the last step. 

This completes the proof of Lemma (2.8), and establishes all the results of this section. 

$3. PROOF OF ‘DOLD’S THEOREM MOD k’ 

In this section we shall prove Theorem (1. I). 

We begin by fixing some notation. Let {, 5’ be sphere bundles over X; I shall allow 
myself to speak of ‘a fibrewise mapf : r -i 5;” ; this is an abuse of language, or not, according 
to one’s precise definition of a sphere-bundle. 

Let f : 5 --f 5’ be a fibrewise map of sphere bundles over X, and let g : q 3 q’ be another 
such. Then we can clearly construct their Whitney sum 

f@s:~Qrl-+t'@~' 

by taking joins on each fibre; it is again a fibrewise map of sphere bundles over X. By 
iterating this procedure we can construct Whitney multiples 

mf: mr+m{‘, 

where m is any non-negative integer. 

We shall write X x s”-’ to indicate a product bundle over X. 

Our first lemma contains the main part of the proof. We shall suppose given (i) an 
integer X: > 0, (ii) an (n - I)-sphere bundle < over a finite CW/-complex X such that 
dim(X) 5 n - 3, and (iii) a fibrewise mapf: t + X x s”-’ of degree +k on each fibre. It 
clearly follows that we can orient r so that the fibrewise map f has degree k on each fibre. 
and we will suppose this done. 
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LEMMA (3.1). There exists (i) an integer t 2 0, (ii) a jibrewise map g : k’{ + X x SN-’ 
(where iV = nk‘) of &gree 1 on each jibre, and (iii) a map h : SN-’ -, SN-‘, such that the 

following diagram offibrewtie maps is fibre homotopy commutative: 

k’5 x sN-l 

\ 
/ 

I\ ,<.k 

\ 
/ 

/’ 
x x P-1 

Remark. It is clear that the degree of h must be k(“‘. 

Proof. CW-complexes may be constructed by an inductive process, in which one 
attaches cells to what has already been constructed. The present proof (like many proofs 
about CW-complexes) consists of a corresponding induction. If X consists solely of O-cells, 
then the result is clearly true, with t = 0. Let us suppose that X is formed by attaching a 
cell E’ to the subcomplex Y, with characteristic map c : E’, S”’ -P X, Y; and let us suppose, 
as our inductive hypothesis, that the result is true for Y; that is, we can find a fibre homotopy 
commutative diagram of the following form: 

k”(/ 1 r) 
k”(4 r) +Y x s*-’ 

(Here g’ is supposed to be a map of degree 1 on each fibre.) Consider the induced bundie 
c*(k”e) over E’; it can be represented as a product bundle E’ x S”-‘; we now have the 
following fibre homotopy commutative diagram of fibrewise maps: 

r-1 x SM-i_&j,Y) ” 
1 xk’ 

S -YxP-‘--+YxS M-l 

E’ x S*-’ - k”{ 

(Here c’, C” lie over c.) The map g’c’ is equivalent to a map tI : S”’ + G(M, l), where 
G(M, 1) denotes the space of all maps from S”‘-’ to S”-’ of degree 1 (as in $2). If r = 1 
then 8 can be extended over E’, since G(M, 1) is arcwiseconnected; we proceed to examine 
the case r > 1. Let K be the degree of h’, which is k(“‘, as remarked above; and let us defme 
K’ : G(m, 1) + G(m, K) by composition with h’, as in $2; then the diagram shows that 
PO : S-’ + G(m, K) can be extended over E’. Now by Lemma (2.1) we have [PO] = K[8], 
so K[@] = 0. 

If we take the Whitney sum of the diagram with itself m times, we evidently replace 
8(x) by 6(x) * 6(x) * . . . + e(x) (m factors). According to Lemma (2.4) this replaces [8] by 
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m[6]. If we take m = K, we replace [6] by 0, and therefore we can iind a fibrewisc extension 
of K(g’c’) over E’ x Sp-’ (where P = KM). This of course defines a fibrewise map 

g”: Kk”~+ x x sp-’ 

extending Kg’, (If r = 1 we arrive at the same conclusion with K replaced by 1.) At this 
stage we have the following diagram of fibrewise maps: 

k=f 
keg *x x sp-’ 

\ 

I” 
/ 

lxh" 

/ 

*x x ,P-1’ 

Here ic” = NC” ; h” is the join of K copies of h’; and the diagram is known to be fibre 
homotopy commutative on Z?{/Y. 

The obstruction to extending a fibrewise homotopy over I x E’ is a map #J from the 
boundary of Z x E’ to G(P, L), where Z. is the present degree on the fibres (that is, P).) 
The map 4 represents an element of rc,(G(P, L)). We can of course alter g” by using any 
element a of z,.(G(P, l)), and this alters [+] by [h”a] = L[a] (Lemma (2.1)). 

Let us now investigate the effect of taking the Whitney sum of this diagram with 
itselfm times. We evidently replace d(xj by $(x) * 4(x) * . . . l &x) (m factors). According 
to Lemma (2.4) this replaces [6] by mLm-‘[4). Since L is replaced by L”, we can alter 
the obstruction mL”“[#] by L”[a]. We now take m = L; the obstruction becomes LL[&] 
modulo L‘[a], that is, zero. We conclude that we can construct the following fibre homo- 
topy commutative diagram of fibrewise maps: 

UVf 
Lk*< rx x 9” 

\ 

7 

1’ 
8”’ 

\ 

,‘l x h”’ 
/ 

L 
/’ 

x x sQ-( 

Here Q = LP, g’” has degree 1 on each fibre and h’” is the join of L copies of h”. Since L&C” 
is a power of k, this completes the induction and proves Lemma (3.1). 

COROLLARY (3.2). Suppose given (i) an integer k > 0, (ii) an (n - 1 j-sphere bundle ( over 
a finite CW-complex X, und (iii) a fibreioise map f: 5 -+ X x S”-’ of degree +k on each 
fibre. Den there exists an integer t such that the bundle k’( is fibre homotopy equivalent to a 
trivial bundle. 

Proof: The result is true for k = 1, by Dold’s theorem [ 1 I]. We may thus suppose k > 1. 
For a suitable choice of s the bundle k”t and the fibrewise map k”f: k”5 + X x SNN1 (where 
N = nZC) satisfy the dimensional restriction of Lemma (3.1). (The degree of rpf on each 
fibre is kfk“). The conclusion of Lemma (3.1) provides a fibrewise map g of degree 1 on 
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each fibre, and by Dold’s theorem g must be a fibre homotopy equivalence. That is, there 
exists an integer t such that k”“‘< is fibre homotopy equivalent to a trivial bundle. This 
completes the proof. 

We will now deduce Theorem (1.1) from Corollary (3.2). 

Proof of Theorem (1.1). The result is true for k = 1, by Dold’s theorem [1 I]. We may 
thus suppose k > 1. Suppose given a fibrewise map f : < + q of degree + k on each fibre. 
There exists a sphere bundle C such that ‘f @ C = T, where t is a trivial bundle. The map 

f@l:r@j---+ It@i=r 

has degree fk on each tibre. By Corollary (3.2), there exists an integer t such that k’r @ k’ [ 
is fibre homotopy equivalent to k’t. Adding k’q, we see that k’5 $ k’t is fibre homotopy 
equivalent to Ks $ Kr. That is, k’5 and k’q are stably fibre homotopy equivalent. Now 
since k > i, we can make the dimension of K{ as large as we please by increasing t; in 
particular we can make it so large that ‘stable fibre homotopy equivalence’ implies ‘fibre 
homotopy equivalence’ (cf. [6], pp. 293, 294). This completes the proof. 

$4. APPLICATION OF ‘DOLD’S THEOREM MOD k’ 

In this section we shall prove Theorems (1.3) and (1.4). 

LEMMA 4.1. Assume that X is a finite C W-complex and that y E KR( X) is a linear combi- 
nation of 0( 1) bundles. Then there exists e (depending only on dim (X)) such that 

k=(Yk - 1)y = 0 in K,(X). 

Proof. Since kc(Y’ - l),, is linear in y, it is sufficient to consider the case in which y 
is an O(1) bundle. In this case it is sufficient to consider the case in which y is the canonical 
real line bundle over RP, because any other 0( 1) bundle can be induced from this by a map 
f: X -+ RP”, where n = dim(X). We now divide cases according to the parity of k. If k is 
odd, Yk(y) = y by [I, (5.1) (iii) or (7.4)(i)], and therefore (Yk - 1)~ = 0. If k is even, 
(Yk - 1)y = 1 - y, and by [I, (7.4)] there exists e depending oniy on n such that 

20(Yk - 1)y = 0. 

Since k is even, 

V(Y” - I)y = 0. 

This completes the proof. 

Proof of Theorem (1.3). The result is trivial for k = 0; also by [I ] we have Yy-’ = Yk, 
so we may assume k > 0. 

Since ke(Yk - 1)y is linear in y. it is sufficient to prove the result when y is an O(1) bundle 
and when y is an O(2) bundle. Lemma (4.1) deals with the case in which y is an O( 1) bundle, 
so we may suppose that y is an O(2) bundle. 

We will now recall something of the representation-theory of O(2). O(2) is a group of 
matrices acting on column vectors (xi, x,y. Let us write 

X1 + iXz = (x, + ix,y; 
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thus A’, and A’, are polynomials of degree r in x1 and x2. Each matrix in O(2) induces an 
orthogonal transformation of (X,, X2)‘; we have thus defined a representation p, : O(2) -P 
O(2). We also have A,, the determinant representation of O(2), and A,, the trivial represen- 
tation of degree 1. 

By checking the characters we easily find: 

y’= ” I’ ( k odd) 

1 pk - i2 +  lo (k even). 

Now we have 

(A* - i& = &Y) - 1, 

where A2y is an O(l)-bundle. By the argument of Lemma 
such that 

(4.1). if k is even there exists e 

k’(l, - ;L,)y = 0 in KR(X). 

It remains then to prove that there exists e such that 

k’(P, - 1 jf 

maps to zero in J(X). 

Consider the map $J : S’ + S’ defined by 

&(X1 + ix,) = (x1 + ix$. 

By construction, 4 is equivariant with respect to the homomorphism pk : O(2) -+ O(2) of 
groups operating on S’ . Therefore it defines a map of bundles, say 

.1‘: Y - fikY* 

The mapfhas degree + k on each fibre. Therefore Theorem (1.1) applies; there is an integer 
e such that the multiples k’y, ke,uky are fibre homotopy equivalent. Thus kc&y - y) maps 
to zero in J(X). This completes the proof. 

Proof of’ Theorem (1.4). -We must recall some facts about the representability of our 
functors; the following details are taken from [6, pp. 293,294]. Let O(mj be the orthogonal 
group, and let H(m) be the monoid of homolopy equivalences from S”-’ to S”-’ ; then we 
have an inclusion map i(m) : O(m) + H(m). By passing to classifying spaces (in the sense 
of [12]) we obtain 

Bi(m) : BO(m) + BH(m). 

Consider the induced function 

(E(m))* : 7r(X, BO(m))- KM, Wm)), 

where X(X, Y) means the set of homotopy classes of maps from X to Y, and m is taken 
sufticiently large, depending on dim (A’). Then there is a natural (1 - 1) correspondence 
between j(X) and Im(R(m))*. 

Now let W be the Cartesian product of n copies of Sz ; say W = S2 x S2 x . . . x St. We 
shall argue by considering the relation between S2” and W. Let V be the set of points in W 
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whicl~ have at least one co-ordinate at the base-point in S2; then we have W = 
attaching map a : S2n-1 + V may be used to start a sequence of cofiberings, 
homotopy type is the following: 

i SE 
SZVl_ 

= v- w9-S2”--4! 

(Here SY and Sa are the suspensions of V and r.) The cofibering 

W--&n 
so 

-SV 

induces the following sequence of sets: 

4* CSs) * 
x(W, B.H(m))+- 7r(S2”, BH(m)) c-- n(S V, BH(m)). 

Vu E’“. The 
which up to 

This sequence is exact, in the sense that if q*x = 0, then x = (Sa)*y for some y. But it is 
well known [14, Theorem (4.1)] that Scr : S2” + SV is homotopic*to the constant map ; there- 
fore q*x = 0 implies x = 0. This shows that the map 

q* : J(P)-+ 4w 

is monomorphic. By adding Z, we see that 

q+ : J(P) -4w 

is monomorphic. 

Now suppose given a class y E KR(S2”) lying in the image of 

F : &.@2”)- Gdw, 

so that y = FZ, where z E KILTER). Then in KR( w) we have q*y = rq*z. Now every element 
in Kc( IV) is a linear combination of complex line bundles; in particular, q+z is such a linear 
combination. Therefore q*y = rq*z is a linear combination of SO(2) bundles. Theorem 
(1.3) thus applies to q*y, and there exists e = e&y) such that the element 

k’(Y’ - l)q*y = q*ke(‘f’” - 1)y 

maps to zero in J(W). Since we have shown that 

y* : J(S2”) -J(W) 

is monomorphic, it follows that W(Y’ - 1)y is zero in J(S’“). This completes the proof. 
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