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SO. INTRODUCTION 

THIS paper contains a demonstration of the Adams conjecture [l] for real vector bundles. 

Unlike an old attempt of mine [12], which has recently been completed by Friedlander [S], 

and the proof of Sullivan [1.5], no use is made of the etale topology of algebraic varieties. 

The proof uses only standard techniques of algebraic topology together with some basic 

results on the representation rings of finite groups, notably the Brauer induction theorem 

and one of its well-known consequences: the fact that modular representations can be lifted 

to virtual complex representations. 

The conjecture is demonstrated in the first section assuming some results which are 

treated in the later sections. Put briefly, one first shows that the conjecture is true for vector 

bundles with finite structural group and then using modular character theory one produces 

enough examples of virtual representations of finite groups to deduce the general case of the 

conjecture from this special case. The key step (Theorem 1.6) involves the partial com- 

putation of the mod I cohomology rings of the finite classical groups GL,(F,) and O,(F,) 

where I is a prime number not dividing 4. I have included only what is needed here, but one 

could push further and obtain pretty complete information about these cohomology rings. 

However, more general and natural results can be obtained using etale cohomology as I plan 

to show in another paper. 

There is an Apper.dix (Section 5) developing a modular character theory for orthogonal 

and symplectic representations of a finite group. This is needed to handle the Adams con- 

jecture for real vector bundles. 

This paper contains numerous suggestions of Michael Atiyah, especially 1.2 which he 

first proved for complex bundles. Section 3 owes much to conversations with R. J. Milgram 

about the cohomology of the symmetric group. 

Sl. PLAN OF THE DEMONSTRATION 

Let Xbeafinite complex, let KO(X) be the Grothendieck groupof its virtual real bundles, 

and let Sph(X) be the group of its stable spherical fibrations. The J-homomorphism 

J : /(O(X) ---t Sph(X) is the map induced by associating to a vector bundle its underlying 

sphere bundle. The purpose of this paper is to prove the following conjecture of J. F. Adams 

f Supported by the Alfred P. Sloan Foundation, the National Science Foundation, and The Institute for 
Advanced Study. 
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THEOREM 1.1. Let k be an integer and let .Y E KO( X). Then k”J(Y’,x - .Y) = 0 for Some 

integer n. 

Because of the identity YjYk = Yy” satisfied by the Adams operations and the fact that 

the theorem is trivial for k = 0, + 1, it suffices to prove the theorem when k is a prime 

number which from now on will be denoted p. As 2x is in the image of the restriction of 

scalars map from complex K-theory K(X) to KO(X), one sees that 1.1 implies the analogous 

result for complex K-theory; moreover, if p = 2 then the real and complex cases are equiva- 

lent. Therefore, in the rest of the paper we shall concentrate on the situation with real 

K-theory and p odd; with trivial modifications the arguments will work for the complex case 

and all p, taking care of the real case with p = 2. 

We say that a virtual bundle x’ over X admits a reduction of its structural group to a 

finite group G if there exists a principal G-bundle P over X such that s is in the image of the 

map from RO(G), the real representation ring of G, to KO(X) which is induced by sending a 

representation Y into the bundle P x ‘Y. 

PROPOSITION 1.2. The Adams conjecture is true for any cirtual bundle whose structural 

group may be reduced to a finite group. 

This will be proved in the next section. It is the constructive part of the proof and uses 

Brauer’s induction theorem to restrict to representations induced from one and two dimen- 

sional representations together with Adams’ methods to handle this case. The rest of the 

proof consists in showing that there are enough virtual representations of finite groups so 

that this special case implies the general case. 

Let k be an algebraic closure of the field with p elements and choose, once and for all, 

an embedding C$ : k* -+C*. If G is a finite group and 7c : G -+ Aut( V) is a representation of G 

in a finite dimensional vector space over k, then the modular character of V (with respect to 

4) is defined to be the complex-valued function on G given by the formula 

(1.3) it(g) = C4Czi) 

where czl,. . . , r, are the eigenvalues with multiplicity of n(g). It is a basic consequence 

(Green [9, Theorem 11) of the Brauer induction theorem that x is the character of a unique 

element of the complex representation ring R(G). We show in the appendix to this paper 

(5.5) that ifp is odd and if G leaves invariant a non-degenerate symmetric bilinear form on c’, 

then x is the character of an element of the real representation ring RO(G). 

Let F, be the subfield of k with q elements, let GL,(F,) be the group of invertible 11 of n 

matrices with entries in F,, and (p odd) let O,(F,) be the subgroup of orthogonal matrices. 

Lifting the standard representations of these groups in k” in the above way we obtain virtual 

representations in R(GL,(F,)) and RO(O,(F,)) respectively, which in turn give rise to maps 

(1.4) 
BGL,(F,) -+ BU 

BO,(F,) --+ BO 

in the homotopy category. Now these virtual representations are evidently compatible as n 

tends to infinity and as the finite field tends toward k, hence by a standard limit argument 
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(compare [2. proof of 1.31) the maps I .4 give rise to unique maps in the homotopy category 

(1.5) 
BGL(k) -+ BU 

BO(k) --) BO 

where GL(R) and O(k) are the infinite general linear and orthogonal groups with entries in k. 

THEOREM 1.6. The maps 1.5 induce isomorphisms on cohomolugy with co&icients in 2, 

Ichere d is an>’ integer prime to p. 

This will be proved in Sections 3 and 4. We now prove the Adams conjecture. 

Recall [3, section 11 that for any finitecomplex Xwith basepoint we have Sph(X)=indlim 

[X, BG,], , where G, is the monoid of homotopy equivalences of Y-l, and [ , 1, denotes the 

set of homotopy classes of basepoint-preservating maps. Let Z be the inductive limit in the 

sense of homotopy theory (infinite mapping cylinder) of the sequence 

BG, --t BGP, -+ BGP, -+ ... 

where the successive maps come from thep-fold Whitney sum of sphere fibrations. Then 

Sph(Up - ‘I = [X Zl, (1.7) 

and Z is connected with finite homotopy groups of order prime to p [3, 1.31. Now quite 

generally [Xupt, Z], is the quotient of [X, Z], by the action of ~~2; as the left side of 1.7 is 

the same for Xupt and X, this action is trivial, so n,Z acts trivially on n,Z for all n. (This 

follows also from the fact that Z is an H-space, which is a consequence of the group structure 

on 1.7 and 1.8 below.) If X is an infinite complex which is the union of a sequence of finite 

complexes ,I’,, . then the natural map 

[X, Z]r invlim [X,, Z] (1.8) 

s an isomorphism, because in general it is surjective with kernel R’ invlim [SX,, , Z] and this 

s zero as the groups are finite. Applied to the skeleta of BO this implies that the map 

swJ(Yps - .\I) from c(?) to Sph(?)[p-‘1 induces a map ,u in the diagram 

BO(k) : BO -+ C 

I 

/ 
v ,/$ 
&I( 
Z 

(1.9) 

where Y is the map of 1.5 and C is its cone. The map u when restricted to any finite skeleton 

,I’ of BO(k) classifies a virtual bundle over X whose structural group is reduced to the tinite 

group O,(F,) for some n and q, hence ,ucr restricted to X is null-homotopic by 1.2. By 1.8, 

,UY is homotopic to zero and so there is dotted arrow D in 1.9 making the diagram homotopy 

commutative. The obstructions to deforming /3 to zero lie in H”(C, rr”Z), n> 1, where the 

local coefficient system is trivial as remarked above. As a,2 is a finite group of order prime 

to p and r induces an isomorphism on cohomology in such groups by 1.6, it follows that 

H”(C, n Z) -0. Therefore p, hence also /(, is null-homotopic, proving the Adams conjecture. 
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$2. AlMMSCONJECTUREFORBUNDLESW'ITHFlNITESTRUCTURALGROtiP 

Letf: Y ---L X be a finite covering space of a finite complex X. If E is a vector bundle on 

Y let f * E be its trace with respect to f, i.e. 

and denote also by f * : KU(X) --) KU( Y) the induced map on Grothendieck gro~~ps. 

LEMMA 2.2. If y E KO( Y) then f* Ypy = ‘rpf* y in KO(X)[p-‘1. 

One knows that f* coincides with the Gysin homomorphism for f‘in the generalized 

cohomology theory KO* (see [lo, p. 5401; the argument given there also works in the case of 

K&theory). Since the normal bundle off has a canonical trivialization, this Gysin homo- 

morphism is essentially the composite of one suspension isomorphism and the inverse of 

another. As Yp extends to a stable cohomology operation on the theory KP(?)[p-‘I, it 

commutes with suspension isomorphisms and hence with f*, proving the lemma. 

(Instead of using 2.2 some readers may prefer the following argument of Atiyah. it will 

be sufficient for the proof of 1.2 to show that if i, . . RO(H) --+ RO(G) is the induction homo- 

morphism associated to a subgroup H of the finite group G. and if 1’~ RO(H), then the 

difference 

(*) Yp(i,y) - i,(YPy)&RO(G) 

goes to a p-torsion element under the homomorphism RO(G) -+ KO(X) associated to a 

principal G-bundle P over a finite complex X. If j : GI + G is the inclusion of a Sylow 

l-subgroup of G and f denotes the covering map P/G, -+ X, then the kernel off, : KO(X)- 

KO(P/G,) consists of elements of order prime to 1, since the trace map f* going the other way 

satisfies f*fJ*x) = (f*l) x, where &l = [G : G,] + a nilpotent element. Consequently it is 

enough to show that the restrictionj* kills (*) for all I # p. By the Mackey formula 

j*i* = o~~igL(jo)* 
I 

on is reduced to proving that (*) is zero when G is of order prime top. But this is clear either 

by direct calculation or by using the fact that Yp coincides with the action of an eIement of 

the Galois group of a large cyclotomic extension of Q (see[5, 3.2 and proof of 4.21.) 

Denote by [E] the element of the Grothendieck group associated to a vector bundle E. 

LEMMA 2.3. IfL is a one or two dimensional bundle ooer Y. then 1.1 is true for [f,L]. 

From the proof of the special case of 1.1 proved by Adams [I, Theorem 1.31, there is a 

vector bundle L(P) over Y such that Yp[L] = [L(P)] and such that there is a (non-linear) map 

L -+ LCp) of degree &p” on each fibre. Using 2.1 one sees easily that there is a (non-linear) map 

f*L --f f,Ltp) of degree +pb on each fibre, hence both of these bundles yield the same element 

of Sph(X)[p-‘1 by the “modp Dold theorem” [l, Theorem 1.11. Using 2.2 we have that 

Yplf*L] = LJ;LCp)] in KO(X)[p-‘1. hence the lemma is proved. 

Denote by W(G) the real representation ring of a finite group G. 

LEMMA 2.4. Every element of RO(G) is an integral linear combination of representations 

inducedfrom one and two dimensional representations of subgroups of G. 
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For the complex representation ring this is a well-known corollary of the Brauer induc- 

tion theorem 114, pp. 1 I-291. Recall that there is an extension of the induction theorem to 

representations over a field taking into account the action of the Galois group on the roots 

of unity [14, pp. 1 I-441. For the real numbers it says that any element of RO(G) is an 

integral linear combination of representations induced from subgroups H which are 

Z,-elementary. i.e. either H is the direct product of a cyclic group and a group of prime 

power order or it is a semidirect product P ‘;; C, where Ciscyclicof odd order and where P is 

a 2-group and P acts on C through a homomorphism P -‘Zz and the generator of Z2 acts 

on C as -id. Such a group His of type (MP), i.e. it has a chain of normal subgroups whose 

quotients are cyclic of prime order. Let V be an irreducible real representation of H and 

endow it with an invariant inner product. Then by Borel-Serre [6] N normalizes a torus in 

the orthogonal group of V. The eigenspaces of this torus form a system of imprimitivity in 

V, so by irreducibility, V is either of dimension one or induced from a representation of 

dimension two. By transitivity of induction the lemma is proved. 

The Proposition 1.2 follows immediately from 2.3 and 2.4. Indeed one only has to note 

that if.P is a principal G-bundle over X and if W is a representation of a subgroup H of G, 

then the bundle over X associated by P to the induced representation of G is isomorphic to 

the bundlef,L, wheref is the covering P/H -+ X and where L is the bundle on P/H associated 

to w. 

$3. DETECTING COHOMOLOGY IN WREATH PRODUCI’S 

Let I be a fixed prime number and denote by H*(X) the singular cohomology ring of the 

space X with coefficients in Z, . Let C be a cyclic[group of order I, and if Y is a space on which 

C acts, let Y, be the associated fibre space over the classifying space BC with fibre Y. 

Let C act on the /-fold product A” by permuting the factors and let the maps 

X’AX’& BC x X 

be the inclusion of the fibre over the basepoint of BC and the map induced by the diagonal 

x --+ x’. 

PROPOSITION 3.1. The induced map on cohomology 

H*(Xlc) ci*s j*) l H*(X’) 0 N*(BC x X) 

is injecticc. 

We may suppose that X is a CW-complex and in fact a finite complex because cohom- 

ology with coefficients in Zr transforms direct limits into inverse limits. Let w E H’(BC) be a 

generator. Since the diagonal map X+X’ is the inclusion of the fixpoint set for the action of 

C, the localization theorem ([I 21, see also [4] for the argument in K-theory) implies that on 

inverting w the mapj* becomes an isomorphism: 

H*(X’&w- ‘1 5 H*(BC x X)[w-‘1. 
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Consequently any element in the kernel ofj* is killed by a power of u’. 

On the other hand the spectral sequence of the fibration PC-+ BC 

EP4 = HP(BC, z-P(X’)) j HP’4 (Xl,) 

degenerates on account of the isomorphism (11, Theorem 3.31 

H*(BC, H*(X’)) S H*(X’c). 

A non-zero element y of H*(X’c) which is in the kernel of i* has a non-trivial component z 

in EP for some p > 0. As the cohomology of the cyclic group C is periodic with periodicity 

map given by multiplying by w, it follows that Z, and hence J, is not killed by any power of 1~. 

Thus the intersection of the kernels of i* and j* is zero, proving the proposition. 

We shall say that a family Hi ia I of subgroups of a group G detects the cohomology of 

G (mod I). or simply is a detecting family, if the map 

H*(BG) + n H*(BHi) 
I 

given by the restriction homomorphisms is injective. It is clear from the Kunneth formula 

that if Hfj,jEJ is also a detecting family for G’, then the family Hi x Hj.(i, j)&l x J is a 

detecting family for G x G’. Moreover, if Hi is a detecting family for G and if each Hi has a 

detecting family Hi,, then the subgroups Hij for all i andj form a detecting family for G. 

By transfer theory a subgroup of finite index prime 1 in G detects the cohomology of G. 

Let H be a permutation group of degree 12, i.e. a group endowed with an action on the set 

{ 1,. . . , n}, and let G be an arbitrary group. Then the wreath product H S G is defined to be 

the semidirect product H z G”, where H permutes the factors according to the given permu- 

tation representation. If EH-+ BH and EG--, BG are universal bundles for G and H respec- 

tively, then EH x (EG)” is a contractible space on which H 5 G has a natural free action, 

and hence the quotient space EH x H(BG)” is a classifying space for the wreath product. 

Taking H to be C with its standard permutation representation and identifying the maps i 

and j of 3.1 with the appropriate restriction homomorphisms we obtain 

COROLLARY 3.2. The two subgroups G’ and C x G detect the mod 1 cohomology of the 

wreath product C 1 G. 

COROLLARY 3.3. If A, iE I is adetecting family for G, then the family of subgroups of C 1 G 

Ai, X" *x A,,cG’cCjG i,,...,i,El 

CXAicCXGcCSG is1 

is a detecting family. 

Denote by x.. the symmetric group of degree n. 

PROPOSITION 3.4. Let G be a group whose mod 1 cohomology is detected by a family of 

abelian subgroups of exponent dividing I” with a 2 I. Then En j G has the same property. 

The proof is by induction on n, the case n = 1 being clear. If n is not divisible by 1, then 

the subgroup (x. _ 1 J G) x G detects cohomology because it is of index n which is prime to 1. 

On the other hand if n = ml, then the evident embedding x,, s (C s G) c xn 1 G gives a 
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subgroup of index n!/m!I”, which is prime to I by elementary number theory. Using the 

induction hypothesis and in the second case 3.3, one obtains detecting families for these 

subgroups by taking various products of abelian groups of exponent dividing I”, hence 

1” J G also has a detecting family of groups of this type. 

COROLLARY 3.5. The mod 1 cohomology of x,, is detected b.v ins family of‘ elementart 

ahelian i-subgroups. 

$4. PROOF OF THEOREM 1.6 

Continuing with our preceding notations, let 1 be a prime number diErent from the 

characteristic p of F,. Write n = 2~ + c with e = 0 or 1 and let T,,,(F,) be the subgroup of 

O,(F,) which is the “Whitney sum ” of m two-by-two blocks of the form 

(4.1) 
t ! _; ; a2+h2=1 

together with a trivial block of rank c. We suppose that 4 divides q - I ; choosing a square 

root i of - 1 the block 4.1 becomes isomorphic to F,I * by the map sending this matrix to 

n + ib. If N denotes the normalizer of T,(F,) in O,,(F,). then, .V is isomorphic to 

(1, J OG,)) x zze. 

LEMMA 4.2. If 4, 1 dicide q - I, then the index of N in O,(F,) is prime to 1. 

One knows that the orders are 

m - I 
I~,,(~q)l = 2.q *(“I- I)($” - qpc _ I) llV\ = 2’” ru!(q - 1)” 

n, 
IO L,“+ *(F&I = 2. q”‘? n (4” - 1) J&j = 2”’ * ‘,,I! (q - 1)“’ 

;=I 

and by number theory that (cl’ - I)/r(q - 1) is a I-adic unit if I is odd and I divides q - 1 or if 

I = 2 and 4 divides q - 1 17, pp. 45-461. 

THEOREM 4.3. The mod l cohomology of GL,(F,) is detected by the s&group of diagonal 

matrices if/ diuides q - I or if4 dicides q - 1 and I= 2. (Here p rletd not be odd.) 

(4.4) cfl is odd and 41 divides q - 1, then T,,,(F,) detects the mod I cohomology of O,(F,). 

(4.5) If4 divides q - I, then the mod 2 cohomology of O,(F,) is detected by its fami!!’ 

of elementary abelian Z-subgroups. 

We first prove 4.4. Using 4.2 and the fact that I is odd, we know that O,(F,) has its 

(mod I) cohomology detected by the subgroup xrnJ Ot(FP). The Sylow I-subgroup of O,(F,) 

is cyclic of order a power of I dividing q - 1, hence by 3.4 this wreath product and hence 

O,(F,) has a detecting family consisting of abelian groups A of exponent dividing q - 1 

But any such subgroup of O,(F,) is conjugate to a subgroup of TJF,). Indeed let V = F,” be 

regarded as an orthogonal representation of A and let L be an irreducible subspace on which 

.4 acts non-trivially. As theexponent of A divides q - 1, L is of dimension one, and as I is odd 

L is not isomorphic to its dual, so L is an isotropic subspace for the bilinear form on V. 

Choosing an invariant complementary subspace to the orthogonal space of L, which is 
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possible since A is of order prime to p, we can write V as an orthogonal direct sum of the 

hyperbolic orthogonal representation associated to L and another orthogonal representation. 

Continuing in this way Y can be decomposed into a direct sum of A-invariant hyperbolic 

planes plus perhaps a trivial one-dimensional representation; these may then be transformed 

into the eigenspaces of &,(F,) by an element of O,,(F,), thus giving the desired conjugacy. 

This concludes the proof of 4.4 and that of 4.3 is similar. 

For the proof of 4.5 we can use the same method to reduce to showing that the mod 2 

cohomology of 02(Fq) is detected by elementary abelian 2-subgroups, and this follows from 

LEMMA 4.6. The mod 2 cohor~~ology of n dihedral group is detected bj* its family of ele- 

mentary abelian 2-subgroups. 

Passing to the Sylow I!-subgroup, we can assume that the dihedral group D has genera- 

tors s,, x2 subject to the relations xIz = s ‘” = I, x1.x, xl-’ = x2-‘. The lemma is clear if 2 
a = 1, so suppose a > 1 and let lie H’(BD) = Horn (D, Z,) be given by ti(xj) = Gij. Let 

CE H’(BD) be the Euler class of the standard representation of D on the plane. Then 

HYBD) =Zz[tl, t,, ell(t12 + t, tJ. 

(This may be derived by considering the Hochschild-Serre spectral sequence of the extension 

obtained from the normal cyclic subgroup C generated by .xzza- I. If u and u are the non-zero 

elements of the cohomology of BC in dimensions one and two respectively, then one can 

show that (I2 u = t,* + t, t2 and tl, u = 0 so the spectral sequence collapses at E, .) This ring 

has no nilpotent elements. Since a cohomology class which restricts to zero on each elemen- 

tary abelian 2-subgroup is necessarily nilpotent by the main theorem of [I 21, this proves the 

lemma. One can also compute directly that the elementary abelian 2-subgroups with generat- 

ingsets {Sag’-‘, x21 and {.Y~~~“ , x,x2) detect the cohomology of D. Thisconcludestheproof 

of the lemma and hence that of the theorem. 

Let k be an algebraic closure of F, and let 4 : k * -+C* be an embedding. If k, is 3. 

subfield of k then as in Section 1 we obtain elements 

0 E invlim R(GL,(F,,)), 5 E invlim RO(O,(F,J) 
PICk, F,Ck, 

which in turn yield well-defined homotopy classes 

BGL,(k,) + BU 

BO,(k,) + BO. 

Denote by c[(v), pi(r), and ,vi(?) the images of the universal Chern. Pontryagin, and Stiefel- 

Whitney classes respectively under these maps. 

THEOREM 4.7. Let d be a positive integer prime to p arid suppose that k, contains the 

d’-th roots of unity in k for all r. In the case of the orthogonal group we suppose also that p is 

odd and that k, contains a square root of - 1. Then 

H*(BGL(klL Z,) = Z,,[c,(~.)> . . .I c,(a)1 
H*(BO,(k,), Z,) = Z&l,(s), . . . ) p,,,(r)] ti odd, 111 = [n/2] 

N*(BO,(k,),Z,) = Zz[w,(r), . , Wn(S)] d = 2 

where the notation means that the rings are polynomial rings with the irldicated generators. 
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W’e can suppose that d = I- where I is a prime number different from p, and even that 
d = 1 because the Ci, pi are of even dimensions and hence the relevant Bockstein operations 

are zero. Consider the restriction homomorphism 

(4.8) H*(H),&,)) -+ H*(BT,(X-,))J’ 

Lvhere the cohomology has Z, coethcients and where IV= I”, j Z2 is the Weyl group. Sow 

X-r* is an increasing union of cyclic groups and is /-divisible by hypothesis: by passage to the 

limit in the known formula for the cohomology of a cyclic group we find H*(Bk,*) = Z,[.u]. 

where .Y is the first Chern class of the character of k,* obtained from &. By Kunneth, 

H*(BT,,(k,)) =Z,[s,, . , .Y”] n.here .yi is the image of x under the i-th projection r,,(li,) - 

kr:‘. The Weyl group acts by permutin g and changing the signs of the si so if 1 is odd. the 

right side of 4.8 is the subring of symmetric functions of the :<,I. It is easy to compute that 

the restriction of pj(7) to r,,,(L-,) is thej-th elementary symmetric function of the .Y,?. Indeed 

by means of characters one sees that the restriction of r to T,,,(k,) is the direct sum of the 

two-dimensional real representations with first Pontryagin classes x,‘, so one gets the ele- 

mentary symmetric functions from the product formula for the Pontryagin classes. Therefore, 

the map 4.8 is surjective. By 4.4 it is injecti:c, which pro:cs the second formula of the theo- 

rem. The first formula is handled similarly. 

If / = 7, one considers instead cf 4.8 the restriction to the subgroup Q of diagonal 

matrices of O,(k,). The appropriate Weyl group here is I,, acting by permuting the factors, 

and by the same argument one sees that the restriction map to Q analogous to 4.8 is surjec- 

tive. Any maximal elementary abelian 2-subgroup A of O,(k,) stabilizes an ordered ortho- 

gonal direct sum decomposition ofX-!” into one-dimensional subspace. Since /cr* is I-divisible 

by hypothesis, all one-dimensional quadratic spaces over k, are isomorphic, so it follows 

that A is conjugate to a subgroup of Q. Combining this with 4.5 one sees that the restriction 

map from O,(k,) to Q is injective. proving the last formula of the theorem. 

Theorem 1.6 follows from 4.7 by taking X-, = X-, letting II go to infinity, and nsing the 

known formulas for the cohomology of BU and BO. 

$5. APPENDIX-LIFT~VG MODULAR ORTHOGONAL 4ND SYMPLECTIC REPRESESTATIOAS 

In this appendix we develop a modular character theory for orthogonal and symplectic 

representations of a finite group G in a field K of characteristic different from two. WC 

suppose that Kcontains a primitive h-th root of unity, where A is the factor of the exponent 

of G which is prime to the characteristic of K; this implies that all irreducible representations 

of G over K are absolutely irreducible. 

(5. I ). By an orthogonal (resp. symplectic) representation of G over K we mean a rcpre- 

sentation of G as linear transformations of a finite dimensional vector space over K which 

leave invariant a nondegenerate symmetric (resp. skew-symmetric) bilinear form. The 

Grothendieck group RO,(G) of orthogonal representations is defined (up to canonical 

isomorphism) as the target of a universal map VM [V] from the set of isomorphism classes 

of orthogonal representations to an abelian group such that the following relntions arc 

satisfied. 
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If Y is an orthogonal representation having an irreducible invariant subspace It’, then 

either the bilinear form restricted to W is nondegenerate, whence by 5. I .Z [V] = [V,] + [W”] 

with S&S, , or M’is isotropic and by 51.3 [V] = tI ‘(V,) + [If”! W] with s E S. By induction 

on the length of Y one sees that [V] is a positive linear combination of the elements [V,] with 

s E S, and h ‘( V,) with s E S, u S_ . hence these elements generate RO,(G). But these ele- 

ments are independent in R,(G), so they form a basis for RO,(G), proving the first assertion 

of the proposition as well as the injectivity off’. The assertions about the symplectic case 

follow similarly, while the formulas 5. I .7 result from looking at the bases, so the proposition 

is proved. An immediate consequence of 5. I .7. is 

COROLLARY 5.1 .S. There is un e.ract sequence 

* - id (i,‘. -h-) /‘* _/- 7 *_jJ 

R,(G) - R,dG)---+ RO,(G)@ RSp,(G)- R,(G) ---& R,(G). 

When K is the field of complex numbers any representation V possesses an invariant 

hermitian metric ( , ). If V is orthogonal (resp. symplectic) with bilinear form B, then this 

metric may be chosen so that the conjugate linear operator J defined by B(o, c’) = (c, Jo’) 

satisfies J’ = id (resp. J’ = -id). Hence V is the complexification of a representation over 

the real numbers (resp. the restriction of a quaternionic representation). Using this one sees 

that RO,(G) and RSp,(G) are respectively isomorphic to the Grothendieck groups of real 

and symplectic representations and that the maps 5.1.4 are given by the appropriate extension 

and restriction of scalars. 

(5.3). Given an orthogonal representation Vand a symplectic representation V’, consider 

he direct sum V@ V’ as a representation of G x Z2 where the generator of Z2 acts trivially 

on the first factor and as -id on the second. This construction gives rise to a homomorphism 

(5.2. I) RO,(G) @ RSpK(G) --, R,(G x Zz) 

which is injective, since on composing this with the homomorphism R,(G x Zl) -+ R,(G) @ 

R,(G)giving the twoeigenspaces for the Zz-action one obtains the mapf+ of’-. Now iftwo 

representations V and V’ are endowed with nondegenerate bilinear forms, then the repre- 

sentations V@ V’ and AjV inherit natural nondegenerate forms. Using this one sees that 

the left side of 5.2.1 is a sub i-ring of the right; in fact, it is a Zz-graded ).-ring in the evident 

sense (e.g. RO,(G) is stable under the i-operations while L’ and Yi carry RSp,(G) into 

RO,(G) or RSp,(G) depending on whether i is even or odd). 

Since the map f + + f - of 5.1.8 is the composition of 52.1 and the restriction homo- 

morphism from G x Z, to G, it is a i.-homomorphism. Hence by additivity of Yi and the 

identities 5. I .5, one sees that the exact sequence of 5. I .8 is compatible with the action of the 

Adams operations. 

(5.3). Let A be a discrete valuation ring with quotient field K and residue field k both 

satisfying the assumptions made at the beginning of Section 5. 

Let 

(5.3.1) d : R,(G) -+ R,(G) 

be the decomposition homomorphism[l4,pp. 11 l-lo]; it sends (V) into (L @ ,,k) where L is 
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an invariant lattice (i.e. free A-submodule of maximum rank) in c’. It is clear that d is a 

homomorphism of i.-rings. We now wish to show that this homomorphism carries RO,(.G 

and RSp,(G), viewed as subgroups of R,(G). into the corresponding subgroups over k. 

LEMMA 5.3.2. Let TC generate the ma.uimal ideal of A, and let V be an orthogonal (resp, 

symplectic) represerltation of G ouer K rvith bilinear form B. Then tflere exists an incariallt 

fartice L in V srrch tfzar nL* c L c L*, bvhere L* = (L. E V 1 B(c, L) c A]. 

By choosing an invariant lattice and multipiyin g it by some high power of rt we can 

find an invariant lattice L such that n”L* c L c L* for some positive integer n. Suppose that 

11 is the least integer L 1 for which such an L exists, and write TV = Zj - e with e = 0 or 1. Then 

(L+njL~)*=L*nir-‘Lr>L+rc’L* 

nj(L + i+L*)* = dL* n L c L + njL* 

so that lattice L, = L + njL* has the same properties as L but with n replaced by j. By 

minimality of n, n =j = 1, proving the lemma. 

Suppose now that V is an orthogonal representation of G over A’ and let L be a lattice in 

V as in the lemma. so that there is an exact sequence of representations over k 

o-+L”/L-+L@,k+L/nL*-NO 

where the first map is induced by multiplying by x. Then the map c, u’c-*B(c;, u’) (resp. 

~1, v’HTI-~B(L., 0’)) followed by reduction modulo rt gives rise to a nondegenerate invariant 

symmetric bilinear form on L/nL” (resp. L*/L), hence (L OAk) lies in the subgroup RO,(G) of 

R,(G).Thus we have shown that II(RO,(G)) c RO,(G) and the proof for the symplectic case 

is the same. 

COROLLARY 5.3.3. Tfle decomposition honromorplrisr~lsgice rise to a map of exact seqllences 

RK(G) -+ RK(G) -+ RO,(G) 0 RSp,dG) --t R,(G) + R,(G) 

1 
d 

id id 
id b 

R,(G) -+ R,(G) -+ RO,(G) 0 RSp,(G) + R,(G) + Rk(G) 

as in 5.1.8, where a[[ maps commute with the Adams operations and where the uertical maps are 

I.-ring homomorphisms. 

(5.4). Suppose now that K is of characteristic zero and that k is of characteristic p. 

Define the modular character of an element of R,(G) to be the K-valued central function on 

G given on elements of the form (V) by 

(5.4.1) (V)(9) = &* 

where rr, . . . , Y, are the eigenvalues counted with multiplicity of the linear tranformation of 

V produced by 9, and where xi* is the unique root of unity of order prime top which reduces 

to zi module the maximal ideal of A. The following result (valid even for p = 2) summarizes 

those facts about the Brauer theory of modular characters that we need. 

PROPOSITION 5.4.2. If m = p”h, (p, h) = 1 is the exponent of G, let q be a power of p 

such that pa divides q and h divides q - 1. Then Yq is an idempotent operator on R,(G) whose 

image is mapped isomorphicall_v onto R,(G) by the decomposition homomorphism. Moreover 
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if‘,~’ E R,(G). then the character of the linique element .v E ‘i” (R,(G)) It.ith d(x) = y coincides 

n,ith the modular character of J’. 

Recall that by associating to an element its character or modular character one obtains 

isomorphisms of K@.R,(G) and IV@, R,(G) with the ring of K-valued central functions on 

G and Greg respectively [I-I, pp. 11 l-353. Serre supposes K complete, but the results apply 

here since R,(G) = RR(G) where I? is the completion of K). Xloreover, the decomposition 

homomorphism is given in terms of characters by restriction of a function on G to G,,,. 

Bv computing on cyclic subgroups one obtains the formula 

valid for .r in either X,(G) or R,(G). nhere 9, is the p-regular component of 9. It follows that 

Y acts trivially on R,(G) and that it is idempotent on R,(G) with image the set of x such that 

.r(g) = s(g,) for all 9. Since d is surjective [ 14, pp. 1 1 l-1 131 and a i.-homomorphism, the 

map Y4(RK(G)) -+ R,(G) induced by dis surjective. But on tensoring with K this map becomes 

an isomorphism, hence it is an isomorphism as claimed. Finally the last assertion of the 

proposition follows immediately from the character description of d. 

COROLLARY 5.4.3. Y is an idempotent operator on RO,<(G) and RSp,(G) and rite decom- 

position homonrorpl~isrr~ induces a i-ring isomorphism. 

‘f”‘( RO,(G) @ RSp,(G)) = RO,(G) @ RSpk(G). 

Moreover, if J’ E R,(G) comes from RO,(G) (resp. RSp,(G)). rhen the unique element .Y of 

R,(G) whose character coincides \t.itlr tfre modular character of‘!’ comes from RO,(G) (resp. 

RSp,(G)). 

Since the orthogonal and symplectic Grothendieck groups over K both admit injections 

into R,(G) commuting with Y”, it follows that Y” is an idempotent operator on these former 

groups. Passing to the image of this idempotent operator acting on the top row of the dia- 

gram of 5.3.3 gives an exact sequence which is mapped by d to the bottom row. Since there 

are isomorphisms at the four outer places by the above proposition, the middle map is an 

isomorphism by the five-lemma. This proves the first part of the corollary, and the rest is 

clear. 

(5.5). It remains toconnect up 5.4.3 with what is used in Section 1. Let k, be a field of odd 

characteristic p containing a primitive /I-th root of unity, where m = p”h is the exponent of G, 

and suppose given an embedding 4 of I(,,, the group of /I-th roots of unity in k,, into C*. 

Then given a representation V of G over k, we can define its modular character x with 

respect to 4 using formula 1.3, and we want to show that if V is an orthogonal (resp. sym- 

plectic) representation then x is the character of a virtual real (resp. quaternionic) represen- 

tation. By localizing the ring of cyclotomic integers Z[exp 2nQm] with respect to a maximal 

ideal containing p, we find a discrete valuation ring contained in C with residue field k 

isomorphic to a subfield of k, containing ,H~. Consider the modular character 1’ of Vdefined 

by using the embedding ut+ z* of 5.4. I. Since /Q, is cyclic there is an integer b prime to h, 

which one can suppose to be odd, such that a(z) = (Y*)~ for all 2 E,u,, , consequently if x and 

.Y’ are the elements of R(G) with characters 1 and z’. then x = Ybs’. Using 5.4.3 one finds 
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that I’ lies in RO(G) (resp. RSp(G)) if V is an orthogonal (resp. symplectic) representation. 

hence the same is true for .Y as these subgroups are stable under Yb. 

REFERESCES 

I. J. F. ADAMS: On the groups J(.X)-I, Topology 2 (1963), 181-195. 
2. D. W. ANDERSON and L. HODGKIN: The K-theory of Eilenberg-MacLane complexes, Topology 7 (1968), 

3 17-329. 
3. M. F. ATIYAH: Thorn complexes, Proc. Lond. Math. Sot. 11 (1961), 7-91-310. 
4. M. F. ATIYAH and G. B. SEGAL: The index of elliptic operators, II.---Ann. ,Cfarlr. 87 (1965), 531-545. 
5. M. F. AT~YAH and D. 0. TALL: Group representations, X-rings and the J-homomorphism, Topolog) 

8 (I 969) 253-297. 
6. A. BOREL and J. -P. SERRE: SW certains sous-groupes des groupes de Lie compacts. Comnlenf. ,t/nfh. 

Helter. 27 (1953), 125-139. 
7. C. CHEVALLEY: Sur certains groupes simples, T6hoku Mmlr. J. 7 (1955). 14-66. 
8. E. FRIEDLANDER: Thesis, 1M.I.T. (1970). 
9. J. A. GREEN: The characters of the finite general linear groups, Trans. AmMarh. Sot. 80 (1955). 102-447. 

10. J. KNOPFMACHER: Chern classes of representations of finite groups, J. Land. Moth. Sot. 41 (1956), 
535-541. 

11. M. NAKAOKA: Homology of the infinite symmetric group, Anrr. ILfurh. 73 (1961), 229-257. 
12. D. QUILLEN: Some remarks on etale homotopy theory and a conjecture of Adams, Topology 7 (1968). 

111-116. 
13. D. QUILLEN: On the spectrum of an equivariant cohomology ring (in preparation). 
14. J. -P. SERRE: ReprCsentations lint%res des groupes finis, Hermann, Paris (1967). 
15. D. SULLIVAN: Lectures given at The Institute for Advanced Study, February 1970 (notes in preparationj. 

Znsfitzrte for Adcancetl St&, Princeton 

ilild 

k?ussnchwsetts Iturirute of Technolog) 


