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ON THE GROUPS J(X)-11 

J. F. ADAMS 

(Received 4 September 1963) 

$1. INTRODUCTION 

THE GENERAL object of this series of papers is to give means for computingthe groups J(X). 
A general introduction has been given at the beginning of Part I. The object of the present 
paper, Part II, is to set up the groups J’(x) and J”(X). 

The arrangement of the present paper is as follows. We reach the group J’(X) in $6. 
Its definition depends on the “cannibalistic characteristic class” pk, which is treated in 45; 
and this in turn depends on the Thorn isomorphism in K-theory, to which we devote $4. 
The group J”(x) is treated in $3. Here we prove Theorem (3.12), which states a formal 
property of J”, and is required for use in [5]. $2 is devoted to necessary number-theory 
about the Bernoulli numbers. 

$2. NUMBER-THEORY 

The work of Milnor and Kervaire [ 151 shows the importance of the Bernoulli numbers 
in studying the J-homomorphism. In what follows, we shall need certain elementary 
number-theoretical results about Bernoulli numbers and related topics. These results are 
presumably known, but for completeness, they are collected and proved in the present 
section. 

We begin by establishing some notation. The Bernoulli numbers enter algebraic 
topology in various ways. One of their bridgeheads is the power-series for the function. 

Sinh t_x 
Log - 

( ) 9 
. 

Here the function 
Sinh +x 

.)x 

is to be interpreted as 1 for x = 0; it is then analytic and non-zero for 1x1 < 2x, and is even. 

Thus we have 

(2.1) 
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(for 1x1 c 2x)), where this expansion defines the coefficients azs. We have 

8-1 *z Sinh+x -se .-; 
x 3X 

therefore 

(2.2) 
8-1 co x’ 

Logy= c %FT 
t=1 . 

where we have defined a, for odd t by setting 

al = 3, a2s+l = 0 for s > 0. 

It is very easy to compare (2.2) with the expansion of x/(e” - 1). Following Hardy and 
Wright [12, p. 901 we set 

(2.3) 

LEMMA (2.4). For t > 1 we have 

A 
at=-. 

t 

Proof. Differentiating (2.2), we have 

--&($-$+&~. 

Rewriting this and using (2.3), we have 
t-1 t-1 

1 -;+,j++& +. = 

Equating coefficients, we find 

A = tat (t > 1). 

This completes the proof. 

The relation between the coefficients fit and the classical Bernoulli numbers B, is 

flzs = (- 1)“~‘B, (s > O), 

as on [12, p. 901. 
The theorem of von Staudt [12, p. 911 determines the value of fit mod 1. However, the 

numbers which arise in algebraic topology are not the numbers pt themselves, but the numbers 

azs P -=~+1)4, 
2 

We need to know the value of a,/2 = /?,/2t as an element of the group of rationals mod 1. 
Since this group is a torsion group, it splits as the direct sum of its p-primary components. 
It will thus be suflicient if for each prime p we give the value mod Q;, where QL is the 
additive groups of rationals with denominators prime to p. 

In the next theorem, we suppose that t is even. 
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THEOREM (2.5). Zf p is odd we have 

!!!=I= 

i 

0 modQ; if rfOmod(p-1) 

- 2 2r 1 
2PU 

mod Ql, if r = (p - 1)~. 

For p = 2 we have 

i 

Q mod Q; if r = 2 

cLIJ= 
& mod Q; if r =4 

2 2r-1 1 
5-t;itmodQ; if r&6 

We defer the proof. 

We now require some more notation. We write v,(n) for the exponent to which the 
prime p occurs in the decomposition of n into prime powers, so that 

n = ~vA~)~~s(R)~VS(~) . . . . 

We define an explicit number-theoretic function m(r) as follows. 

For p odd, 

0 if 
VP(N)) = 

r $0 mod(p - 1) 

1 + v,(r) if r E 0 mod(p - 1). 

Forp=2, 

1 
vAm(r)) = 

if r$Omod2 

2 + vz(r) if r = 0 mod 2. 

(Note that vJm(r)) = 0 except for a finite number of p.) 

For example, we have m(2.s + 1) = 2. 

THEOREM (2.6). m(2s) is the denominator of 

when this fraction is expressed in its lowest terms. 

This theorem is due to Milnor and Kervaire [15, Lemma (3)]. It is clear that it follows 
immediately from Theorem (2.5). 

The function m(r) also appears in a rather different situation, to which we turn next. 
Roughly speaking, we want to say that m(r) ‘is the highest common factor of the expressions 

k” (k’ - 1) 

as k runs over all integers’, We proceed to make this precise. 

Let f be a function which assigns to each integer k (positive, negative or zero) a non- 
negative integer f(k). Given such a function f and a non-negative integer r, we define 
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hCf, t) to be the highest common factor of the integers 

/c”“(K - 1) 

as k varies over all integers (positive, negative and zero). 

THEOREM (2.7). h(J t) divides m(t). For each t there is a function f(k) such that 

h(f t) = m(t). 

This result is involved in a proof by E. Dyer [l 1, pp. 365,366) although it is not given 
a separate statement there. I owe to Dyer a suggestion for expressing the proof more 
elegantly. 

We will now prove the results stated above. The proof of Theorem (2.5) follows the 
pattern of von Staudt’s theorem, in that we compare a summation formula involving /I, 
with an independent estimate of the sum. The only difference is that the estimate holds 
modulo a high power of p, instead of modulo p. We begin with two well-known lemmas. 

LEMMA (2.8). If t > 0 we have 

c y*= c t! 
B t--o+ 14’. 

1 GyQq- 1 l<‘J t+1 v!(t - v + l)! 

This follows from the identity 

1 + e” + ezr + + e(4- 1)x x rP-1 
. . . =-*- 

8-1 x 

by expanding in powers of x and equating coefficients; see [12, p. 901. 

We now introduce the ring J,,, of residue classes mod m, and the multiplicative group 
G,,, of units in J, (that is, the group of residue classes of integers prime to m). 

LEMMA (2.9). If m = pf with p odd and f 2 1 then G, is cyclic of order (p - l)~#-~, 
If m = 2/ and f > 2 then G,,, 13 the direct sum of the subgroup consisting of f 1 and the sub- 
group of residue classes congruent to 1 mod 4; the latter subgroup is cyclic of order 2’-‘. 

This lemma is well-known. See [17, pp. 145, 1461. 

We next observe that if x lies in a given residue class mod p’, where a 2 1, then x* 
lies in a well-determined residue class mod p’+ 1 ; this follows immediately from the binomial 
theorem. By induction over b we see that if x lies in a given residue class mod pa, then 
x*” lies in a well-determined residue class mod P’+~. 

For the next two lemmas, we write t in the form t = fpb with f prime to p. We also 
write G$ for the subset of G2._ consisting of the residue classes x for 0 < x < 2”-‘. 

LEMMA (2.10). If p is odd we have 

c x’ 5 
XEGp’ 

1 

0 mod P”+~ if t$Omod(p-1) 

(p - 1)~“~’ mod paCb if t s 0 mod (p - 1). 

If p = 2, a > 3, b 3 1 we have 

s;+ax’ E 20-t + 2a+b-1 mod 2a+b. 
2 
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Proof. We begin with the case p = 2. Consider the homomorphism 

8 : GZ.+r - G2.+b 

defined by 0(x) = x’ = d2”. As remarked above, the map 8 factors through G,.. Since we 
are assuming D z 2, b 2 1, Lemma (2.9) shows that each element in Im 6 is the image of 
iust two elements in G2., namely fx for some x. That is, the elements in Im 8 are the 
residue classes x’ for x E G-$.. Thus we have 

c x’ = z y in J2.+L. 
r.q¶ Ye e 

By Lemma (2.9), Im 8 is precisely the kernel of the obvious projection 

G 2.+b - G2r+s. 

That is, Im 0 consists of the elements 1 +~2~+’ (mod 2”+b) for 1 Qi < Yq2. Thus we find 

c YE c (1 + j2”‘) mod 2’+b 
Yew 16JG2=-’ 

= y-2 + 3. 2”-2(20-2 + 1)2b+2 mod 2a+b 

E 2 o-2 + y+b-1 md y+b 

(since we have assumed u > 3). This completes thd proof for p = 2. 
In the case p odd we consider the homomorphism 

8:GP+,-G P*b 

defined by 6(x) = x’ = tip. The map 0 factors through 

&G,-G p-*b ; 

thus we have 

P- P 
n ysJOY in JP+bt 

where n is the number of elements in Ker 8. The case r e 0 mod (p - 1) is now similar to 
thecasep=2. 

Let us therefore suppose that t f 0 mod (p - 1). Consider the projection 

G pa+lJ -G * P’ 

using Lemma (2.9), we see that there is an element z in Im 8 such that z f 1 mod p. As y 
runs over Im 8, so does zy; thus in JP+b we have 

Zy~zeY= E y; YC e 

that is, 

(z-l) c ywo mod P’+~. 
yeim8 

Since z f 1 mod p, we have 

c y=o mod P”+~. 
yelm8 
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This completes the proof. 

LEMMA (2.11). If p is odd we have 

c x’ E 
o<x<pa i 

0 mod pa+b if r + 0 mod(p - 1) 

(p - 1)~“~’ mod pcl+b if r E 0 mod(p - 1). 

Ifp=2,a>3,b>l,r>6rhen 

c 
x ‘=2 a+2+ 2a+b-lmOd 2o+b, 

o<x<za- 1 

Proof. Consider the case p = 2. We argue by induction over a; let us assume that 
either (i) a = 3, or (ii) a > 3 and the result is true for Q - 1. Then we have 

c 
o<x<2--’ 

x’= x& + 2’ o<x~2._2*‘* 

Using Lemma (2.10).-and, if a > 3, the inductive hypothesis, we have 

c 
x’ ~ 2.7-Z + y+b-1 

o<x<z’-’ 

modulo 2“+” and 2’+OV3. It follows from the assumption t > 6 that r 2 b + 3; thus the 
congruence holds modulo 2a+b. This completes the induction. 

The case in which p is odd is proved similarly, starting the induction from a = 1. 

Proof of Theorem (2.5). We consider the case p = 2. Since we can evidently compute 

a2 and aQ from (2.1), we shall suppose that t Z 6. Write r = f 2b with f odd. By Lemma (2.8), 

with q = 2““, we have 

o<y~2a-~ ” = lJ+l v!(r -‘1+ l)! Bt-V+12”(“-1) c 

In the terms 
r! 

P u!(r-u++)! t-“+1 
yb7- 1) 

’ 

the part 
r! 

u!(r - u f l)! A-v+1 

does not depend on a; by choosing a large enough, we can ensure that all the term* 

r! p 20-l) 
o!(r - u + l)! t-“+1 

with u > 2 are divisible by 2” f b. , Using Lemma (2.1 l), we have 

(Here 2”fbQ; means 
29 = f 2a’b, we find 

& pJa-l E 2”-2 + 2a+b-1 mod 2a+bQ;. 
. . 

the additive group of rationals 2“+br, where r E Q;). Dividmg by 

a2 Pt 
-=2t_4r 2f 2 

=I+ImodQ;. 
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Since f is odd, we have 

1 1 
-z-modQ;. 
2f 2 

This completes the proof for p = 2. The proof for p odd is similar, by substituting q = pa 
in Lemma (2.8). 

We now turn to the proof of Theorem (2.7). We record the essential point of the proof 
as a lemma, for use in Part III. 

LEMMA (2.12). For each k prime to p we have 

v,(k’ - 1) 2 v,(m(f)). 

Moreover, we have 

v&k’ - 1) = v,(m(f)) 

in the following cases. 

(i) p is odd and k is a generator of Gpt. 
(ii) p = 2, I is even and k is a generator of G,/{ + 1). 

(iii) p = 2, f is odd and k is a generator of G4. 

Proo$ Consider the case p = 2. If t odd then v,(m(t)) = 1 and the result is trivial; for 
if k is odd,‘then k’ - 1 is divisible by 2, i.e. v,(k’ - i)>l;andifk=-lmod4,then 
k’-1s - 2 mod 4, i.e. v,(k’ - 1) = 1. 

We may therefore suppose that t = q 2’-‘, where q is odd and v =v,(m(t)) B 3. By 
Lemma (2.9) we have 

k’ E 1 mod 2’ ; 

thUS 

v2(k’ - 1) > v. 

Now assume that k is a generator of G,/{ + l}. Then k is a generator of GZY+J{ f l}, and 
by Lemma (2.9) we have 

It f 1 mod 2’+l. 

Thus 

v2(k’ - I) = v. 

The proof for p odd is similar. 

Proof of Theorem (2.7). Suppose given a function f(k). Let p” be the highest power of 
p dividing the integers 

k/@) (k’ - 1) 

for all k prime to p. Thus we shall certainly have 

v,(h(f, 0) s v ; 

but by Lemma (2.12), we have 

v = v,(m(t)). 
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Since this true for each prime p, h(f, t) divides m(t). 

Given t, we may choose f so that 

f(k) 2 Max v,(m(O). 
plk 

Then the numbers p” considered above will also divide the integers 

fPk) (k’ - 1) 

when k is divisible by p. In this case therefore we shall have 

h(f, t) = fl p* = m(t). 
P 

This completes the proof of Theorem (2.7). 

$3. THE GROUP J”(X) 

In this section we shall introduce the group J”(x), which will serve, in favourable 
cases, as an upper bound for J(X). After giving the definition, elementary properties and 
examples, we come to the result on the groups &S4”) which was announced in [2, Theorem 
(3) ; 3, Theorem (3)] ; see Theorem (3.7). Finally, we establish fox ma1 properties of the groups 
J”(x); see especially Theorem (3.12). 

In what follows, a Y-group will mean an abelian group Y together with given 
endomorphisms Yk: Y + Y for each k E 2, that is, for each integer k (positive, negative 
or zero). We impose no axioms on the endomorphisms Y’. A Y-map between Y-groups 
will mean a homomorphism which commutes with the operations Yk. If we speak of a 
Y-subgroup (or Y-quotient group) we shall mean that the injection (or projection) map is 
a Y-map. 

The groups K,,(X) are thus Y-groups, and of course this is the example of most 
interest to us. However, for technical reasons we sometimes have to consider other 
Y-groups, for example, Y-subgroups and Y-quotient-groups of groups K,(X). 

Let Y be a Y-group, and let e be a function which assigns to each pair k E 2, y E Y 
a non-negative integer e(k, y). Then we define Y, to be the subgroup of Y generated by 
the elements 

ketkBp)(Yk - 1)~. 

That is, Y, is the subgroup of linear combinations 

g a(k, y)k”k*y’(Yk - 1)y ; 

here the coefficients a(k, y) are integers, and are zero except for a finite number of pairs 
(k, y). If e, >, e2, then Y,, c Y,,. We now define 

J”(Y) = Y/ n Y,, 
e 

where the intersection runs over all functions e. 
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It is clear that a Y-map fi Y, + Y2 induces a map from J”( Y1) to J”( Y,). In fact, 
suppose given a function e,(k, yz) on Z x Y,; then one defines a corresponding function 

el by 

el(k, yl) = e&M; 

then we have 

f(YJ,, = (Y,),, ; 

hence 

/? (Y1),c n (Y&z. 
PZ 

If X is a space, we detie 

J;(x) = J”&(X)). 

The case of most interest to us is, of course, the case A = R; in this case we write 

J”(X) = J;;(X) = J”&(X)). 

This construction is suggested, of course, by the results of Part I [4]. Let us recall 
conjecture 1.2 of Part I. 

Conjecture (1.2) of Part I. If k is an integer, X is a finite CW-complex and y E &(X), 
then there exists a non-negative integer e = e(k, y) such that k’(Yk - 1)y maps to zero 
in J(X). 

PROPOSITION (3.1). Suppose that for some X, Conjecture (1.2) of Part I holds for all k 
and y. Then J”(X) is an upper boundfor J(X), in the sense of Part I. 

Proof. Take Y = KR(X), and let T(X) be the kernel of the quotient map from K,(X) 
to J(X), as in Part I. Then Conjecture 1.2 of Part I states that there is a function e(k, y) 
such that Y, c T(X); a fortiori; n Y, c T(x). This completes the proof. 

L 

An alternative definition of .7”( Y), in which the functions e(k, y) are replaced by func- 
tions of one variable, can be given when the abelian group Y is finitely generated (which is 
of course the case in our applications). In fact, we let f run over the functions e(k, y) which 
are independent of y, so that f(k, y) = f(k). 

PROPOSITION (3.2). if Y isfinitely-generated then 

so that we can write 

Proof. It is clear 

Jy Y) = Y/ n Yf . 
f 

that n Y, c 0 Y/; we wish to prove the converse. Let y,, y2, . . . , yn 
I? / 

generate y; for any function e(k, y), define a corresponding function f(k) by 

f(k) = Max 0, Y,). 
14rSn 

It is easy to check that Y, c Y,; hence fl Y/ c n Y,. This completes the proof. 
/ e 

D 
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In what follows we will always assume that our Y-groups are finitely-generated, so 
that Proposition (3.2) applies. Several of the results which we prove with this assumption 
can be proved without it, though the proofs become slightly more complicated. 

PROPOSITION (3.3)(a). Let Y,, Y, bejnitely-generated Y-groups; then 

J”(Y, @ Y,) = J”(Y,) @ J”(Y,). 

(b) Let P be a point; then 

J”(P) = z. 

(c) Let X be afinite connected CW-complex; then 
J”(X) = z + P(X), 

where P(X) = J”@,(X)). 

Proofs. (a). We have 

(YI 69 Y& = (Y&/C3 (Y&9 
so 

(;I(YI@Y*)/=?(YI)f@$HY&. 

(b). RR (P) = 2, and the operations are given by (Yk - 1) y = 0 for all k,y. 

Part (c) follows by applying (a) and (b) to the decomposition 

G(X) = &r(R) + &(X). 

This completes the proof. 

We will now present some illustrative samples. 

EXAMPLE (3.4). Take X to be real projective space RP”; then the quotient map 

K,(RP”) ---) J”(RP”) 

is an isomorphism. 

Proof. By [l, Theorem (7.4)], gE7, (RP”) is cyclic of order 2’, say. Let us choose f’ so 

that f(k) 2 g for k even. Then kfck) (Yk - 1) y will be zero for k even. But for k odd 
Yky = y in Ka (RR”) [l, Theorem (7.4)], so that k’(” (Yk - 1) y = 0. Thus we have Y, = 0 
for this function f, and hence 17 Y/ = 0. This completes the proof. 

/ 

EXAMPLE (3.5). Take X to be the sphere S” with n = 1 or 2 mod 8; then the quotient 

map 
K&s”) + J”(9) 

is an isomorphism. 

Proof. LetfzRP” + S” be a map of degree I ; then we have the following commutative 
diagram. 

&(S”) - G(RP”) 

1 ** I 
J”(F) - J”( R P”) 
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The mapf* is monomorphic, by the proof of [l, Theorem (7.4)] The right-hand column is 
monomorphic by Example (3.4). Therefore the left-hand column is monomorphic. This 
completes the proof. 

EXAMPLE (3.6). Take X to be the sphere s4”; then the group s”(S”‘) is cyclic of order 
m(2n), where the function m(2n) is in $2. 

Proof. If y E RR(p), we have 

kRk)(yk - 1) y = kf’k’(k2” - 1) y [l, Corollary (5.2)]. 

Thus the subgroup Y/ of R,(p”) = Z consists of the multiples of h(f, 2n), where h(f, 2~) is 
the highest common factor of the integers 

k/‘k’(kZ” _ I) (k EZ). 

The result now follows from Theorem (2.7). 

THEOREM (3.7). 27re image J(II.+,,_~ (SO)) of rhe stable J-homonomorphism-or equiva- 

lently, the group @““)-is cyclic of order 

(i) m(2n) if4n = 4 mod 8 
(ii) either m(2n) or 2m(2n) if4n 5 0 mod 8. 

This result was announced in [2, Theorem (3); 3, Theorem (3)]. 

Proof. The fact that the order of &s”) is a multiple of m&r) is the result of Milnor 
and Kervaire [15] as improved by Atiyah and Hirzebruch [a]. We wish to argue in the 
opposite direction. 

Suppose that 4n = 4 mod 8. Then the map 

r : Rc(S*“) - Ra(s*n) 

is epimorphic; Theorem (1.4) of Part I [4] shows that Conjecture (1.2) of Part I is true for 
X = S*“; the results (3.1) and (3.6) now show that the order of y(F) divides m(2n). This 
completes the proof in this case. 

In case 4n E 0 mod 8 the proof is similar; we lose a factor of 2 because the image of 

r : R&S*“) - G(S4n) 

consists of the elements divisible by 2. 

We now seek to obtain formal properties of the group J”. 

LEMMA (3.8). Suppose that 

i j 

A-B-C-O 

is an exact sequence offinitely-generated Y-groups such that J”(A) isfinite. Then the sequence 

J”(A) ‘* - J”(B) - j+ J”(C) - 0 

is exact. 

Proof. Since J”(B), J”(C) are quotients of B, C it is clear that j, is an epimorphism; 
it is also clear thatj, i* = 0. It remains to prove that Kerj, c Im i*. In what follows, then, 
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we suppose given b E B such that 

It is given that J” (A) is finite; choose a set of representatives a,, ctz, . . . . aq in A for 
the elements of J” (A). As a first step, we will show that for eachfwe can find a, such that 

b - ia,E:Bf. 

In fact, suppose given a functionf(k). Since jb E C,, we have 

jb = 1 kf(‘)(Yk - l)ck 
k 

for a suitable set of elements ck in C, of which all but a finite number are zero. Sincej is 
epimorphic, we can find bk in B (of which all but a finite number are zero) such that 
c, = jb,. Then we have 

j(b - c kffk)(YL - 1)bk) = 0, 
k 

so by exactness there is an u in A such that 

b = ia + c kf’k’(Yk - l)b,. 
k 

If cr, is the representative for the class of (I in J”(A) we have 

that is, 

a-a,rzAf; 

0 = a, + c kf”‘(Yk - l)a, 
k 

for a suitable Set of elements ak in A. Hence 

b = ia, + c kfck’(Yk - l)(b, + ia&; 
k 

that is, b - ia, E Bf. This completes the first step. 

We have shown that for each f there exists cr, such that b - ia, E Bf. We will now 
show that there exists cr, such that b - ia, E Bf for all f. Suppose the contrary; then for 
each a, there exists fr such that b - icr, $ BI,. Define a function f by 

f(k) = Maxf,(k); 
1 dr<cq 

then for each r we have b - ia, $ Br, contradicting the first step. 

We have thus shown that for some a,, b - ia, E n Bf. That is, in J”(B) we have 
f 

1b1 = &{a,}. This completes the proof. 

LEMMA (3.9). Suppose that a&ire&generated Y-group Y admits a filtration 

Y=Y,I>Y*3...3Y,=O 
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by Y-subgroups Y,, such that J”( Y,/ Y,,,) isfinite for each q. Then J”(Y) isfmite. 

This is easily proved by induction over n, using Lemma (3.8) to make the inductive 
step. 

LEMMA (3.10). Let VSq be afinite wedge-sum of q-spheres. Let Y be a ‘4r-quotient of a 

Y-subgroup of k?,,(VSq). Then J”(Y) isfinite. 

Proof. If 8,, (S4) is finite, then KA(VSq) is finite, Y is finite and J”(Y) is finite. It is 
therefore only necessary to consider the following cases: 

A=R,q=Omod4;A=C,qEOmod2. 

Let us assume that q = 2n; then the operations Yk in Y are given by 

Yky = k”y. 

Arguing as in Example (3.Q we see that for each y E Y the multiple m(n)y maps to zero in 
J”(Y) (where m(n) is as in $2). Since Y is finitely-generated, J”(Y) must be finite. 

THEOREM (3.11). If X is a finite connected CW-complex, then j&Y) is finite. 

Proof. Filter Y = R,,(X) by taking Y, to be the image of the map 

j’ : K,(X, X9-‘) - R,(X), 

where X” is the n-skeleton of X. Then Y,/ Yq + i is a Y-quotient of a Y-subgroup of g,,<vS,>. 
Thus J”( Y,/ Y,,,) is finite by Lemma (3.10) and J”(Y) is finite by Lemma (3.9). 

THEOREM (3.12). Let X -+ Y -+ Z be a cofibering of finite connected CW-complexes 
such that the sequence 

j* &(a - R, (Y) 2 ~‘,(X> - 0 

is exact. Then the sequence 

J;: (2) - j* ?;(Y)L$(x)-o 

is exact. 

This follows immediately from Theorem (3.11) and Lemma (3.8). 

THEOREM (3.13). Let X be a finite connected C W-complex, and let Y = R,,(X). Then 

there exists a function F(k) such that 

9 Yf = YF. 

This theorem shows that although the definition of J”(X) involves a limit over functions 
f(or e), the limit is actually attained. 

Proof: By Theorem (3.1 l), j;(X) is finite. Let yi, y2, . . . , y, be representatives in 
Y = R,(X) for the non-zero elements of j;(X). Since y, is not in n Y,, there is a function 

f 
fq such that yq is not in Yj4. Define 

F(k) = Max fq(k). 
1aqan 
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We have 

so that we have a quotient map 

8: Y/n Y~----‘Y/Y,. 
I 

By construction, y,r is not in Yr, and this holds for each q; therefore 6 is monomorphic. 
This proves the result. 

$4. THE THOM ISOMORPHISM 

In setting up the groups J’(x), one should begin with a treatment of the “Thorn iso- 
morphism” in extraordinary cohomology. It is generally known that such an isomorphism 
can be set up. (As a matter of history, the relevant construction appears in the very sketchy 
sketch proof at the end of [6].) However, we have been waiting for an account which sets 
up this isomorphism in the best possible way, and proves that it enjoys the good properties 
one requires. Such an account has now been provided by Atiyah, Bott and Shapiro 
[18; see especially Theorem (12.3)]. 

In this section, I shall simply quote the result of Atiyah, Bott and Shapiro. In an 
earlier draft I included (for completeness and for my own security) a treatment of the Thorn 
isomorphism, on which I based ad hoc proofs of certain results, especially Theorem (5.1) 
and (5.9) of the present paper. This treatment and these proofs are now omitted, at the 
referee’s suggestion. 

Let < be a vector bundle, with structural group SO(n), over the finite COMatCd CW- 
complex B. By the ‘Thorn pair E, E of B’, we shall mean either one of the following con- 
structs. 

(a) E is the associated bundle whose fibres are unit n-cells; E is the boundary of E, 
so that E is the associated bundle whose fibres are unit (n-l)-spheres. 

(b) E is the total space of the vector-bundle t ; E is the complement of the zero cross- 
section in E. 

For cohomological purposes these two constructions are equivalent. 

We recall that in ordinary cohomology we have a ‘Thorn isomorphism’ [16] 

$:Hq(B;G)+ H”+‘I(E, E; G). 

This is usually constructed as follows. We first construct a generator u E H”(E, E; Z). We 
then define 

&/z) = a. (p*h); 

here p: B + B is the projection map, so that huh lies in W(E; G) and the cup-product 
u.(p*h) lies in H”+~(E, E; G). 

In thinking about the Thorn isomorphism in extraordinary cohomology, one follows 
the obvious analogy, replacing H* by Kz. 
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The group K,*(X) is conveniently defined for a tin&e-dimensional CW-complex X by 
using vector-bundles over X. It will be useful to generalise the deilnition to more general 
spaces X, in order to avoid having to discuss whether our Thorn pairs E,E can be given 
the structure of CW-pairs. 

We may replace X by a CW-complex Y which is weakly equivalent to X (for example, 
the total singular complex of X). We may now define 

K;(X) = Inv Lim Ki( Y4), 
4-a 

where Yq is the q-skeleton of Y. We make the obvious definitions for pairs, maps etc. 

The operations Yi of [l] are defined in Ki( Yq) ; they pass to the inverse limit, and 
define operations ‘Yi in P*(X). 

This use of the inverse limit is of course due to Atiyah and Hirzebruch [7] (except 
that they often restrict themselves to finite complexes when they could equally well allow 
finite-dimensional ones.) 

The use of inverse limits has the disadvantage that it sacrifices exactness. However, if 
H*(X) is finitely-generated (which is of course the case for our Thorn pairs) then the inverse 
limit is more apparent than real. In fact, in this case the double suspension S2 Y is simply 
connected and has H*(S’Y) finitely-generated; thus Sz Y is equivalent to a finite CW- 
complex Z; and we have 

Inv Lim Ki( Yq) = Inv Lim Ki+ ‘(S’ Yq) 
4-+m 9-m 

= K”,:Z(Z). 

For such spaces X, then, we do not lose exactness. 

We can now describe the two cases which will concern us of the Thorn isomorphism 
in extraordinary cohomology. In the first case, we suppose given a real vector bundle 5 
over B with structural group Spin(8n), and we obtain an isomorphism 

f#J : K,*(B) - G(E a. 

In the second case, we suppose given a complex vector bundle 5 with structural group U(n), 
and we obtain an isomorphism 

4 : K:(B) - K;(E, E). 

In each case, 50 is an isomorphism of modules over K,*(B) (where A = R or C, according 
to the case.) Moreover, rp is natural for bundle maps. For the definition of cp, we refer 
the reader to [ 181. 

$5. THE CLASSES pk. 

In this section we shall study certain ‘cannibalistic characteristic classes’. Following 
Atiyah (private communication dated 20 October 1961) we shall call them P’; an indepen- 
dent account has been published by Bott, who calls them ek [8, 91. 
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We shall first define the class pk(<) for each bundle 5 of a suitable class, and establish 
certain formal properties. Then we shall give a result (Theorem (5.9)) which relates the 
operations pk to representation-theory. After that we shall extend the definition of pk 
from bundles 5 to virtual bundles. Finally we shall compute the values of pk in RP” and 
in s”. 

We begin by discussing the situation abstractly. Let K and H be extraordinary coho- 
mology theories with products, and let T:K -+ H be a natural transformation (preserving 
products). Suppose given also some class of bundles 5, for example, unitary bundles or 
Spin(8n)-bundles (n = 1,2, . . . .) For this class of bundles, we assume, there is given a 
Thorn isomorphism 

& : K*(B) - K*(E, ~9; 

this is a map of modules over K*(B), and is natural for maps of bundles. Similarly for 

$a : H*(B) - H*(E, E). 

Under these conditions the element 

0, 0 = &rQMl) o H*(B) 

may be considered as a ‘characteristic class of C’; in particular, it is natural for bundle maps. 
We have in mind the following special cases. 

(i) Let us take K = JI = H*( ; Z,), T = f Sq’. We obtain the (total) Stiefel-Whitney 
0 

class of 5 [16]. 
(ii) Let us take K= K,,, H = H*( ; Q). Let us write chc = ch, ch, = AC, so that we 

can take T = ch,: K,, + H. We obtain characteristic classes 

4; ‘c~*&(l). 

These classes are both classical and useful in calculations, and will be discussed below. 

(iii) Let us take K = H = K,, , and take T to be the operation ‘Yi [l]. Then we obtain 
a chacteristic class which we call p;: 

Of course the characteristic class pi is defined for unitary bundles and the class pk is 
defined for Spin(8n)-bundles (n = 1, 2, . . . ). 

Tlie philosophy of characteristic classes 4H1T$K(1) has been expounded in [19, especi- 
ally $4 2.2, 2.15, 3.3; 221. 

We will now discuss example (ii) above more fully. If we start from a Spin(8n)-bundle 
5, then the classical expression for 4; ’ ch ~4~1 is (A(<))-‘, where A^ is as in [6; 21 9 231. 
In fact, it is by now well known that this is the way A^ enters the theory of characteristic 
classes. 

I will now indicate my objection to the notation (A(l))-‘. In the theory of character- 
istic classes we should first do all we can for general bundles; only then should we apply 
the theory to the tangent and normal bundles of differentiable manifolds. (In historical 
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terms, we should follow Whitney rather than Stiefel). From this point of view the charac- 
teristic class 

c&‘Ck c 4x1 

is clearly fundamental, and should have its own notation; in this paper I shall use the 
notation 

Sh(5r) = & ‘ch c &l. 

(The choice of notation will be explained below). One now takes a differentiable manifold, 
with tangent bundle 7 and normal bundle v (for some embedding in R”). One now encoun- 
‘ers the class 

A(7) = d(v). 

That is to say, this class ‘really’ arises from the normal bundle; but one introduces A in 
order to write it in terms of the tangent bundle. 

Similar remarks apply to unitary bundles, with (A(r))- ’ replaced by 

@(C)(T(r))- l 

where T(r) is the Todd class [13, $0 1.7, 10; 21 $221. (This expression, like the previous 
one, depends on the precise choice of the Thorn isomorphism &). 

For later use, we require explicit formulae for the characteristic classes c#J;’ chA ~$~l. 

Following Bore1 and Hirzebruch, we consider in u(n) the maximal torus T which 
consists of diagonal matrices. We have 

BT = CP” x Cl’” x . . . x CP”. 

Let x E H2(CPm) be a generator; then the cohomology ring H*(BT; Q) is a polynomial 
ring on generators xi, x2, . . . , x, corresponding to the factors. The embedding i : T + U(n) 
induces a monomorphism 

(Bi)* : H*(BU(n); Q) -+ H*(BT; Q) 

whose image is the subring of symmetric polynomials. 

We write bh or & for the characteristic class whose image under (Bi)+ is 

I7 
eX’ - 1 
-. 

14rCn x, 

The notation bh is intended to suggest ‘Bernoulli’. 

By means of the usual embedding u(n) c SO(2n) we obtain a maixmal torus T in 
SO(2n). As before, the map 

(Bi)* : H*(S0(2n); Q, --) H*(BT; Q) 

is a monomorphism. Its image is the subring of H*(BT ; Q) additively generated by sym- 
metric polynomials in which the exponents of the variables x, are either all even, or all odd. 
Using the projection Spin(2n) + S0(2n), we have 

H*(B Spin(2n); Q) 2 H*(BS0(2n); Q). 
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We write sh or bhR for the characteristic class which corresponds to 

The notation sh is intended to suggest ‘sinh’. 
THEOREM (5.1). We haoe 

C#I; ‘ch,&l = bh,,& 

This theorem was certainly known to previous authors; compare [19, foot of p. 1491. 
The proof which follows is due to Atiyah (private communication). 

Proof. We shall proceed from the definition of $k given in [18], using the methods of 
Bore1 and Hirzebruch [20,21]; compare [23, $51. 

We first recall that Atiyah, Bott and Shapiro introduce a group Spir&r), defined as 
a subset of a certain complex Clifford algebra [18]. We will begin by obtaining the result 
which corresponds to Theorem (5.1) when we consider bundles with structural group 
Spix.@r) and take K = Kc. We have first to fix some notation. 

Let S’ be the subgroup of complex scalars of unit modulus in the complex Clifford 
algebra. Let T’ be the maximal torus in SpinR(2n) c Spinc(2n). Then S’ n T’ = Z,, con- 

sisting of f 1; and S’ xzzT’ is a maximal torus T” in Spinc(2n). This torus is a double 
cover of (S’/Z,) x T, where T is the maximal torus in S0(2n). We take the coordinate 
in S’/Zz as x0 mod 1; thus the coordinate in S’ is $x0 mod 1. Similarly, we write x1, . . . , x, 

for the coordinates in T. 

We begin by considering the case n = 1. Let E, E be the universal Thorn pair with 
structural group Spin’(2); and consider the induced homomorphisms 

Kc@, E) : Jr&l) pf- K&B). 
z 

Because of the ‘difference bundle construction’ employed by Atiyah, Bott and Shapiro, 
j*&l can actually be written in the form p*q - p*c, where u and [ are bundles obtained 
from the universal bundle by known complex representations. We have to calculate the 
characters of these representations; it is sufficient to calculate their restrictions to S’ and 
SpinR(2). The representations are one-dimensional, and the complex scalars in the Clifford 
algebra act as complex scalars; therefore the restriction of either character to 5” is e*xo’2ni. 
We turn to SpinR(2), which is the subset of elements 

Cos *x1 + elez Sin +x1 

in the Clifford algebra. By definition, the ‘positive’ basic representation is the one which 
represents e, e2 as + i; the ‘negative’ basic representation is the one which represents e, e, 
as -i. Therefore the restriction of the characters to SpinR(2) are e*X1.2xi, e-*Xz’2”i. Thus 
the characters are ef(xo+xl)’ 2n’ for the ‘positive’ representation, e*(xo-xr)*2ni for the ‘negative’ 
representation. This leads immediately to the formula 

ch(p*)-‘j*b,l = ch(q - 5) 
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Now by ‘a standard result, we have 

This yields 

4HlY = ; (p*)-'j*y. 

This completes the calculation for Spine(2). 

We now consider Spinc(2n). We observe that our characteristic classes c(T, 5) are 
exponential, in the sense that 

c(T, 5: @ rt) = 090 * a, d. 

In fact, this follows from the “product formulae” for $a and I$~ in 5 @ q; that for &, is 
classical, while that for r& is one of the main results of Atiyah, Bott and Shapiro [18, 
Proposition (11. l)]. We also observe that the homomorphism 

Spine(2) x Spine(2) x . . . x Spine(2) ---, Spinc(2n) 

induces a monomorphism in rational cohomology of the classifying spaces. Therefore the 
result for Spin’(2n) follows immediately from the result for Spin’(2); we obtain the formula 

px0 
n e++ ;.‘-+xr . 

1drGll 

Finally, we deduce the two parts of Theorem (5.1) by naturality. For a bundle with 
structural group SpinR(8n) the constructions of [18] lead to 

C$R1 = dd 

(with an obvious notation.) This yields the formula 

n e*” Y“” 1 ir44n 

in BSpinR(8n). For a U(n)-bundle one has to employ the homomorphism 

U(n) - Spinc(2n) 

given in [18, end of $31. This homomorphism sends x0 into $ x,, and sends x, into x, for 
1 

r 1 1. This yields the formula 

in BU(n). 

Alternatively, this last formula can be deduced from the construction in terms of 
exterior algebras, given in [18, Proposition (11.6)]. 

This completes the proof of Theorem (5.1). 
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PROPOSITION (5.2). We have 

Log bh{ = tfl ct, ch, C 
E 

Log shr/ = f )tizschzscq. 
s=l 

In these formulae, we define Log (1 f x) for x E C H2’(X; Q) by means of the usual 
tzo 

power-series expansion. The coefficients a, are as in $2. We write ch, for the component 
of ch in dimension 2t. 

This proposition follows from the definitions by standard methods and obvious 
manipulations. 

We now return to the assumptions made at the beginning of this section, so that 
K, H are extraordinary cohomoiogy theories and T : K --P H is a natural transformation. 
We take up the study of the characteristic classes &lT#~~(l). 

LEMMA (5.3). Suppose given the following commutative diagrams. 

K”E;I, 6,) ---L H*@,, J%) 
t 

61 z I 
K*(B,) 

92 s I 
H*(B,) 

K*(h) - H*(%) 

pl*j p j PZ* 

Y 
K*(B,) - H*(&) 

Suppose that a(xy) = (ax)(by) for x E K*(&, E,), y E K*(&). Then we have 

b;‘41x = ($;1a411)(Yx). 

The proof is purely formal, and is obvious. 

COROLLARY (5.4). Taking <I = t2 = r, a = /3 = y = T we have 

& 1 T$kW = 47-7 0 - W). 
In particular, we have 

4H ‘chA&) = bb,(O . chA.4 

4; “Y~MX) = pm. ‘ym. 

PROPOSITION (5.5). 

This result has also been found by Bott [8,9]. 

ProojI In [l] it is shown that YiY’f\ = Yz. Take the equation 

(#G 1 v-i M& l Y4 Ml = (4; 1 Yi dk)l 
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and evaluate each side. We find 

(4; 1 Yl datl t-1 = P3;’ 5, 

or using Corollary (5.4), 

(P”, 5) * w: P!4 43 = P”A’ 6 

This completes the proof. 

For our next proposition, we define 

Y!., : & fJ2”(X; Q) - &H2’(X; Q) 

by 
Y&) = k”x if x c H2”(X; Q). 

The point of this definition is that 

ch, Y; = Yj, ch,; 

see [l]. If t is a vector bundle whose dimension over the reals is 2n, we have 

t#J;’ ‘y; &r(X) = k” Y;(x). 

PROPOSITION (5.6). 

(bh, &(ch, PA” 8 = k” (Y”, bh,, 0. 

Proof. Take the equation 

(& ’ ch, 4n)(& 1 Yt, 418 = (4; ’ ‘J’k 4tlX4G ’ ch, dd1 

and evaluate both sides. We find 

(G’ ch, 4~) (P: 0 = (G’ V!I 4~) (bh, C); 

using Corollary (5.4) and the remark above, we have 

(bh,, e) . W, d, t) = k” C% bh,, C). 

This completes the proof. 

We will next carry out the analogue, for our context, of the proof that Stiefel-Whitney 
classes are fibre-homotopy invariants. We suppose given a commutative diagram of the 
following form; it is not assumed that it arises from a bundle map. 

K-B2 

We define 
k = 4,,: ~*&.2(1) E K*@J 

h = 4,,', g* &.,,2(1) E H*(4). 

PROPOSITION (5.7). We have 

h .f*c(T, 52) = c(T, (1). (Tk). 

Prooj: We have g*T = Tg*. Consider the equation 
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where 1 E K*(B;), and the sufhx for each cp can be determined from the context. 

The equation yields 

or using Lemma (5.3), 

(4-‘g’b) c(T, 52) = (4-‘Q)k, 

h .f+c(T, ez) = c(T, &) . U-k). 

This completes the proof. 

COROLLARY (5.8). Let &, & be unitary bundles over B in case A = C, or Spin(8n)- 
bundles (n = 1,2, . . . ) in care A = R. If the sphere-bundles associated with rl, <, are jibre- 
homotopy equivalent, then there exists an element x, E g,(B) such that 

bh, 52 = bh, ll . ch,(l + x,,) 

Note that in the second equation x,, is independent of 1. 

Proof. If the sphere-bundles associated with tl, <, are fibte-homotopy equivalent, 
then there is a diagram 

El, E, 2 E2, ~52 

\ 

PI 

BJ 

/ PI 

in which g has degree f 1 on each fibre. We may therefore apply Proposition (5.7) with 
f = 1. The result involves k = #I<: g*&2(1). We may determine the virtual dimension of 
k over each component of B by restricting on a single fibre ; we find that this virtual dimen- 
sion is f 1 (according to the degree of g). Let E be a trivial virtual bundle with the same 
virtual dimension as k on each component of B; then we have ck = 1 + x,, for some 

x,, o &(B). 

Consider now the case of p!,. Since h = k, the result of Proposition (5.7) is 

k. (p:, t-2) = Cd, tr). CY!, k). 

Multiplying by the equation E = ‘YA or E, we find 

Now, 1 + X, is invertible. (If B is finite this follows from the usual power-series for 
(1 +x,)-l; but in any case, if we take an equivalence y inverse to g, we obtain an element 
4,: y* &1(1) inverse to k.) We thus obtain 

P!i (2 =p!i51 
Y\(l + X/J 

1 + x, 
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The case of bh, is closely similar. We have (ch,, .s) h = 1 in H’(B). The result of 
Proposition (5.7) is 

h * bh, 52 = bh, tl. ch, k. 

Multiplying by ch, E, we find 

bh,, & = bh,, (1 . A,,(1 + xA). 

This completes the proof. 

We now turn to a result useful for calculating pi. 

THEOREM (5.9). If 5 is a U(n)-bundle then p: r is induced from 5 by the virtual represen- 
tation whose character is 

I-I 
zrk- ---2= J”W 

l*rCn z, - 1 
+ 8-2 + . . . + z, + 1). 

. 

If 5 is a Spin(&)-bundle then pk 5 is induced ,from 5 by the real virtual representation 
whose character is 

j-J 
z+k - z-* 
‘* I_* = J4” ,zp-1) + zy”’ + . . . + z;*(k-1)). 

1Qr<4n z, - z, 

This theorem was first published by Bott [8,9]. It follows fairly easily from the de&i- 
tion of the Thorn isomorphism 4 used in [8,9]. However, it is shown in [18] that this 
definition coincides with the definition given in [18]. 

In the above, we have de8ned pi(r) for suitable bundles [. Next we shall seek to extend 

the definition of pi from bundles to virtual bundles. 

We shall see that on bundles, pk is ‘homomorphic from addition to multiplication’, or 
more shortly, ‘exponential’. Also if 7 is the trivial bundle of dimension 2n over the reals, 
we have p"(7) = Id'. Therefore we are forced to define p"( - 7) = k’“. This indicates that 
we can define pk on virtual bundles only at the price of introducing denominators. We 
shall therefore define Qk to be the additive group of fractions of the form p/P, where p 
and q are integers. If k is a virtual bundle over X, we shall seek to define p’[(k) as an element 
of K,(x) @ Qk. More generally, we may be willing to consider K,(x) @ S, where S is a 
suitable subring of C. 

We face a similar situation if we try to define the composite pk 8, where 0 is a virtual 
representation. (In Part III we shall be forced to consider such composites.) In this case 
we are forced, not only to introduce denominators, but also to introduce the completion 
of the representation ring. Let G be a compact connected Lie group, let A = R or C, and 
let S be a subring of C. Let K;(G) be the representation ring of G; then we can form 
K;(G) @I S. In Ki(G) @ S we take the ideal I consisting of elements of virtual dimension 
zero: these are the elements whose characters vanish at the identity of G. We can now 
form 

Comp(K;(G) 6 S) = Inv Lim 
K,(G) 8 S 

I” . 
m-m 
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If 8 is a virtual representation of G, we shall seek to define p% as an element of 

Comp(KA (G) @ Qd 
If X is a hnite (XV-complex, one may complete K&Y) @ S in a similar way. However, 

Comp(K,(x) @ S) can be identified with K,&Y) @ S. For let Z be the ideal of elements of 
virtual dimension zero in K,,(X) @ S, and let q be the dimension of X; then, as in [7], we 
have (Z?A(X))q+l = 0, so that Zq+’ = 0, and 

form>q+ 1. 

We shall require the following lemma on completions. Here the letter K stands for 
an augmented ring, which in the applications becomes K,(X) or K;(G). 

LEMMA (510)(a). An element of Comp(K @I S) whose virtual dimension is invertible in 
S is invertible in Comp(K @ S). 

(b) An element e of Comp(K @ S) has in Comp(K @ S) a square root, unique up to 
sign, provided that the virtual dimension of .? has a square root s in S and 2s is invertible in S. 

Proof of(b). Suppose given s, as in the data. Let c,,, be the component of E in 
(K @ S)/Z-. In (K @ S)fZ”’ we seek an element of the form s + i,, where i, E Z/P, such that 

(s + ?,)2 = &. 

For m = 1 such an element exists and is unique. Suppose, as an inductive hypothesis, that 
such an element exists and is unique for some value of m. Choose in (K@ S)/F+’ a trial 
element s + j,,, mapping to s + i,,, in (K @ S)/Zm ; then we have 

where e, E F/Z’“+‘. If (K 8 S)/Zm+’ contains a square root s + i,,,+ I for cm+ 1 at all, we can 
write this square root in the form s + j, + 6, ; and since the square root s + i,,, in (K 8 S)/Zm 
is unique, we must have 6, E Y/F+ ‘. If we assume that S, E F/Y+‘, the equation 

(s + j, + Q2 = c,,,+~ in (K @I S)/Z’“+’ 

is equivalent to 

2s6, = E, in I”/Im’ ‘, 

By assumption, this equation has a unique solution for 6,. This completes the induction. 
We have shown that for each m, c,,, has a unique square root of virtual dimension s in 
(K @I S)/F. This yields the result stated. 

Part (a) may be proved similarly, or by using the power-series for (1 + x)-‘. 

The work to be done in defining pk(~) is very similar to that in [l, pp. 606-609]. 
We follow [l] and adopt a convention. The lettersf, g will denote maps of complexes such 
as A’. The letters 5, q will denote bundles; the letters X, i will denote elements of K,(X); 
the letters p, v will denote elements of K,,(X) 8 S. The letters a, p will denote representa- 
tions; the letters 0, Q, will denote elements of K;(G); the letters $, p will denote elements 
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of K;(G) @I S; the letters $, p will denote elements of Comp(Ki(G) 8 S). Initially, as on 
[l, p. 6061, we have composites 

B.4 a.53 e.f¶ f.s. 
By linearising over the first factor, as on [l, p. 6071, we obtain composites 

4 . a, 0.L K.f 
By S-linearity over the fist factor we obtain composites 

p.a, JI.L ~.f 

lying in appropriate groups K @3 S. Since composition with a factor on the right preserves 
virtual dimensions ahd tensor-products, we obtain composites 

B.4 $.r. 

These he in the appropriate groups 

Comp(K,(G) @ S), Comp(K,,(X) @ S) = K,(X) 8 S. 

We have remarked earlier that pk is ‘homomorphic from addition to multiplication’, 
that is, ‘exponential’. We will now make this notion more precise. Let G(n) be one of 
the series of groups U(dn), SO(&) or Spit@) (for some integer d>. Let 

x: G(n) x G(m)- G(n), 

m : G(n) x G(m) - G(m) 

be the projections of G(n) x G(m) onto its two factors ; thus 

n@ m : G(n) x G(m) - G(n + m) 

is the ‘universal Whitney sum map’. Here the universal Whitney sum map 

x $ w : Spin(&) x Spin(dm) - Spin(d(n + in)) 

is constructed by lifting the map 

R @ w : SO(dn) x SO(dm) - SO(d(n + m)). 

For each n, let pn be an element of KJG(n)) @I S. We will say that the sequence 
p - @“) is ‘exponential’ if we have 

P .+,.(n~w)=@,.n)~((p,.w) 

for all n, m. The sides of this equation he in Ki(G(n) x G(m)) @ S; cf [l, p. 607, 6091. 
Similarly for a sequence 

A E Comp(KXG(n)) @ s>. 

LEMMA (5.11). If the sequence p = (p,) is exponential, then for any two representations 

a : H + G(n), /I : H + G(m) we have 

p,+,.(a~8)=(Pn.a)~(Pnt.8). 

Moreover, for any two bundles r, q with groups G(n), G(m) we have 

Pn+m * (5 Q d = (P” * 4) @ (A - 59. 

E 
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Similarly for a sequence 

P = (83. 

This lemma is strictly analogous to those of [l, pp. 607-6091, and so is its proof. 

For the next lemma, we introduce the Grothendieck groups K&X), G(H). Here 
K,(X) is defined in the obvious fashion using bundles over X with group G(n) for n = 1, 
2 , . . . ; similarly, K;(H) is defined using representations a : H + G(n) of the group H. 
If G(n) is the sequence of groups SO(&) or Spin@), we write Kso(,,) or Kspin(d) for the resul- 
ting Grothendieck groups KG. Thus (for example) K SpinoI (X) is defined in terms of bundles 
with structural group Spin(8n) for n = 1,2, . . . . If d = 1, we write Kso(X) for K,,,,,(X). 
The group K,,(X) is monomorphically embedded in K,(X) as the subgroup of classes K 
such that +(K) = 0. Under the decomposition 

i;,(X) = z + RR(X), 
we have 

Kso(i,j(X) = dZ + &o(X). 

We suppose given an exponential sequence @ = (&), where @,, E Comp(Ki(G(n)) @ S). 
We assume that the virtual dimension of j3i is invertible in S. 

LEMMA (5.12). If 0 E K&(H), h’ E KG(X) it is possible to form composites 

p . e E Comp(K;(H) 63 s) 
j3. ic E Comp(K,(X) @ S) = K,(X) @ S 

so that these have the following properties. 

(i) p is exponential (in the obvious sense). 
(ii) If we replace 8 by a or K by 5, then these composites reduce to those considered 
above. 

Proof. If the virtual dimension of pi is s, then the virtual dimension of j3. is s” (since 
J? is exponential). If s is invertible in S, so is s”. Lemma (5.10)(a) now shows that every 
element &,-a or fi,,*< is invertible. Therefore j? can be defined, so as to be exponential, on the 
free abelian group F generated by the isomorphism classes of such u or <. It remains to 
show that 0 passes to the quotient, so that it is defined on K;(H) or KG(X). This follows 
from the fact that (&$ is exponential, using Lemma (5.11). This completes the proof. 

Finally, we introduce one further generalised composite. Suppose that 8 = (0,) is an 
additive sequence of virtual representations with e,, E KJG(n)). Then by S-linearity over 
the second factor we can define composites 

e.p, 8.P 

lying in the appropriate groups K @I S. If (moreover) 0 is multiplicative and maps elements 
of virtual degree zero into elements of virtual degree zero, then we can define composites 

0.p 
lying in the appropriate group komp(K 0 S). In practice this situation arises when 0 is 
the sequence ‘Pk [l, $41. 
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As in [1, pp. 606-6091, the appropriate associative laws continue to hold for all the 
composites we have discussed. 

We shall now give some examples of exponential sequences. 

EXAMPLE (5.13). Let pt be the element in K;(U(n)) with character 

I-I r. Zk - 

14rbn z, - 1 

The sequence (pt) is exponential, as one verifies immediately by checking characters. The 
virtual dimension of pf is k (since (~,)~-i + . . . + z, + 1 takes the value 1 at zr = 1). If 
k = 0, then pi = 0; otherwise k is invertible in Qt. The foregoing theory applies; if 
K E K,(X), we can define pk.rc as an element of K,(X) @ Qk. If K is represented by a u(n)- 
bundle 5, then p’.rc = p:(5), according to Theorem (5.9). 

We now turn to the “real” case. We have already defined pi(r) when { is a Spin(8n)- 
bundle over X. It would therefore be plausible to define P’(K) when K E Kspin(8)(X). Actu- 
ally we shall do more; we shall define p’(rc) when K E K so~2~(X). (That is, K may be a linear 
combination of SO(Zn)-bundles for n = 1,2, . . . ). For this purpose we need to distinguish 
the cases ‘k odd’ and ‘k even’. 

EXAMPLE (5.14). Assume that k is odd. Consider the formula 

zik _ z-+k 

n r It= 
ldr<n z: - z, 

,F<” (zr*(k-“+ z,f(k-3)+ . . . + z,-‘(k-1)). 
. . 

It represents a polynomial in which the z, occur to integral powers. It is also invariant 
under the Weyl group of SO(2n); therefore it is the character of some virtual representation 
pi of SO(2n). We will show that this virtual representation is real. It must be real if n is 
even, because every virtual representation of SO(4m) is real. It is also clear that the re- 
striction of p$, to S0(4m-2) is kp:,_ 1. In order to prove that pi,,,_ 1 is real, it is sufficient 
to recall the general fact that if kB is real and k is odd, then 8 is real. In fact, irreducible 
representations can be divided into those which coincide with their complex conjugate 
and those which do not; and the former can be divided into real and quatemionic repre- 
sentations. In order that a representation be real it is necessary and sufficient that it contain 
each quatemionic irreducible representation an even number of times, and each irreducible 
representation the same number of times as its complex conjugate when that is a distinct 
representation. If this condition holds for k0, it holds for 8. 

Alternatively, assuming a little more representation-theory, we can argue that the 
given formula is invariant under the Weyl group of O(2n); thus p: can be written as a poly- 
nomial in the exterior powers, so it is real. 

We have therefore established the existence of a sequence of virtual representations 

Pi: E Kk(SQ(2n)) 

with the characters given. This sequence is exponential, as one verifies immediately by 
checking characters. The virtua1 dimension of pi is k. The foregoing theory applies; if 
K E &,cz,(X), we can define ptlc as an element of &(X) @ Q*. If K is represented by a 
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Spin(Sn)-bundle r, then pk~ = p:(T), according to Theorem (5.9). This completes the 
case ‘k odd’. 

EXAMPLE (5.15). Assume that k is even. We will now construct a sequence of elements 

P: o Comp(Kk(SG(2n)) 63 Qd. 

First, let 13: be the virtual representation of Spin(2n) with character 

Since this character is real, it follows that 20: is a real virtual representation. Since k is 
even, + E Qk and we have 

e; E Kk(Spin(2n)) @ Qk . 

We now remark that if S c C, the character of an element of K;(G) @I S is defined, 
and is a finite Laurent series in the z, with coefficients in S. The elements of K;(G) @ S 
are distinguished by their characters. Therefore we can prove that the sequence t$ is 
exponential, by checking characters in the obvious way. 

Next, consider the map 

This sends a matrix M into 

1 @ 1 : SO(2n) - SO(4n). 

MO 

[ 1 OM 

It can be lifted to a unique homomorphism 

5 : SO(2n) -4 Spin(4n). 

We will now define 

pf: = <e”,, . z)* E Comp(Kk(SO(2n)) 63 Qk). 

Here the square root exists by Lemma (510)(b); we choose its sign so that the virtual 
dimension of pi is k”. 

It is now easy to check that the sequence pi is exponential, using the fact that 6 is 
exponential and the fact that square roots are unique (Lemma (5.10)(b)). 

The virtual dimension of p: is k. The foregoing theory applies; if K E Z&(&‘), we 
can define pk~ as an element of K,(X) @ Qk. 

Using Theorem (5.9), it is easy to check that if K is represented by a Spin@)-bundle 
5, then pk~ = p:(r). This completes the case ‘k even’. 

We add one note. The character of an element 

B o CompK(G) 8 S) 

can be defined, and is a formal power-series in the variables i, = z, - 1 with coefficients in 
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S. Cf [7] ; we shall give further details in Part III. One can then check that the character 
of pi is 

-+k 

,fiS”z;;: z:_t ’ 

where this formula is interpreted using the expansion of (2,)” as a binomial series in C,. 

We turn next to the calculation of the operations pk for the space X = RP”. We recall 
the structure of R&U’“) from [l, Theorem (7.4)]. Let { be the canonical line bundle over 
RP”; then t2 = 1, and 1= 4 - 1 is a generator in K,(RP”), which is cyclic of order 2/, 
where f is the number of integers s such that 0 < s < n and s E 0, 1, 2 or 4 mod 8. In 
particular, &(RP”):@ Qk = 0 if k is even. The only case of interest is therefore that in 
which k is odd. The operation pk is defined on K soc2,(X), so that pk is defined on all 
multiples of 2J in R,(RP”). The value p’(2M) will lie in the multiplicative group 
1 + R&V”) (8~ Qk E 1 + &(RP”) of elements of virtual dimension 1. In order to make 
the structure of this group more transparent, let J2,+, be the ring of residue classes mod 2/+‘, 
and let G2,+, be the multiplicative group of odd residue classes mod 2/+‘. Then we have 

&,+I @ Qk =‘a/+1 for k odd; and we can define a ring homomorphism 

a : GW’“) @ Qk - 52/+1@ Qr 

by setting a(t) = - 1, or equivalently a(J) = - 2. The map a induces an isomorphism of 

1 + R,(m”) @I Q, OIltO G2,+ 1. The subgroup 1 + &,(RP”) @I Q, (defined in term of orient- 
able bundles) maps by a onto the group of residue classes congruent to 1 mod 4. 

THEOREM (5.16). The operations pk on &,(RP”) are given by 

k’ - E’ . 
pk(2111) = 1 + 2k’ A 

where 
1 if kElmod4 

&= 
-1 if kE3mod4. 

Equivalently, they are given by 

ap’(2lrt) = t ‘. 0 
Remark (a). For I divisible by 4 this result has been found by Bott [8, 91. Similar 

calculations have been made by Atiyah (private communication). 

Remark (b). The values of pk lie in 1 + &o(Rp”) @ Qk. This must necessarily happen, 
since all the representations we have used map into SO(m). 

Remark (c). One can choose an odd number k so that k (and hence E/k) has the maxi- 
mum possible order in G2,+ f ; then e/k will have no square root in G2,+, ; this proves that 
it is impossible to define pk on ,X so as to preserve the exponential property. 

Proof. We have 21< = it, where i : O(1) + SO(21) maps * 1 into 5 1. We will compute 
the representation p: i of O(l), where p: is as in (5.14). The value of the character of p$ at 
1 is k’. If we substitute z, = - 1, the value of 
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is E, where 
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,;U-U + ZtW) + ... + Z;iW-U 
. . 

I 1 if kmlmod4 
e=\-1 if ks3mod4 

Therefore the value of the character at - 1 is 6’. Let ).I be the identity representation of 
O(1); we conclude that 

p: i = a + bl’ 

where 

a+b=k’ 

a - b = E’. 

Therefore 

p: (210 = p: i < = n + 6(, 

a p: (2/c) = a - 6 = s’, 

a p: (211) = $ 

The same method yields the first part of the theorem. 

We will now consider the case X = S”, where n z 
I?,@‘) is Z2, and we have &&!Y) @I Qk = 0 for k even. 

This completes the proof. 

1 or 2 mod 8. In this case the group 
The only case of interest is therefore _ 

again that in which k is odd. The operation pk is defined on &(S”) for n 3 2. 

THEOREM (5.17). Zf n E 1 or 2 mod 8 and n L 2, then the operations pk on I?&?‘) are 
given by 

p’x = 
( 

1 if ks +lmod8 
1+x if k=+3mod8. 

Proof. Consider a map g : RP” -+ S” of degree 1, as in 3.5. The map 

g* : R&“) - &WY 

is monomorphic, by the proof of [l, Theorem (7.4)]. We can now compute pkx by natur- 
ality. If x = 0 the result is trivial, so we may assume x f 0; then g*x = 21-‘A, where 2f is 
the order of A. By Lemma (2.9), the group Gz,+, is Zz + Z2,-,. The element e/k (see 
Theorem (5.16)) has multiplicative order dividing 2’ -2 if k s f 1 mod 8, or 2’-’ if k E f 3 
mod 8. Thus 

a pk (2/-‘A) = (c/k)2’-’ 

is equal to 1 if k 3 & 1 mod 8, and otherwise not equal to 1. Thus pkx is equal to 1 or 
not according to the case; but if it is not 1, it can only be 1 + x. This completes the proof. 

It remains to consider the case X = S4”. 

THEOREM (5.18). if x E KR(S4”) then 

pk(x) = 1 + J&k2” - 1) U2” x, 

where a2,, is as in $2. 
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Remark. The coefficient +(k’” - l)cr,, lies in rZ,, according to Theorem (2.7). 

Proof. We may suppose that x is a linear combination of Spin(8m)-bundles for various 
values of m. By applying Proposition (5.6) to each bundle, we find 

By Corollary (5.2) we have 

so that 

and 

(shx) . (ch c pk x) = \Yi sh x. 

sh x = 1 + +aJn chzn cx, 

Yishx = 1 + +k2” aln chzn cx 

ch c yk x = I + $(k’” - 1) atn ch2. cx. 

Hence 

PkX = 1 + t(k”” - 1) aln x. 

This completes the proof. 

$6. THE GROUP J’(X). 

In this section we shall introduce the group J’(x). We shall prove (Theorem (6.1)) that 
J’(x) is a lower bound for J(X). We also compute the groups J’(X) when X = RP” or S”. 

We will now give the definition of J’. First recall that Kso&X) is monomorphically 
embedded in K,(x) as the subgroup of elements x such that (i) the first Stiefel-Whitney 
class wl(x) is zero, and (ii) the virtual dimension of x is even. We define V(x) to be the 
subgroup of elements x E &c&X) which satisfy the following condition: there exists 
y E R,(x) such that 

for all k # 0. We now define 

J’(X) = &(X)/V(X). 

It is necessary to check that V(X) is a subgroup. We first note that any x which 
satisfies the condition given has virtual dimension zero. Let 1 + R,(X) @ Qk be the multi- 
plicative group of elements of virtual dimension 1 in J&(x) @ Qk. Let II be the multiplica- 
tive group 

kgO (1 + RR(X) @ Qk). 

Let us define a function 

S:l+R,(X)---+ 
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6(1 + y) = 
rk(l+y))* l+y ’ 

then 6 is a homomorphism, because Yk is multiplicative for each k. Similarly, the function 

P: &Ax)-n 

defmed by 

P(X) = {pk(x)) 

is a homomorphism. Therefore the set 

V(X) = p-‘&l + RR(X)> 

is a subgroup. 

THEOREM (6.1). S(x) is a lower bound for J(X), in the sense of Parr Z [4]. 

We recall that in Part I we defined 

here T(x) is the subgroup of K,(x) generated by elements of the form (c} -{a}, where 5 
and rl are orthogonal bundles whose associated sphere-bundles are fibre homotopy equiva- 
lent. The theorem states that r(x) c V(X), so that the quotient map K,(X) + J’(X) 
factors through J(x). 

Proof. Suppose given a finite connected Cl&complex X. I claim that T(x) is generated 
by elements {<‘} - {q’}, where <’ and $ are orthogonal bundles whose associated sphere 
bundles are fibre homotopy equivalent, and $ is trivial of dimension divisible by 8. In 
fact, let 5,~ be orthogonal bundles over X whose associated sphere-bundles are fibre homo- 
topy equivalent. Then the same is true for r @ c and q$ f;, whatever the bundle C. We have 

We can choose c so that q @ [ is a trivial bundle of dimension divisible by 8. 

Let c’, $ be as above. Then the Stiefel-Whitney classes of 5’ are zero, since the Stiefel- 
Whitney classes are fibre homotopy invariants. Thus we can lift 5’ to a Spin@)-bundle. 
Corollary (5.8) applies, and shows that there exists y E RR(X) such that 

Pk(5’) = P’W) * Y”O + Y> 
1 + y 

for all k. That is, 

P”({e’> - WH = yy++yy’ 
in K,(X) 0 Qk. This shows that {e’} - {q’} E V(X); thus r(X) c V(x). This completes 
the proof. 

By way of illustration, we will now calculate the groups J’ for the examples considered 
in $3. 
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EXAMPLE (6.3). Take X = ZW. Then the quotient map 

JWW - J’(RP”) 

is an isomorphism, and consequently the quotient map 

GW”‘) - JW’“) 
is an isomorphism. 

The fact that the results of [l] can be rephrased in this way is an observation of ATIYAH 

(private communication) and of BOTT [8,9]. 

Proof. As observed above, the group R,(RP”) is of order 2f, and therefore 
&(RP”) @IQ, is zero for k even. It is therefore sufficient to consider odd values of k, for 
which 

&W’“) @ Qk = &W’“). 

According to [l, Theorem (7.4), p. 6251, for k odd and y E &(R.P”) we have 

Yk(l + Y) = 1 
1+y - 

The elements u E V(Rp”) have therefore to satisfy the conditions 

(i) wt(v) = 0 

(ii) pk(v) F 1 for k odd. 

The first condition ensures that u = 211, and disposes entirely of the low-dimensional case 
n = 1. By Theorem (5.16), if k E + 3 mod 8 the element pk(2A) has order 2’-’ in the multi- 
plicative group 1 + &&W”). (Here the integer f is as in $5. The same application of 
Theorem (5.16) was made in the proof of Theorem (5.17)) Therefore the condition 

pk(2U) = 1, all odd k 

implies that I is divisible by 2/-l, i.e. that 2U = 0 in &&l?P”). Thus V,&RP”) = 0. This 
completes the proof. 

EXAMPLE (6.4). Take X = S” with n z 1 or 2 mod 8. Then the quotient map 

&(S”) - J’(S”) 

is an isomorphism, and consequently the quotient map 

WV - J(F) 

is an isomorphism. Equivalently, the image J(n,_,(SO)) of the stable J-homomorphism is 
2, for n z 1 or 2 mod 8. 

Proof. As in proving Theorem (5.17), we consider a map f : RP” + S” of degree 1, 
so that the induced map 

j* : R&s”) - i?,(RP”) 



170 J. P. ADAMS 

is monomorphic. Consider the following commutative diagram. 
KU) 

&I@“) - &(W 

45 
I I 

4P 
J'(f) 

J'(S")- J’(RP) 

Since K(f) is monomorphic and qp is an isomorphism, qs must be monomorphic. This 
completes the proof. 

EILWPLE (6.5). Take X = S4”. Then J’(P) is cyclic of order m(h). 

This is essentially the theorem of MILNOR and KERVAIRE [15], as improved by ATIYAH 
and HIRZEBIWCH [6]; it states that the image J(x4,_r (SO)) of the stable J-homomorphism 
has an order divisible by the denominator of B&n. 

Proof. Suppose x o V(P); that is, suppose that 

pkx = 
yku + Y) 

l+Y 

for all k. Using Theorem (5X3), this becomes 

(6.6) 1 + +(I?” - l)a,,x = 1 + (k’” - 1)y 

Where aZn is as in $2; by Theorem (2.6) we have 

where d&z) and m(2n) are coprime. Equation (6.6) holds in 1 + &S”) @ Qk; in RR@“) 
we have 

(6.7) 
424 /p(k2” _ 1) _ x = 

m(W 
k”“(k2” - l)y, 

for some exponent f(k). According to Theorem (2.7) the highest common factor of the 
integers kf(‘) (k2’ - 1) divides m(h). Therefore by taking a linear combination of the 
equations (6.7), we can show 

d(2n)x = m(2n)y. 

That is, x is divisible by m(h) in z,(.S4”). 

Conversely, if x is divisible by m(h) in R,(S4”), then we can solve the equation 

42n)x = m(2n)y 

for y, and we can calculate that 

p; = Yk(l +Y> 

l+Y 

for all k. Thus x E V(S4”). 

This determines the subgroup V(S4”), and proves the result stated. 
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