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ON THE GROUPS J(X)—III

(Received 25 November 1963)

§1. INTRODUCTION

THE GENERAL OBJECT of this series of papers is to give means for computing the groups J(X).
A general introduction has been given at the beginning of Part I [3]. We recall that in
Part II [4] we set up two further groups J'(X) and J"(X); here J'(X) is a “lower bound” for
J(X), and we conjecture that J"(X) is an ““upper bound” for J(X). The present paper, Part
11, has two main objects; the first is to prove the following theorem.

THEOREM (1.1). For each finite CW-complex X we have J'(X) = J"(X).
The precise sense in which the groups J'(X) and J"(X) are “equal” is the following.
Both groups can be defined as quotients of Kp(X), say

JX) = Kp(X)/V(X)
J"(X) = Kp(X)/W(X).
We shall prove that the subgroups V(X) and W(X) of Kz(X), although differently defined,

are in fact the same. Therefore the corresponding quotient groups J'(X)and J"(X) are(as a
matter of logic) identical; that is, they are one and the same object.

Theorem (1.1) will be proved in §4. The proof is completely dependent on the existence
of a certain commutative diagram (Diagram 3.1), which is established in §3. This, in turn,
depends on an extension of a result of Atiyah and Hirzebruch [5], which is stated as
Theorem (2.2) and proved in §2.

The proof given in §§3 and 4 may also be found in [2]. However, I would like the
present account to be regarded as more complete and final; in particular, Theorem (2.2) of
this paper is to be regarded as superseding Lemma (2.1) of [2].

The second main object of this paper may be explained as follows. We shall show in
Part IV that the image of the stable J-homomorphism

J i Mgy 3(SO) — Ty 3

is a direct summand. (Here 7 is the stable r-stem.) In other words, for the case X = §5%*%
the group J(X)is a direct summand in something else. It is reasonable to ask whether this is
a qgmaninl Aanca AF o vagiilt tenia faw camin gamaval Alace Af gnnarnace V' Tha anatwas nmeasnss ta o
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“yes”, modulo some doubt as to the best way of setting up the foundations of the subject.
This will be explained in §7.
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Neediess to say, §7 depends on §6, and §6 depends on §35. In §6 we observe that some,
but not all, elements of IT (Kx(X)® Q,) have the form {p*(x)}, and we essentially give a
k

characterisation of the elements which have this form (Theorem (6.2)). In §5 we establish a
“periodicity” property of the operations W* (Theorem (5.1)). Besides being used in §6, this
property will be used in Part TV of the present series.

§2. COMPLETIONS AND CHARACTERS

In the present paper we shall sometimes have to work in the completion of a represen-
tation ring. This completion has already appeared in [4, §5]; we shall recall the details
below. One calculates in such a ring by using characters; in this section we shall explain this
topic, following Atiyah and Hirzebruch [5, pp. 24-27]. We shall also set up certain results
needed later. Corollary (2.9) states that an element of a completed representation ring is
determined by its character. Corollary (2.10) is a technical result needed in §3. These
corollaries follow at once from the main result, Theorem (2.2); this is a slight extension of a

resuu OI Auyan ana I‘lll’ZCDI'UCD. MUGH OI l[l.C pl'OOI lS ODIalIlCG Dy IOllOWlIlg UICSC aumors,
but we are forced to add extra arguments, since we are interested in the real representation

ing ag wall ae tha camnlar ana
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G will be a compact connected Lie group, in which we choose a maximal torus T, whose

poinis are given by compiex coordinaies z, , z,, ..., z, with {z,] = 1 foreachr. IfA = Ror C,
we can form the representation ring KA(G), the notation is as in [1]. If 6 € K(G), then the

character y(#) of 8 is a finite Laurent series in the variables z, z,, ..., z,, with integer

coefficients. We may identify the ring of such Laurent series with KXT); this amounts to
identifying y with i* : K(G)—— K(T). An element of K(G) is determined by its character;

L3N AN/

in other words, y (or i*) is a monomorphism.
1et § be a subring of C: then we can form X (mm S Iffe I('{("\{S'?\ S, then the
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character y(0) of 0 is defined by S-linearity, and is a finite Laurent series thh coefficients in
S. The ring of such Laurent series may be identified with KXA(7) ® S this amounts to iden-
tifying y with
*Q1:K\(G)®S— KAT)®S.
Since S is tbrsion-free, i*® 1 (or x) is again a monomorphism.
In K/ @ S we take the idea _r._. RGN @ S: this consists of the elements whose

ALk SMAN\V) Y W Wanw v ideal = AAA\T SO Py wiles ulu s of the S Vvaaloe

characters vanish at the origin. We give K,(G) ® S the I-adic uniform structure and com-
plete it; that is, we define
Comp(K, (G) ® S) = Inv Lim K_A{%Qf .
q~©

We will now define the character of an element in Comp (K(G) ® S). By substituting
z, = 1 +{,, any finite Laurent series in z,, z,, ..., z, yields a power-series in {,, {,, ..., {,
(convergent in a neighbourhood of the origin). An element of 7 yields a power-series
vanishing at the origin; an element of I¢ yields a power series starting with terms of the
g™ order. Therefore an element of Comp (K(G) ® S) yields a formal power-series.
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More formally, let S[[{,, {5, ..., {,]] be the ring of formal power-seriesin {;, {5, ..., {,
with coefficients in S, and let J be the ideal consisting of power-series with zero constant
term; we give S[{{;, {5, -.., {,]] the J-adic uniform structure. The substitution z, =1 4 {,
yields a map

1: KAG)® S ~— S[[Lys Loy v s 61D,
which is uniformly continuous, since
ey e,
By completion we obtain a map

% : Comp(KL(G) ® S) — S[[{1, {2, ... » {alds
since S[[¢;, {2, ..., {,)] is its own completion.
This account applies, of course, to the Lie group 7, and may be used to identify
SMEy 5 Las -5 £,]] with Comp (KHT) @ S); cf. [5, 4.3, pp. 26, 27]. The only significant step

is to check the following proposition; we include an elementary proof for completeness, but
the reader who prefers to refer to [5] may omit it.

PROPOSITION (2.1). The I-adic uniformstructure on K{T) ® S coincides with that induced
Jfrom the J-adic uniform structure on S[{{;, {2, --., {,]]. More precisely, we have
"M =1
Proof. We have already seen that 19 < y~1J; it remains to prove that y~1J9 < I%. Let

L=Ys, 2025 ...zt
e

be a finite Laurent series such that y(L) € J%. Without loss of generalitywe may suppose that
all the exponents e, which occur are positive ; for otherwise we can replace L by Lz{'z52 ... z/»,
since z{*z{? ... z{ is invertible in K(T) ® S. Assuming that the e, are positive, we may sub-
stitute z, = 1 + {, and so write L as a finite sum

L=} s, 0808 ... 0o
[
By assumption, all the terms with ) g, < g are zero. This displays L as an element of I
r

The central result required for our applications is the following.

THEOREM (2.2). If S is a subring of the ring Q of rational numbers, then the I-adic uniform
structure on K,(G)® S coincides with that induced from the J-adic uniform structure on
S[¢1, 82y ..o Lad). More precisely, given q there exists r = (G, A, q) independent of S such
that

P W elieyTln

The proof is based on an argument of Atiyah and Hirzebruch [5, pp. 24-27]; it will

require several lemmas.

LeMMA (2.3). Let A be a finitely-generated commutative ring; let W be a finite group of
automorphisms of A; let B be the subring of elements of A invariant under W. Then A is a
finitely-generated B-module and B is a finitely-generated ring.
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COROLLARY (2.4). Ki(G) is a finitely-generated ring, and KXT) is a finitely-generated
module over it.

The case A = C is due to Atiyah and Hirzebruch {5, pp. 24-27].

Proof. Since the case A = C has been proved by Atiyah and Hirzebruch, and since we
are mainly interested in the case A = R, we will give the proof for the case A = R.

Let us recall that K (G) is a free abelian group, generated by the irreducible represen-
tations of G. These may be classified into three classes. Class (¢) contains each irreducible
representation p which is distinct from its complex conjugate 5. Class (r) contains the com-
plex forms of real representations. Class (g) contains the complex forms of quaternionic

representations.

Let us now apply Lemma (2.3), taking 4 to be X,(T), and W to be the direct product
I" x Z,, where I' is the Weyl group of G and Z, acts by complex conjugation. The resulting
ring B consists of the elements of K&(G) invariant under complex conjugation. These con-
stitute a free abelian group generated by the following elements: the irreducible represen-
tations of classes (r) and (g), together with the elements p + p, where p runs over class (¢).
The lemma shows that B is a finitely-generated ring, and that K/(T) is a finitely-generated
module over B. Since B is finitely-generated, we may choose a set of generators consisting of
a finite number of representations in the classes (r) and (g), together with a finite number of
representations p + j. Let the generators in class (g) begy,¢;, ..., ¢n. Let D be the subring
of B generated by the remaining generators together with the products ¢, j; thus D is a

Lolbale: mnmasntad wicar Wa haova N Qinna tha camencamtatinmg
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real. Also B is a finitely-generated D-module, generated by 1,¢,,93, ..., 4, Since Ki(T)is

a finitelv-generated B-module, it follows that XA(T) is a finitely-generated D-module, a
fortiori a finitely-generated module over Kx(G). Finally, D is Noetherian and Kx(G) is a
D-submodule of the finitely-generated D-module B; therefore Ki(G) is a finitely-generated

D-module, and hence a finitely-generated ring. This completes the proof.
We will req e further consequence of the way Kz(G) is embedded in K(G). Asin

LIIC [ e Apilr} s cllbcdlc £ad 11l

the proof above, 111 be the subring of elements in KXG) invariant under complex con-
jugation. We set ,
B =B n RH(G).

Proof. We clearly have Kn(G) B = B; we wish to argue in the opposite direction.
Letq,,4,, ..., q. be as in the proof above; we will show that

(Bym+l = B (G)-RB
(B) KR {(G)-B.

In fact, B is generated as a B-module by the elements g, — 7,, where g, runs over the

s Bm+1

generators of B and y, € Z is the dimension of g,. Therefore (B)®** is generated as a
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B-module by the elements

]._.[ . (gn - Yr()'

1<€ism+
If any g,, is a generator in Kx(G), then the product lies in Kz(G) - B. It remains only to con-

sider the case in which every g,, is a generator ¢;. In this case at least one g; must occur
twice, yielding a factor

(g;~1?*=4q} —2q;y + 9%

Since g2 and 2g, are real representations, the factor (g; — y)? lies in Rz(G). This completes
the proof.

We now require further lemmas of Atiyah and Hirzebruch.

LeEMMA (2.6). Let A, W and B be as in Lemma (2.3). Let J be an ideal of A such that
wJ =J for each we W; set I =J n B. Then J and I-A define the same wniform structure on
A; more precisely, there exists an integer m such that

J"cl-AcJ.
This lemma is quoted (with minor changes of notation) from [5, p. 25 (iv)].

LeEMMA (2.7). Let A be a ring and B a subring of A such that B is Noetherian and A is a
finitely-generated module over B. Let I be an ideal of B. Then the I-adic uniform structure of
B coincides with that induced from the I - A-adic uniform structure of A.

This follows directly from [S, p. 24 (i)] by taking the modules M, N mentioned there to
be the rings 4, B.

COROLLARY (2.8). Theorem (2.2) is true in the special case S = Z. More explicitly, let
I = R}(G); then the I-adic uniform structure on K(G) coincides with that induced from the
J-adic uniform structure on Z[[{;, ;. ..., Call-

The case A = C is due to Atiyah and Hirzebruch [5 pp. 24-27).

Proof. Since the case A = C is due to Atiyah and Hirzebruch, and since we are mainly
interested in the case A = R, we will give the proof for the case A = R.

It will ease the statement of the proof if we make one convention. Let 4 be a ring, B
a subring and J an ideal in 4; then the “J-adic uniform structure on B will mean that
induced by the J-adic uniform structure on A4; that is, it consists of the ideals J™ n B.

LetJ <« Z[[(,, {5, ..., {,]] be as in the corollary. Thenaccordingto Proposition(2.1), the
J-adic structure on KX(T) coincides with the K(T)-adic structure. The same is therefore true
for the structures induced on any subring of KXT); in particular, the J-adic and RX(T)-adic
structures on K;(G) coincide.

We now apply Lemma (2.6), taking 4 to be X(T)and WtobeI x Z,, as in the proof
of Corollary (2.4). We take J to be KXT); thus I becomes B. According to Lemmas (2.6)
and (2.7), the K(T)-adic and B-adic structures coincide on B, and therefore on any subring
of B, in particular K¢(G).
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We now apply Lemma (2.7) to the ring B and the subring Kz(G). According to Lemmas
(2.5) and (2.7), the B-adic and Kj;(G)-adic structures on K;(G) coincide. This completes

the proof.
Proof of Theorem (2.2). This theorem follows from the special case S = Z. Let us use
subscripts to distinguish the ideals which occur in the two cases; thus
Jz < ZI[{1, L2y oon 5 Gal]
Js < S[[¢15 L2y o 5 Lall

J=J5S

Then we have
and we easily check that

The result follows.

COROLLARY (2.9). If S< O, the map x: Comp(K(G)® S)—— S[[{1, {25 .--5 LWl
is monomorphic.

This follows immediately from Theorem (2.2). It is this corollary which allows us to
handle elements of Comp(K,(G) ® S) by means of their characters. Thecase S=Z,A =C
is due to Atiyah and Hirzebruch {5, pp. 26, 27].

In order to state the next corollary, suppose given two subrings S « T < Q. Then we
have ideals

Is = KA(G)®S <= K(G)®S
Ir=R(GRT<K(GR®T.
COROLLARY (2.10). Given g, there exists r = r(G, A, q) independent of S, T such that
(KA(G) ® S) n (In"= )"

This follows immediately from Theorem (2.2). It is needed for the arguments in §3.

§3. AN IDENTITY BETWEEN VIRTUAL REPRESENTATIONS

The object of this section is to prove Theorem (3.2), which is vital to the proof of
Theorem (1.1). The most important part of this theorem will state the commutativity of the

following diagram.
e ke(Whk-1)

kso(}'f) > Kso(;Y )

G.1) =l 4

F.U

i
1+ Rso(X)®Q

Here the groups are as in [4, §5]; those in the top row are additive, and those on the bottom
row are multiplicative. In particular, 1 + Kso(X) is the multiplicative group of elements
1 + y in Kx(X), where y € K5o(X); similarly for 1 + Kso(X) ® Q,, where Q, is the ring of

l
1+ Rso(X)
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rational numbers of the form a/l’. The additive homomorphism k*(¥* — 1) is defined by
K(P* — 1Dx = k*((¥*x) — x);

thus the 1 in ¥, — 1 means the identity function. The existence of the homomorphism 6*
will be asserted as part of the theorem. The homomorphism p' is as in [4, §5]. The multi-
plicative homomorphism é' is defined by
Y1+

14y ’

ST 4 )
YA /

-

cf. [4, §6].

THEOREM (3.2). Given integers q, k and a sufficiently large integer e (viz. e 2 ex(q, k))
there exists a function

0 = 0%(q, €) : Kso(X) — 1 + Kso(X)

defined for CW-complexes of dimension <gq and having the following properties.
(1) 6* is homomorphic from addition to multiplication, that is, exponential.
(2) 6 is natural for maps of X.
(3) The image of (x) in 1 + Rso(X) ® Oy is p*(k*x).

AN F PSP fo mmmecsacssfmddesn
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We will now give a heuristic plausibility argument for Theorem (3.2). For this purpose

we will abandon the real K-theory and work instead with the complex K-theory, for sim-

plicity. We now argue that in some suitable formal setting we may hope to have

wolty svwsl

(3.3) PEI®P =" =FH®p
In fact, all three expressions are exponential; therefore it is presumably sufficient to check
the result for a complex line bundle €. Here we have

"Pkc=fk' uc=ék-l
P ——6"‘1
Therefore
M1 g}
(pl‘ykf) ® (pkf) = Egh 1 .5!'—1 »
s - 6= 1
nklf=fu_1
rs E—l
l&,ﬂl.k!\®‘1_lz\=€u-l'£‘—l
\rpe)eipe) ‘Er__—i _6—1

,.

Tha lnat lisea nican tha fant that W anacamas Atlh addleiac nnd manltialicatian Y\ Tha thena
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Al
results are equal. We may therefore agree to suspend disbelief in (3.3). Rewriting this
equation, we obtain

\Pl k
PP — 1) = =2

A~



That is, if x € K(X), then 1 + y = p*x is a formal solution of the equation
W1+ y)
I
PPk~ 1) -
1+

Now, this formal solution involves denominators, that is, coefficients in Q,. However, we
can remove these denominators, up to dimension ¢, by considering

T+z=(1+y",
where e is suitably large. Raising the equation
Y +y)
1 \Pk — 1 = ——
Py Jx=— g
to the power &°, we obtain
c
PR — x = 0 E D)
i+z
This completes the plausibility argument.

We turn now to a rigorous version of this argument for the reai case. The “suitabie
formal setting” for equations such as (3.3) will be the completion of a representation ring.

Eaemilaa gunak aa

rullidiav suwvil ao
ékl -1
(-1
2

will appear when we calculate characters.
In order to state the first lemma, let

%y B € Comp(K, (SO(2n)) @ S)
be two exponential sequences (see [4, §5], just before Lemma (5.9)). We assume that S = Q.

Leia (3.4). If x(@) = 1(By), then a, = B, for all n.
Proof. Suppose that
wofme N A DN __ ALY\
o) = 1P = @)

where ¢({,) is a formal power series in {;. Then by the exponential law,

x(on) = ¢(C)E(C2) - 9L = x(By)-

esult now follows from Corollary (2.9).

We will now apply this lemma. First we observe that (with an obvious notation)
K50(SO(n)) = Kp(SO(m)).

In fact, any representation y : SO(n)— O(m) must map into SO(m), since SO(n) is con-
nected. In particular,
YE _ 1 e R;o(SO@2n)).

(Here, we emphasise, 1 means the identity map of SO(2n).) Thus p'-(¥* — 1) is defined, and
lies in ,
Comp(Kx(SO(2n)) ® Q).
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Again (see [4, §5]) W' p* is defined, and lies in
Comp(KR(S0(2n)) ® Q).
Since p* is invertible in this ring, we can define

\Pl,pk
51,pk=__p?_-

LeMMa (3.5). Consider the sequences of elements
% =p'-(P*=1)
B, =&"p*
in Comp(K{(SO)Y(2n)) ® Qy)). These sequences are exponential, and satisfy (o) = x(B,)-

Proof. 1t is easy to check that the sequences are exponential. In fact, «, is exponential
because (W* — 1) is additive and p' is exponential; B, is exponential because p* is exponential
and &' is multiplicative.

It remains to check that y(«,) = x(8,). The virtual representation P* of SO(2) is the
representation z— z*. By definition, p'-(¥*— 1) means the element (p'-¥¥)/p' of
Comp(Kp(SO(2)) ® Q). Its character is given by

(z*™ - (7-1)-*”.(21)* —(z))7?
(21)’}" - (21)_“ (zl)ﬂ - (zl)_*l. .
Of course, this expression is interpreted as a formal power-series in {; , where z; =1 4 (;;
see [4, §5].
For any virtual representation 6 of G, the character of ¥'-0 is given by
(¥ -0)g = x(0)g'

[1, Theorem (4.1) (vi).] Evidently this equation remains true when 6 is replaced by an
element of K;(G) ® S or Comp(K+(G) ® S). Therefore the character of '+ p* = (¥'- p¥)/p*
is given by

x(2y) =

(Zl)w - (21)_*&" (zy )t - (21)'*
(zl)\l‘l - (21)-*' (zl)ﬂ - (21)-“.

Of course, this expression also is interpreted as a formal power-series in {;. We have
x(et;) = x(B,). This completes the proof of Lemma (3.5).

PROPOSITION (3.6). In Comp(Ki(SO(2n)) ® Qy,) we have
pl(¥ -1 =2¢"p

xBy) =

and
k™"
Lopk _ 1y L\ P,
p(P*—-1) e
Proof. The first assertion follows immediately from Lemmas (3.4, 3.5). The second
follows by rewriting the first.

The element k~"p* lies in Comp(Kz(SO(2n)) ® Q,), and has virtual dimension 1.



7 and sufficiently large e (Viz. e Z eq(n, k, r) we have
(k7" =1+x in (Kx(SO(2n)) ® QIT",
where x € R(SO(2n)).
Proof. Tt is clear that if the conclusion holds for one value of e, then it holds for all

larger values of e. We now proceed by induction over r. Suppose that we have found e
such that

S’
Q
b,
]
=
S
-

<
)
=t

.‘:I

K
~
gl

by

(k"D =1+x in (Kx(SO@2n)® Q/I",
where x € Rp(SO(2n)). (The induction starts with 7 = 1.) Then in
(K;((SO(2n)) ® Q/I*
we can write
k" =1+x+k 7y,
where
ywe LIS\ ~ T

J S DRIV LIy i s .

(Here we regard Kx(SO(2n)) as embedded in Kz(SO(2n)) ® 0,.) Now we have

—s LeLad f

k™" =1+ x+ kT y¥
=1+ )Y+ y(1 +x)¥! mod I*
=14z mod I%,

Proaof of Theorem (3.2). In what follows, X will always be a CW-complex of dimension
<q. We can thus determine n = n(q) so that there is a (i—1) correspondence between homo-
topy classes of maps f: X—— BSO and homotopy classes of maps f: X—— BSO(2n). That
A oo [1 v can o n dnnna Taa PPy fomume mmmllcme alnocas A8 O/WY0) et Alas

s H e v,
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& over X and the elements of Ks,(X); the correspondence is given by & — {£} —

ey

We wiil now invoke Lemma (3.7}, and for this purpose we define an integer r depending
only on ¢ and n. (Thus r depends ultimately only on ¢g.) With the notation of Corollary

{9 1N\ wa aat
(& 1VJ, WL OUL

= r(S0(2n), R, 9
r, = r(S0(2n) x S0(2n), R, q)
r = Max(q, 7y, 73).
We now employ Lemma (3.7) to choose elements

(89, € KR(SO(2n})
- (6%)24 € Kr(SO(4n))
such that the images of (6%),, (8%),, in

(Kx(S0(2n)) @ Q/I",

(KR(SO(4m) @ Q)/I"
G I ('

are
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We can do this for all sufficiently large e (viz. for e 2 eq(q, k)).
We shall use the element (6), to define the function

6" : Rso(X) — 1 + Kso(X).
More precisely, we define

04({&} — 2m) = (69" &},

where £ runs over the SO(2n)-bundles. It is clear that this does define a function, which is
natural for maps of X. Sincer 2 g, it also follows that the image of 8%(x) in 1 + Rso(X) ® Qs
is p*(k®x).

We shall use the element (6%),, to prove that the function 6* is exponential. More
precisely, let n, @ to be the projections of SO(2n) x SO(2n) onto its first and second factors.
Then in '

Kx(S0(2n) x SO(2m)) @ QIH/I" °

we have the following equations.
(02 (n @ @) = (k™" pY*"-(n @ w),
(k- (n @ w) = (k") 2 @ (k""" -,
k"o & (k"0 = (69, 7 @ (6, .

We may now apply Corollary (2.10) with G = SO(2n) x SO(2n), S=2, T= Q,. The
element

(Ok)zn'(nQ!D) - (0&)",7!@(0&)",”

[KRr(S0(2n) x SO(2n)) ® §] n (I7)".
By our choice of r, Corollary (2.10) applies and shows that this element lies in (/5)®. There-
fore this element will annihilate any SO(2n) x SO(2n)-bundle over X; for since X has
dimension <g, we have (Rx(X))* = 0. Let & n be SO(2n)-bundles over X; we can apply
the preceding remark to £ x n; we obtain the equation
(020 DM = (6, 7 (8, @
in Kg(X). From this it follows that the function

*: Rso(X) — 1 + Rso(X)

lies in

is exponential.

We argue similarly to show that Diagram (3.1) is commutative. Proposition (3.6) states
that

W (k")
gk _ (Y= 2% _P)
p (¥ - 1) PR
in

Comp(K(S0(2n)) ® Qx)-

Raising this equation to the power k¢, we have
_ \Pl(k—npk)k'

L. ek _ = .
pk(Y — 1) T
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Thus
¥ (69
Lks(9* — 1) = Lo
. PR 1) =~
in
[KR(S0(2n)) ® Qul/I".

We will now apply Corollary (2.10) with G = SO(2n), S= Q;, T= Q4. Let us take a
representative

y € Kx(S0(2n)) @ @,

Pk~ 1)

for the element
in
[KR(S0(2n)) @ Q.)/(IsY.
Then we have
y € Kp(502n) ® S,
(69,
(",

L
and y- \P( oﬁ)o")" € [Kr(S0(2n)) ® S] n (I7).

€ Kx(S0(2n)),

By our choice of r, Corollary (2.10) applies and shows that this element lies in (/5)*. That is,
we have .

\iﬂ_(ok)
L (P — 1) = T
p k(W ) (0,‘)”
in
[Kx(S0(2n)) ® Q,1/(Is).

Arguing as above, it follows that Diagram (3.1) is commutati{re. This completes the proof
of Theorem (3.2).

§4. PROOF OF THEOREM (1.1)

In proving Theorem (1.1), we shall have to work with square diagrams like Diagram
g3_.l). By a “square” S, we shall mean a commutative diagram of groups and homo-
morphisms which has the following form.

A——B
C——D

We shall call a square “special” if it has the following property: given b € B and ¢ € C such
that kb = ic, there exists @ € 4 such that fa = b and ga = ¢. This is equivalent to demanding
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the exactness of the following sequence:

()] =)
BgC

D.

By a *‘short exact sequence

o_qsr__)s__}sn__)O”

of squares, we shall mean a commutative diagram composed of three squares ', S, $” and
four short exact sequences

0 »A'— A > A” 0
0 > B’ B » B" —— 0, etc.

LemMa (4.1). Suppose that
00— §—S—§"—0

is a short exact sequence of squares in which S’ and S” are special; then S is special.
Proof. Each square determines a sequence

) =1
B C

A D

which we may regard as a chain complex. We now have a short exact sequence of chain
complexes. This yields an exact homology sequence, which leads immediately to the
required result,

Alternatively, one may give a direct proof by routine diagram-chasing.

Let X be a finite CW-complex, say of dimension <g. The main part of the proof of
Theorem (1.1) will proceed by filtering X. Let us define F, to be the image of Kg(X/ X" )
in Kg(X); then for r 2 2 and sufficiently large e, Theorem (3.2) provides us with the following

commutative square.
. ke(¥k—1)
F,———F,

14+ F, 1+F,®Q,
(Since Q, is torsion-free, ® Q, is an exact functor, and the image of Kx(X/X""})® Q, in
Rx(X)® Q,is F, ® Q) _
If we pass to a (restricted) direct sum over k and an (unrestricted) direct product over
1, we obtain the following commutative square S, (for r = 2).

I kethigwk—1)

F — F
; . \
4.2 ro et
i
1+F, [Ta+F,®Q
[]
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Pg AN

More premsely, we obtain InlS commutauve square whenever the IUDCUOD eK) is sumcxenuy
large, viz. for e(k) = ey(q, k), where g is our fixed upper bound for the dimension of the com-

nlavae ¥V rancidarad
Pivavo A WWusiuvivu,.

THEOREM (4.3). The square S, displayed in Diagram (4.2) is special.

Proof. We shall prove this result by downwards induction over r. For r = g the result
is trivial. Let us therefore assume as an inductive hypothesis that the square S, ., is special,
and prove that the square S, is special. For this purpose, by Lemma (4.1), it is sufficient to
construct a short exact sequence of squares

0——’S,.+1'—’S,_’S,./S,+1——’O

and prove that the square S./S, . ; is special

Since the square S, .; is embedded in S,, it is clear that the reqmred quotxent square
exists. In order to establish its structure, let us recall that F,- F, < F,,; thus F, , is an ideal
in F,, and F,/F,,, is a ring in which the product is zero (assuming r = 1). Besides the
short exact sequence of additive groups

Q0— F,,,—F,—F,|/F,,,—0,
we have also a short exact sequence of multiplicative groups:
1—1+F, ,,—1+F,—1+F,[F,,,— 1

Here the product in the last group is given by

(A+a(l+b)=1+(a+b)
Similar remarks hold for the following short exact sequence of multiplica_tive groups:

1—1+F,,1 80— 1+FQ0%— 1+ (F/Fi) @O —1

This shows that the square S,/S, ., has the following form.

EkeCa(wr-1)
Zk F;'/Fr+1 -_— r/Fr+l.
(4.4)
£ | e
ns
* [
1+ (F,/F,+4)

Ia + FJF 0 ® Q)

The maps of the square S§,/S,.,, are induced by those of the square S,.
Theorem (4.3) will thus be proved once we have established the following lemma.
LEMMA (4.5). The square displayed in Diagram (4.4) is special.

Proof. The quotient group F,/F, ., of Diagram (4.4) is isomorphic to a quotient group
of a subgroup of

Ry(X'/X™ 1) = RKp(V S).
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(Compare [4, proof of Theorem (3.11)].) Since this isomorphism is given by induced maps,
the operations W, p* and 6* on F,/F,,, are given by the same formulae that hold in S":
Pry = a(k, r)y
p'y =1+ b(k, )y
Gy =1+ c(k, 1, e)y.
Here the coefficients @, b and ¢ do not depend on X or y. To give the coefficients, we have to
divide the cases. Unless r = 0, 1, 2 or 4 mod 8 the group F,/F, ,, is zero and there is nothing
to prove. Consider first the case r = 0 or 4 mod 8; say r = 4¢, ¢ > 0. In this case we have
\Pky - k2t y
Py =1+ 3o, (k* — 1)y
By = 1 + 3o, k"®(k3 — 1)y.
Here the first result is quoted from [1, Corollary (5.2)}, the second is quoted from [4s
Theorem (5.18)] and the third is deduced using Theorem (3.2), part (3).
We can now check that the square (4.4) is special for r =4z, Suppose given
u, v € F,|F, ;, such that
P = Y1 +v)

140 for all 1.

This yields
4oy (1% — Du = (1% - L
in (F,/F,+1) ® O, for all I. This means that for some exponent f(/) we have
3o, V(1 — Dy = VO = 1)
in F,/F, ., (for each /). We may write 3a,, = n(2t)/m(2¢) where n(2t), m(2t) are coprime and
m(2t)isasin [4, §2]. According to [4, Theorem [2.7)], by taking a suitable linear combination
of the equations we have just obtained, we find
n(2t)u = m(2) v.
Since the numbers n(2t), m(2t) are coprime we can choose integers a, b so that
am(2t) + bn(2f) = 1,
now define

w=au -+ bveF,[F,,,;
this ensures that

m(fw = u, n(hw = v,
Using {4, Theorem (2.7)] again, let us choose integers ¢(k), zero except for a finite number of
k, such that

Z: e(k)k* Mk — 1) = m(21).

Let o be the element of Y F,/F,,, with components ¢(k)w. Then
Y kO — 1o = Y (ke ® (k> — 1)w

% 3
= m(2t)w
=u,



208 1. F. ADAMS

(; 0")0 =1+ Y 3o,k (k2 — D)w
k

1+ n(t)w

[u—y

Therefore the square (4.4) is special if r = 0 or 4 mod 8.

We turn now to the case r = 1 or 2mod 8, r = 2. In this case every element of F,/F,,,

has order 2, so that

(F/Fe)® Qe {F s (1 ven).

We have:

Here the second result is quoted from [4, Theorem (5.17)], and the third is deduced using
Theorem (3.2), part (3). The first result is deduced from the corresponding result for
RP™[1, §7] by naturality, according to the pattern of [4, 3.5, 5.17, 6.4].

It follows from this that the map 2 k*®(P* — 1) of Diagram (4.4) is zero, at least for

. The map IT &' is also trivial (with image 1). The map X #* is epimorphic. The
1 k
map IT p' is monomorphic. It follows immediately that the square (4.4) is special.

1

This completes the proof of Lemma (4.5), and (therefore) of Theorem (4.3).

,‘l
v

k)
4

&Y TLa fallas. P

OAanarr anw (A oresmmn o srn
LOROLLARY (4.0). 17¢€ Juuuwm Square i5 speci

k. -
E kedel(pk—1)

Z:, Tso(X) KSOT)
@7 Lo et
ns
3 ' i
1+ Reo(X) I_,I 1+ Kso(X)®Q,

This follows immediately from Theorem (4.3), by setting r = 2.

Proof of Theorem (1.1). In proving Theorem (1.1), we may assume without loss of
generality that X is connected. With the notation of §1, we require to prove that V(X) =
M(X).

Here we have defined
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where W(e, X) is the subgroup of Kz(X) generated by elements of the form
ke®(P* — Dx
as k runs over all integers and x runs over Kz(X). I claim that for e(k) sufficiently large (viz.
for e(k) = eo(g)) we can obtain the same subgroup W(e, X) by letting x run over Kgo(X).
In fact, any element x € Kz(X) can be written as x = y + z, where y € Kgo(X) and z is a

linear combination of real line bundles. A real line bundle { can be induced by a
map f: X —— RP,; from this we see that

200@(P* _ 1Y =0 (k even)

P -1 =0 (k odd)
Thus
KOk - 1)z =0

if e(k) = eo(g),  and hence
kO — 1)x = k0P — 1)y,

We have thus shown that for each sufficiently large function e(k) the group W(e; X) is
the image of the map ) k**(¥* — 1) appearing in Diagram (4.7).
. k

Again, we have
= 1)- 1 .
V(X)= (1‘[ P ) ‘(U 5 )(1 + Ri(X));
see [4, §6]. I claim that we can obtain the same subgroup by taking
(1)) + R
1 ]

In fact, any element 1+ xe 1+ Kgx(X) can be written in the form (1 + y){, where
1+yel+ Kg(X)and { is a real line bundle over X. By dividing the cases *“/ even” and
“l odd”, as above, we see that

1
¥= 1 inl+ K(X)®Q,
for all I. Hence
([z)a+0=(R2)a+»
and

(H 5’)(1 + Kp(X)) = (]:[ 6’)(1 + Kso(X)).
We have thus shown that the group V(X) is the group
-1
(T1¢) (T8t + Reo)
of Diagram (4.7).

The fact that Diagram (4.7) is commutative now shows that Wie, X) < V(X) for
sufficiently large functions e(k). The fact that Diagram (4.7) is special shows that
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V(X) =« Wl(e, X) for sufficiently large functions e(k). Thus for sufficiently large functions
e(k) we have W(e, X) = V(X); hence

This completes the proof of Theorem (1.1).

LE A DEDINANTIATIV TLITMNADIRAA DNAD THIN NDDED ATTNARMIGS ik
Yoo A TEMNIJIZACLIL L IXILVRELVL PURN LIBL VUKEAALLIVIND YT

In this section we shall prove Theorem (5.1), which is needed in §6 and in Part 1V of
the present series. Roughly speaking, it wiil assert that ¥*(x) is a periodic function of k.
More accurately, it will make this assertion “modulo m”.

We shall suppose that X is a CW-complex such that H,(X) is finitely-generated. We
make this assumption because we wish to apply the results to a Thom complex, using the

devices explained in {4, §4]. -

THEOREM (5.1). If x € K\(X) and m € Z, then the value of Wi(x) in K\(X)/mK\(X) is
periodic in k with period m°. Here e depends on X and A, but is independent of x and m.

In this theorem, and below, the statement “f(k) is periodic in k& with period m*”* means
simply “k, = k, mod m® implies f(k,) = f(k,)”. It is not asserted that m* is the smallest
possible period. In particular, the theorem is true for m = 0 in a trivial way.

The proof will require three lemmas.

LEMMA (5.2). Let s be a fixed positive integer. Then the binomial coefficient

kk=1)...(k—s+1)
1-2.. s+1

DO B

when taken mod m, is periodic in k with period m".
This result is of course not *“‘best possible”, but it is sufficient for our purposes.

Proof. We proceed by induction over s. The result is certainly true for s = 1; assume it
true for s. Consider the summation formula

Ll — 1) (lr — &) l— 1n (]l ~ o 1)
404 i) e AR 5) Z Y i) e 8 ST i)
1'2...s+1 0<iSk—1 1'2...3

By the inductive hypothesis, the summand

-0D..d-s+1
1-2...5+1 ’

ol nam dnlrnce sammd e 1o cmceradia ?oumrsdbe ammunlnd o8 T ok dLhic memian mmrme o8 amimnmmesdieea 4n o L~
WIICL LdACIL 1LV 7T, 1D pcuuuu. in / Wil PCIIUU . LCL UIC D 1 CI 771 COLDCLULIVD LCT 1D D
o; then the sum over m**! consecutive terms is mo, that is, 0 mod m. Therefore the sum is
periodic with period m**!. This completes the induction, and proves the lemma.
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Proof. For a real line bundle £ we have
X 1 (k even)
‘I’ 6 = {Z ~ A Iy *
¢ (kodd)

Thus W*¢ is periodic with period 2. If m is even, this is all that is required. On the other
hand, ¢ — 1 has order 2’ for some t, and so if m is odd & — 1 is divisible by m; in this case,
therefore, the mod m value of W*¢ is constant. This completes the proof.

LEMMA (5.4). Let & be an SO(2n)-bundle (if A = R) or a U(n)~bundle (if A = C) over X.
Then there exists an integer e = e(X, A, n) such that the value of Wk¢ in K\(X)/mEK(X) is
periodic in k with period m*.

Proof. Since H,(X)is finitely generated, there exists ¢ = g(X, A) such that the filtration
subgroup F, of K,(X) is zero. We now apply Theorem (2.2), taking S = Z and G = SO(2n)
orG= U(n) according to the case. We obtain r = r(n, A, ¢) such that

I eI
That is, if a virtual representation 8 of G is such that its character y(6) is small of the rt®
order at the identity of G, then we shall have 8¢ = 0 in K,(X).

We now introduce virtual representations ®* of G, for k = 0, by the following equation.

k(k ~ 1)

- ~
1°4

OF = Wk gkt T

In the case G = U(n), A = C the character of W¢ is (z,)%, and therefore the character
of ®f is

L
xiwn

Y @-D= ()

ESEY ] 1St<n

I

Thus

e e 'Y
Since cd% = @kc, we also have

@k e y~1(J).

We can invert the definition and write

kk—1)
—¢A+k¢1\ +——1—"'QA+"’

-t

Here we only have to take r terms if we wish to work moduio x~*(J/7). With this interpreta-
tion, the formula is true whether k is positive, negative or zero; in the case A = C this can
ln Ahanliad ot acmnn oo talrtemn Ahamaontance ¢hha anaa A . D fallawra niman 4hha Al aed WM o Amcan
UL VIIVWAGAL At ULV Uy lanl& Lilalavivlid, LIV LVadshw /2 = N\ 1ULIUWD dDIUWG i W § ana I S Lulll-
mute with c.

xxr

We now have

k(k—1 k— 1
W= T ( ) ( s+ 1)
0<s<r—-1 i- -5

Ad-

According to Lemma (5.2), the mod m value of each summand is periodic in k with period
m". This proves the lemma. '
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Dunnf af Thonvaoms (8§ 1Y Wa warnall that ginan Vo a tnfinit i
LT00) §f sneorenm \o.1j. & ICCau nat Since ¢ INnnie- uuucumuual, AA\A} i3

T
defined as an inverse lmlt Consider first the case A = C; then an element of this inverse
limit may be represented by a map Y—»Z x BU. Since X is cohomologically finite-
dimensional and BU(n) is simply-connected, this map can be compressed into Z x BU(n) for
some n = n(X). That is, any element of K(X) can be represented in the form /4 + &, where
he HO(X; Z) and ¢ is a bundle with structural group U(n). Since W*(h) = A, the result now

follows from Lemma (5.4).

Aiermaercoi e 1

Similarly, in the case A = R, every element of Kz(X) can be represented in the form
h + & + n, where £ is a real line bundle and # is an SO(2n)-bundle. The result now follows
from Lemmas (5.3, 5.4). This completes the proof.

§6. ARACTERISATION OF THE POSSIBLE VALUES {p*}
be two elements. Then
the equation

6.1 bo o TAEY g
6.1) v—p(x)l_l_y (all k)
defines an element

Wrell 4+ Re(X)® Qv

It is the object of this section to characterise the elements which arise in this way.
THEOREM (6.2). An element ’
e [T 0+ Kx(X)® Q)

k#0
can be written in the form (6.1) if and only if the following conditions hold.
(a) Let i: X*—— X be the inclusion map of the 2-skeleton; then i*1* € Qy.
(b) vt =1
© ¥ =¥ in 1+ R(X)® Q.
(d) For each prime power p’ there exists p? such that the mod p’ value of v* is periodic in k
with period p°.

These conditions call for a few comments. Condition (a) states in effect that ¢v* ““is of
filtration 3. For the purposes of this theorem we could equally well have written “i*/* = 1”
instead of “i*v* € Q*; the condition is written in the form given so that it can be applied to
more general sequences v*. Conditions (a) and (b) are of course fairly trivial. Condition (c)
has been stressed by Bott, who calls it the ““cocycle condition” {7]. Personally I do not see the

point of stressing (c) without (d), since in the presence of torsion both are certainly needed to
make any realistic algebraic model of the topological situation.

14LC ally ITtalislib alzgeDidil i O£l

It remains to explam what we mean by ““periodic” in condition (d); for on the face o

it tha maod nf value of 11 lies in a group which i< denendent on k. More nrpme#lv let us

it, the mod es in a group which is dependent on k. More precisel let us
write X for KR(X ); then the mod pf value of ¢* lies in the ring

/

K® g/

>

2 Q-

C)

pf 7
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However, we have canonical isomorphisms
(K® QP (K® Qo= (K/pP’K)® Qs
~ K/p'K (k # 0 mod p)
_.{ 0 (k = 0 mod p).
This allows us to identify the rings
(K® Qu/P(K® Q0

(K® Q)P (K® Q)

whenever k = / mod p.
The proof of Theorem (6.2) will require three lemmas.
LEMMA (6.3). In Theorem (6.2), the conditions (a), (b), (c) and (d) are necessary.
This is the easy half of Theorem (6.2).

Proof. We note that if two sequences v*, w* satisfy these conditions, so does their
product t*w* and the inverse of +*. It is now sufficient to check the conditions for p*x when
x is a Spin(8n)-bundle, and for

Y1+ y)
i+y

Let x be a Spin(8n)-bundle &; we check condition (a). Since Spin(8n) is 1-connected, the
bundle i*¢ over X2 is trivial; thus

i*p"f _ p"i*{ = k4m.
Condition (c) is given by [4, Proposition (5.5)]. Now consider the equation
PrE = ¢~ 1P
This makes condition (b) obvious, since W~! is the identity. Also the mod p’ value of
W1 is periodic in k with period p®/, by Theorem (5.1) applied in the Thom space X¢; thus
p*¢E satisfies condition (d).
We turn to the sequence
Y1 + y)
1+y
and check condition (a). We note (from the spectral sequence) that Kx(X?) is generated by
real line bundles and elements of filtration 2; for each of these we have ¥*z = zso long as k
is odd; and for k even we have
KX ®0x =0,
since Kg(X?) is 2-primary. Thus
W1+ y)

1T, =l i 1+ KX ® Qs
proving condition (a). It is easy to check that

Y1 + y)
L+y
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satisfies conditions (b) and (c); condition (d) is given by Theorem (5.1). This completes the
proof of Lemma (6.3).

The proof of Theorem (6.2) will be by filtering K(X) and using induction over the
dimension. To make the inductive step we shall require Lemma (6.4).

We shall assume that Y is a finitely-generated abelian group, on which operations ¥*
and p* are defined by the same formulae that hold in the particular case ¥ = Kg( V S") (com-
pare the proof of Lemma (4.5)). If r = 1 or 2 mod 8, we assume that evey element of Y has
order 2.

LEMMA (6.4). Suppose that an element
{*e kI;IO 1+Y®Q)

satisfies conditions (b), (c) and (d) of Theorem (6.2). Then it can be written in the form (6.1)
for some x,y in Y.

Proof. Since Y is a finitely-generated abelian group, we may express it as a direct sum
of cyclic groups Z and Z,,. It is now easy to see that it is sufficient to prove the result for
these summands. This reduces the proof to three cases.

We consider first the case r = 0 or 4 mod 8 (say r =4t) and Y = Z. Let us write

F =1+ w
where
weY®Q, = 0.
In this case condition (c) yields
: v Wt = o ik,
which gives
wk + k2!wl — wl + Ithk,
that is,
(k3 = Dw! = (I* - Dw*.
Therefore there is a rational number ¢ such that
wk = (k¥ — 1)e.
Now there exists f(k) such that k&”®w* is integral; and by [4, Theorem (2.7)], the highest
common factor of the expressions &/®(k?* — 1) divides m(2f); therefore m(2¢)c is integral.
That is, we may write
k_ (k¥ = 1)d
T om)
where d is integral.
Now let us write }a,, = n(2¢)/m(2t), where n(2t) and m(2¢) are coprime. (See [4, §2];
compare the proof of Lemma (4.5)). We may now set

am(2f) + bn(2t) = 1.
Setting x = bd, y = ad we easily calculate that
k,
pk(x) w = Uk.

1+y
This completes this case.
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Secondly, we consider the case r = 0or4 mod 8 (say r = 4f), and Y = Z,,. In this case

con LY  fk#Omodp
Y®Qk={c if k = 0 mod p.

We may therefore restrict attention entirely to those values of k£ prime to p.

When we apply condition (d), we shall of course take p’ to be the order of Y. Thus
condition (d) asserts that the actual value of ¢* is periodic with period p?. According to
Lemma (6.3) (for the space X = S”), we can suppose g chosen so large that if x is a generator
of Rg(S), then the mod p’ value of p“(x) is periodic in k, with period p?, and similarly for

Y51 + y)
T+y °
(Of course this is also easy to check using the explicit formulae for p* and W* in S".) There-

fore the same periodicity statement will be true for every expression
Y1 + y)
k ———————————

p(x) 15y

with x, y in Y. In Y, of course, the periodicity statement asserts that the actual value of this
expression is periodic with period p*.

We now fix attention on a particular value of k. If p is odd, we choose k to be a generator
for the multiplicative group G,. of residue classes prime to p modulo p?. If p = 2, we choose
k to be a generator of the quotient group G,,/{+ 1}, which is again cyclic.

By [4, Lemma (2.12)], when the fraction

k-1
m(2t)

is written in its lowest terms, both numerator and denominator are prime to p. Therefore
we can solve the equation
k* —1
—_—z
m(21)

for a solution ze Y® Q, = Y. As before, we set }u,, = n(2t)/m(2t), am(2t) + bn(2t) = 1,
x = bz and y = az; we easily calculate that

=1+

Y1 + y)
kx) e TV ok
A s
for this particular value of k.
Thus the two expressions
Y +y)
! i
P~ 5

agree for [ = k. But both expressions satisfy condition (c), which allows us to calculate v*
in terms of ¢*; thus we see that the two expressions agree for / = k”. In fact, using condition
(b) also, we see that they agree for / = +k". But by the choice of k, the integers +k" give all
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residue classes prime to p modulo p?; hence by periodicity, the two expressions agree for all
! prime to p. This completes this case.

Finally, we consider the case r =1 or 2 mod 8, Y =Z,. In this case

~1Z, ifkisodd

Y®Q"={O if k is even.
We may therefore restrict attention entirely to odd values of k. By condition (d), the value
of +* is periodic in k with period 2°.

If k and / are odd, condition (c) gives

vk . vl = U“.

Therefore the function v* of k gives a homomorphism from the multiplicative group of odd
residue classes mod 29 to the multiplicative group 1 + Y= Z,. By condition (b), this
homomorphism factors through G,,/{+1}. But this group is cyclic; so there are only two
possible homomorphisms. We must have

&= 1 fork= +1mod8
“l1+x fork=+3mod8

where x is one of the two elements in Y. According to [4, Theorem (5.17)], this shows that
v* = p*x.
This completes the proof of Lemma (6.4).

We need one more lemma. As in §4, we define F, to be the image of Kg(X/X""!) in
K = K(X).

LEMMA (6.5). Suppose given a sequence
M1e[l]0+F.®0)
k#0

and suppose that for each prime power p” there exists p? such that the value of v* in
(K ® 0)/P (K ® Q)

is periodic with period p?. Then for each prime power p” there exists p" such that the value
of v* in
is periodic with period p".

Proof. Suppose given p/. Consider the subgroup S, of elements x in Kz(X) such that

p’xeF,.
This is an increasing sequence of Z-submodules in the finitely-generated Z-module Kz(X),
therefore convergent. That is, there is a ¢ such that x € Kx(X) and p/**Vx e F, imply
p’*xe F,. According to the data, there is now an A such that the value of ¢* in
K® Qu/p** V(K ® Q) is periodic in k with period p". Suppose then that k = ! mod p* and

k, I are prime to p. We have
=1+ k™%

v'=14 1"
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for some w*, w' € F,. The periodicity statement gives
Pwk — kow! = pfe+ Dy
for some x € Kg(X) with p/"*Yx e F,. By our choice of t, this gives p*x € F,; that is,
Pwk — kow! = ply
with y € F,. Since k and / are prime to p, this gives
k™owk = 170/
in F,/p’F,. This proves the lemma.

Proof of Theorem (6.2). We will prove by downwards induction over r that if an
element

{"} e kl;lo (1+F,®Q)

satisfies conditions (b), (c) and (d) of Theorem (6.2), then it can be written in the form
(6.1), provided r 2 3. Here it does not matter whether the periodicity condition (d) is
interpreted as an equation in Kx(X)/p’ Kz(X) or as an equation in F,/p/F,, according to
Lemma (6.5). The inductive hypothesis is trivial for r greater than the dimension of X’; we
assume it true for r + 1, where r = 3. Let

{"} EIkI(l + F, ® Q)
be an element satisfying conditions (b), (c) and (d) of Theorem (6.2). Then the image of
{v*} in

1:[ (1 + (Fr/Fr+l) ® Qk)
satisfies the conditions of Lemma (6.4). Therefore there are elements x, y in F, such that

k -1
[*()w””)] €14+ F,, ®0

for all k. (Note that x € K,;,(X), since r 2 3.) By Lemma (6.3) the element
{ Hx )‘1"‘(1 +y)}
1+y
satisfies the conditions (b), (c) and (d); therefore the inductive hypothesis applies to the
sequence

‘11"(1 + 7!
Aot 2]
which can accordingly be written

YH1 + y)
14y
Thus v* can be written in the form (6.1) (with x replaced by x + x’, andljsimilarly for y).
This completes the induction. Therefore the inductive hypothesis is true for r = 3; this
proves that the conditions (a), (b), (c) and (d) are sufficient. The proof of Theorem (6.2) is
complete.

pH(x")
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£% DNAQQINT I ATRAITIT AT T A TTARIC

fo DUSSIDLE ULINLEKALIOALIUIND

The trend of this section can be explamed by considering the special case X = S%"*4.
Let i be the stable r-stem. We shail show in Part IV that the image of the stabie J-homo-
morphism

Jome  ASOY —s S
v s NEm4 NSV

is a direct summand. The reason is essentially that the quotient map
J(S8m+4) ]:(Ssm_+ 4).
can be extended over the whole of 75, 3.

It is reasonable to seek for a generalisation of this phenomenon. The generalisation
should state that for a suitable class of spaces X, J(X) is a natural direct summand in L(X),
where L is a functor such that £(S™) = nS_, . Unfortunately, I do not feel certain as to the
best way of arranging the details of the construction of the functor L. For this reason, the
present section is written as a tentative and heuristicexplanation of the phenomena involved.

The construction of the functor L should secure the following properties.

(i) 1704 ) should be a Grothendieck group generated by equivalence classes of “‘fiberings”,

in some weak sense.

The senses of the word “fibering” which might be considered include (for example) the

ollowing
ionowing,

(a) Fiberings which are locally fibre homotopy equivalent to products B x S"; see [8].

(b) Hurewicz fiberings in which the fibres are homotopy-equivalent to spheres; see
[9, 10, 11}.

(c) Suitable CSS-fiberings; see [6].

As stated above, I do not feel certain as to the best choice of details.

(ii) The fiberings considered should admit suitable “Whitney sums” and ‘‘induced
fiberings” in order that Grothendieck’s construction should apply.

(iii) Sphere-bundles should qualify as “fiberings” in the sense considered ; moreover the

Wh;tngv sums and induced bundles which we have for snhere-bundles should qualifv as
v ms ang nduced bundlies waich phere-bundiecs should quaiily

“Whitney sums” and “induced bundles” in the generalised sense. We require this in order
to obtain a natural transformation

Kp(X) — L(X).
(iv) The image of Kx(X) in L(X) shouid be J(X), up to natural isomorphism.
For practical purposes, this means that the equivalence relation used in constructing
L(X) must be fibre homotopy equivalence.

(v) The functor L(X) should be a representable contravarient functor; moreover, the
representing space should be essentially that constructed as follows.

Let H, be the space of homotopy-equivalences from S” to S". considered as a monoid
under composition. Let BH, be its classifying space (under some interpretation of this
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\ Do v anci wa dafine an amhaddine o . I whanra o n
). we GlIne an CmolllIng i1, figety wOalBRIC & INAP

BH,B——H,,;. Set BH = Lim BH, and take the space Z x BH.

n—w
(vi) The *“‘fiberings”, ‘““Whitney sums’ and “induced fiberings” employed in the con-
struction of L(X) should retain sufficient of the cohomological properties of their classical
counterparts, in respect both of ordinary and of extraordinary cohomology theories.

This is necessary in order that we should be able to define cohomological invariants of
these fiberings, according to the pattern introduced in Part I1.

Let us assume that with some arrangement of the details, we can secure what has been
indicated above. The whole of the rest of this section will depend on this assumption,
although I will not bother to write every sentence in a conditional form. However, I will
not call the results “theorems”, since the underlying assumptions have not been stated
precisely enough. Of course it would not be hard to drag every assumption out into the open
and give it the status of an axiom; but the resuit might be somewhat tedious to read.

We will now consider the set of “‘fiberings” whose Thom pairs can be oriented over the
cohomology theory K, .

ExAMPLE (6.1). If H*(X; Z) is torsion-free, then every “‘fibering” & over X is orientable
over the cohomology theory K.
For the Thom space X* of ¢ will also be torsion-free; hence the spectral sequence

H*(X®; K&(P)) = KX(X®)
will be trivial; therefore the required orientation will exist.

A similar argument will work if H*(X; Z) is even-dimensional.

P, ~e e b3 VU 1 P - Y Q. [ eem Lo 4 e o

The condition of OnanleuLy‘ Oover .RA is invariant under fibre homot: Opy €qui uivalence,
and even under stable fibre homotopy equivalence; it is inherited by induced fiberings; if

two fiberings admit orientations. we can put the nroduct orientation on their Whitnev sum.
two Itoerings admit orientations, we can put the proguct orientation on thelr wWaltney

(This assumes that the details chosen for “Whitney sums” and “induced fiberings” allow
one to draw the usual diagrams. (See (vi) above.))

We now introduce the subgroup L,z(X) of L{X), generated by fiberings orientable over

K. and of dimension divisible hv R. Our cohomoloeical invariants, such as n" are defined

L @G Vs Glasnsin Awl VULIVILIVIVERIVAL A VRIARAIWSy Ouwwal @S L [V LRWLSS

on such fiberings. More precisely, given an orientation u of £ over Ky, this determines a
Thom isomorphism ¢ in Kz-cohomology. It thus determines

MO = ¢~ oL

Wawavar iFuve B 1Y) than we oan ranlacs o ke L 001 L 1o thic chanoas ABEY sl
13UVWLYVL, Ll y © Dpla ), WLl WO Lall IVplalc 8 Uy TT\Y 1 T JJju, Ui vialiged g/, L
plying it by
Y1 + y)
1+y

The classes p*¢ sa
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up to the relevant indeterminacy
Wkl + y)
1 ‘I' y
We can therefore define our invariant p = [] p* on Log(X) so as to be exponential. More
14

precisely, let &* + Kp(X) ® Q, be the set of elements in Kg(X) ® Q, of the form &/ + x,
where fe Z and x € Kx(X) ® Q. This set is a multiplicative group. Let us define a map

. 5:1+KR(X)——+I"](k*+1?R(X)®Qk)
y

'{"‘(1+y)}
1+y )

as above. Then we can define p so that its values lie in the cokernel of 4.

5(1+y)=<

& 2l

We will next prove that the image of the map p is no larger than it would have been if
we had used only classical bundles, instead of more general fiberings. The proof uses

Theorem (6.2). which was introduced for this nurnose. More nreciselv, supnose given an

Theorem (6.2), which was introduced for this purpose. More precisely, suppose given an
extraordinary fibering & of dimension 87 over X, and an orientation u of the Thom space
X%. We will show that the sequence

pk 6 = ¢-—1 \Pkd) 1
satisfies conditions (a,), (b), (c) and (d) of Theorem (6.2).

In fact, the proofs that conditions (b), (c) and (d) are necessary (see Lemma (6.3) and
[4, Proposition (5.5)]) are purely cohomological; therefore these proofs remain valid when
we consider extraordinary fiberings. Thus the sequence p*¢ satisfies conditions (b), (c)
and (d).

It remains to give a new argument for condition (a). We observe that if £ has an orien-

tation u over Ky, then this yields an orientation 4 over H*( ; Z) such that Sqg'h = 0 and
Sq*h = 0. (The second assertion follows by considering the spectral sequence

H*X®; K3(P) = K3(X9),
since an is a differential in this spectral sequence.) It follows that the Sti efel-Whitney

classes w,(&) and w,(&) are zero. Now we observe that the embedding BO — BH induces
an isomorphism of n, and n, (both groups being Z,). Therefore extraordinary fiberings
over 2-dimensional complexes are classified by w; and w,, as in the classical case. Thus if
i: X*—— X is the inclusion map, i*¢ is fibre homotopy trivial. It follows that
YL + y) '
Ky 3% - k4n .
pHI*e) iy

But in proving Lemma (6.3), we have shown that
PH1 + y)

T+y
Thus i*p*¢ = k*", which establishes condition (a).

=1 in 1+RX)® Q.
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Theorem (6.2) now shows that if x € Lyr(X), then there exists x’ & Kspi,,(X )} such that
p(x) = p(x").
This completes our argument about the image of p.

We will now show that the phenomenon which we have observed for $*™* 4 generalises
to any space X such that (i) J(X) = J(X), and (i) every extraordinary fibering over X is
orientable over Ky.

In fact, if condition (ii) holds we have the following commutative diagram.

Re(X) Lix)
//
N\ //
/
J(X)=Imp

The image of Rg(X)in I(X)is J(X). If condition (i) holds, then J(X) is a natural direct
summand in L(X).

This certainly succeeds in providing an acceptable generalisation of the case X = §8™+4,
However, it must be pointed out that there are many spaces X which do not satisfy con-
dition (ii).
For suppose we confine attention to spaces X satisfying condition (i) and (ii). Then
J(X) is a natural direct summand in L{X), and L(X) is an exact functor; therefore J(X) is
exact. But this is not true for general spaces X, as may be shown by the following example.

Consider the cofibering
54 —-—-r—> S*— S*u,e,
where fis a map of degree 24. Applying the functors R, J we obtain
24
Z—7Z—40,
Zys "—0— Zyy+—0.

The last sequence is not exact.

In this example, both spaces satisfy condition (i) and S* satisfies condition (ii); there-
fore S*u ,e5 doesnotsatisfycondition(ii). We note that for the space X = S*u fes, H*(X;2)
is neither torsion-free nor even-dimensional (see (6.1)).

An alternative line of argument is to point out that extraordinary fiberings (such as
must be used to construct L(X)) have greater freedom to be non-orientable over K, than
sphere-bundles have. This may be shown by the following example.

We know that every sphere-bundle over S™ is orientable over Ky, provided m > 2. If
we translate this into terms of n5,_,, it states that every map f: 8"~ ! — S which lies
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in the image of J induces the zero homomorphism of K*j (provided m > 2). On the other
hand, for m = 3 the map nn (which is not in the image of J) induces a non-zero homo-

marnhicm af B% _« and wa chall caa in Part TV that tha cama thing e trma whanava
u.lUlyu.lDuA A\ pi R, GliN VW OIlALL OV JiLl 2 AlL 1 ¥ ial LUV DSallle Llul.l5 413 MUV WLILVIIV YW

or 3mod 8 and m > 2.

v R et A e sl (Y3 4 ¢4 90

l.ﬂlS SECOHO example ienas to lﬂﬂlcale that e qucsuon, yaen is an extraorumary
fibering non-onentable over Kx?’ can sometimes be answered by quite simple invariants

Aﬂﬁﬁﬂd ne V Iﬂl"ﬁﬂl" f"\ﬂ"P ara eAMma arnnnda Pﬁf e"nnncinn f tey a2 AQQ Q'l " I MY AQ’IA“
defined using K. Indeed there are some grounds for supposing it to be a less subtle guestion
than those h which we have mainly been concerned.
Tem Loms -.. camanlon 24 Ll emin dan o ... ~ dland TN 2. famsm md mxsima am a Y\ feln mae ol
113 UU AdIll p ppcu: LU UU C liatJia ) a uucu, ;umumuu lLl LA A J\L10U 5u
notbya natural f or a general reason). It would perhaps be interesting to look for an
example in which ..( ) ig not a direct summand in L(X).

This completes our discussion of the extent to which we can hope to generalise the case

v _ oSm+4
A =0 .
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University of Manchester

REFERENCES
Apawms: Vector fields on spheres, Ann. Math., Princeton 75 (1962), 603—632

J.F.

J. F. Apams: On the groups J( X, Proceedings of a Symposium in Honour of Marsion Morse, Princeton
University Press, to appear.
J.F.
Y
J. O

o=

ADAMS On the groups J(X)——I Topolagy 2 (1963), 181-195,

2 e smme [ A Jiy 102 12 17

. . DAMS: ULl. l.llc BIOUPS J\A )—'.ll., z U_[JUIUyJ/ J \170.!}, 137—1 l‘o
M. F. AntvaH and F. HIRzeBRUCH: Vector bundles and homogeneous spaces, Proceedings of Symposia
in Pure Mathematics 3, 7-38. American Mathematical Society, 1961.
1 Y 3
AV,

[V 3 ]
batlt

G. BapratTr, VX A M GugeNuens and J, C. Moors: On semisim

nhn
. o DARRALLy Vo 2ne i3 1va, GUULNGOAUL Q11U v, . VAUUDRD, Wi SVLusiipiivias

o

Math. 81 (1959), 639-657.

J.
7. R.Borr: A note on the KO-theory of sphere-bundles, Bull. Amer. Math. Soc. 68 (1962), 395-400,
8. A. Dovp: Partitions of unity in the theory of fibrations, Anmn. Math., Princeton T8 (1963), 223-255.
9. J. StasHEFF: A classification theorem for fibre spaces, to appear in Topology
10. J. StasHEFF: Various classifications for fibre spaces, in preparation.
J

11. J. Stasuerr: Multiplications on classifying spaces, in preparation.



