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§0. INTRODUCTION

THis paper contains a demonstration of the Adams conjecture [1] for real vector bundles.
Unlike an old attempt of mine [12}, which has recently been completed by Friedlander [8],
and the proof of Sullivan [15], no use is made of the etale topology of algebraic varieties.
The proof uses only standard techniques of algebraic topology together with some basic
results on the representation rings of finite groups, notably the Brauer induction theorem
and one of its well-known consequences: the fact that modular representations can be lifted
to virtual complex representations.

The conjecture is demonstrated in the first section assuming some results which are
treated in the later sections. Put briefly, one first shows that the conjecture is true for vector
bundles with finite structural group and then using modular character theory one produces
enough examples of virtual representations of finite groups to deduce the general case of the
conjecture from this special case. The key step (Theorem 1.6) involves the partial com-
putation of the mod / cohomology rings of the finite classical groups GL,(F,) and O(F,)
where / is a prime number not dividing g. I have included only what is needed here, but one
could push further and obtain pretty complete information about these cohomology rings.
However, more general and natural results can be obtained using etale cohomology as I plan
to show in another paper.

There is an Apperdix (Section 5) developing a modular character theory for orthogonal
and symplectic representations of a finite group. This is needed to handle the Adams con-
jecture for real vector bundles.

This paper contains numerous suggestions of Michael Atiyah, especially 1.2 which he
first proved for complex bundles. Section 3 owes much to conversations with R. J. Milgram
about the cohomology of the symmetric group.

§1. PLAN OF THE DEMONSTRATION
Let X beafinite complex, let KO(X') be the Grothendieck group of its virtual real bundles,
and let Sph(X) be the group of its stable spherical fibrations. The J-homomorphism
J: KO(X)— Sph(X) is the map induced by associating to a vector bundle its underlying
sphere bundle. The purpose of this paper is to prove the following conjecture of J. F. Adams

).
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THEOREM 1.1. Let k be an integer and let xe KO(X). Then k"J(W*x — x) = 0 for some
integer n.

Because of the identity W/W* = P/ satisfied by the Adams operations and the fact that
the theorem is trivial for kK =0, +1, it suffices to prove the theorem when & is a prime
number which from now on will be denoted p. As 2x is in the image of the restriction of
scalars map from complex K-theory K(X)to KO(X), one sees that 1.1 implies the analogous
result for complex K-theory; moreover, if p = 2 then the real and complex cases are equiva-
lent. Therefore, in the rest of the paper we shall concentrate on the situation with real
K-theory and p odd; with trivial modifications the arguments will work for the complex case
and all p, taking care of the real case with p = 2.

We say that a virtual bundle x over X admits a reduction of its structural group to a
finite group G if there exists a principal G-bundle P over X such that x is in the image of the
map from RO(G), the real representation ring of G, to KO(X) which is induced by sending a
representation V into the bundle P x V.

PROPOSITION 1.2. The Adams conjecture is true for any virtual bundle whose structural
group may be reduced to a finite group.

This will be proved in the next section. It is the constructive part of the proof and uses
Brauer’s induction theorem to restrict to representations induced from one and two dimen-
sional representations together with Adams’ methods to handle this case. The rest of the
proof consists in showing that there are enough virtual representations of finite groups so
that this special case implies the general case.

Let & be an algebraic closure of the field with p elements and choose, once and for ali,
an embedding ¢ : k* - C*. If G is a finite group and 7 : G — Aut(¥V) is a representation of G
in a finite dimensional vector space over &, then the modular character of V (with respect to
¢) is defined to be the complex-valued function on G given by the formula

(1.3) #9) = Y. ¢(x)

where o, ..., a, are the eigenvalues with muiltiplicity of n(g). It is a basic consequence
(Green [9, Theorem 1]) of the Brauer induction theorem that y is the character of a unique
element of the complex representation ring R(G). We show in the appendix to this paper
(5.5) that if p is odd and if G leaves invariant a non-degenerate symmetric bilinear form on V,
then y is the character of an element of the real representation ring RO(G).

Let F, be the subfield of & with g elements, let GL,(F,) be the group of invertible n of n
matrices with entries in F,, and (p odd) let O,(F,) be the subgroup of orthogonal matrices.
Lifting the standard representations of these groups in k" in the above way we obtain virtual
representations in R(GL,(F,)) and RO(O,(F,)) respectively, which in turn give rise to maps
BGL(F)) -~ BU

BO(F) — BO
in the homotopy category. Now these virtual representations are evidently compatible as n
tends to infinity and as the finite field tends toward &, hence by a standard limit argument

(1.4)
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{compare [2. proof of 1.3]) the maps 1.4 give rise to unique maps in the homotopy category

BGL(k) — BU

(1.5)
BO(k) — BO

where GL(k) and O(k) are the infinite general linear and orthogonal groups with entries in k.

THEOREM 1.6. The maps 1.5 induce isomorphisms on cohomology with coefficients in Z,
where d is any integer prime to p.

This will be proved in Sections 3 and 4. We now prove the Adams conjecture.

Recall [3,section 1] that for any finite complex X with basepoint we have Sph(X)=indlim
[X, BG,),, where G, is the monoid of homotopy equivalences of S* ™%, and [ , ], denotes the
set of homotopy classes of basepoint-preservating maps. Let Z be the inductive limit in the
sense of homotopy theory (infinite mapping cylinder) of the sequence

BG, — BG,,z =BG 3>
where the successive maps come from the p-fold Whitney sum of sphere fibrations. Then
Sph(X)[p~'1 = (X, Z], (1.7)

and Z is connected with finite homotopy groups of order prime to p [3, 1.3]. Now quite
generally [X U pt, Z], is the quotient of [X, Z], by the action of n,Z; as the left side of 1.7 is
the same for X u pt and X, this action is trivial, so n,Z acts trivially on =, Z for all n. (This
follows also from the fact that Z is an H-space, which is a consequence of the group structure
on 1.7 and 1.8 below.) If X is an infinite complex which is the union of a sequence of finite
complexes X, . then the natural map

(X, Z)= invlim [X,, Z) (1.8)

s an isomorphism, because in general it is surjective with kernel R! invlim [SX,, Z] and this
s zero as the groups are finite. Applied to the skeleta of BO this implies that the map

x—J(Wx — x) from 155( 7 to Sph(ND{p '] induces a map u in the diagram

BO(k)-> BO - C

u /‘/ (19)

1L

Z
where z is the map of 1.5 and C is its cone. The map « when restricted to any finite skeleton
X of BO(k) classifies a virtual bundle over X whose structural group is reduced to the finite
group O,(F,) for some n and g, hence px restricted to X is null-homotopic by 1.2. By 1.8,
ux is homotopic to zero and so there is dotted arrow 8 in 1.9 making the diagram homotopy
commutative. The obstructions to deforming § to zero lie in H(C, n,Z), n=1, where the
local coefficient system is trivial as remarked above. As n, Z is a finite group of order prime
to p and « induces an isomorphism on cohomology in such groups by 1.6, it follows that
H"(C, n Z) —0. Therefore 8, hence also y, is null-homotopic, proving the Adams conjecture.
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§2. ADAMS CONJECTURE FOR BUNDLES WITH FINITE STRUCTURAL GROUP

Let f: ¥ — X be a finite covering space of a finite complex X. If £ is a vector bundle on
Y let f, E be its trace with respect to f, i.e.
(fxE):= @ E, (z.h)
yef™ U=
and denote also by [ : KO(X)— KO(Y) the induced map on Grothendieck groups.

LeMMA 2.2, If ye KO(Y) then f,, W?y = W#f, y in KO(X)[p~'].

One knows that f, coincides with the Gysin homomorphism for f in the generalized
cohomology theory KO* (see [10, p. 540]; the argument given there also works in the case of
KO-theory). Since the normal bundle of f has a canonical trivialization, this Gysin homo-
morphism is essentially the composite of one suspension isomorphism and the inverse of
another. As W? extends to a stable cohomology operation on the theory KO¥*(N[p~'], it
commutes with suspension isomorphisms and hence with f,, proving the lemma.

{(Instead of using 2.2 some readers may prefer the following argument of Atiyah. [t will
be sufficient for the proof of 1.2 to show that if i, : RO(H) — RO(G) is the induction homo-
morphism associated to a subgroup A of the finite group G. and if y¢ RO(H), then the
difference

*) Wiy y) — L (¥Pp)e RO(G)

goes to a p-torsion element under the homomorphism RO(G) — KO(X) associated to a
principal G-bundle P over a finite complex X. If j: G, — G is the inclusion of a Sylow
{-subgroup of G and f denotes the covering map P/G, — X, then the kernel of £, : KO(X)~—
KO(P/G)) consists of elements of order prime to /, since the trace map f, going the other way
satisfies f,(f*x) = (fi1)x, where f,1 =[G : G,] + a nilpotent element. Consequently it is
enough to show that the restriction j* kills (*) for all / # p. By the Mackey formula

j*i* = Z (ig)*(jg)*
GigH

on is reduced to proving that (*) is zero when G is of order prime to p. But this is clear either
by direct calculation or by using the fact that ¥# coincides with the action of an element of
the Galois group of a large cyclotomic extension of Q (see[3, 3.2 and proof of 4.2}.)

Denote by [E] the element of the Grothendieck group associated to a vector bundle L.

Lemma 2.3. If L is a one or two dimensional bundle over Y, then 1.1 is true for [fiL].

From the proof of the special case of 1.1 proved by Adams {1, Theorem 1.3], there is a
vector bundle L® over Y such that W#[L] = [L¥'] and such that there is a (non-linear) map
L— L of degree +p° on each fibre. Using 2.1 one sees easily that there is a (non-linear) map
Jol = [ L®® of degree +p” on each fibre, hence both of these bundles yield the same element
of Sph(X)[p~1] by the “mod p Dold theorem™ {1, Theorem 1.1]. Using 2.2 we have that
Y f, L] = [fi L] in KO(X)[p~']. hence the lemma is proved.

Denote by RO(G) the real representation ring of a finite group G.

LeEMMA 2.4. Every element of RO(G) is an integral linear combination of representations
induced from one and two dimensional representations of subgroups of G.



THE ADAMS CONJECTURE 71

For the complex representation ring this is a well-known corollary of the Brauer induc-
tion theorem [14, pp. 11-29]. Recall that there is an extension of the induction theorem to
representations over a field taking into account the action of the Galois group on the roots
of unity [14, pp. 11-44]. For the real numbers it says that any element of RO(G) is an
integral linear combination of representations induced from subgroups f which are
Z,-elementary, i.e. either A is the direct product of a cyclic group and a group of prime
power order or it is a semidirect product £ X C, where Ciscyclicof odd order and where P is
a 2-group and P acts on C through a homomorphism P —Z, and the generator of Z, acts
on C as -id. Such a group H is of type (MP), i.e. it has a chain of normal subgroups whose
quotients are cyclic of prime order. Let ¥ be an irreducible real representation of A and
endow it with an invariant inner product. Then by Borel-Serre [6] H normalizes a torus in
the orthogonal group of V. The eigenspaces of this torus form a system of imprimitivity in
V, so by irreducibility, ¥ is either of dimension one or induced from a representation of
dimension two. By transitivity of induction the lemma is proved.

The Proposition 1.2 follows immediately from 2.3 and 2.4. Indeed one only has to note
that if. 2 is a principal G-bundle over X and if B is a representation of a subgroup H of G,
then the bundle over X associated by P to the induced representation of G is isomorphic to
the bundle £, L, where fis the covering P/H — X and where L is the bundle on P/H associated
to W.

§3. DETECTING COHOMOLOGY IN WREATH PRODUCTS

Let / be a fixed prime number and denote by H*(X) the singular cohomology ring of the
space X with coefficients in Z,. Let C be a cyclic|group of order /,and if Y is a space on which
C acts, let Y. be the associated fibre space over the classifying space BC with fibre Y.
Let C act on the /-fold product X' by permuting the factors and let the maps

xS xLJdBCx X
be the inclusion of the fibre over the basepoint of BC and the map induced by the diagonal
XX
ProposiTioN 3.1. The induced map on cohomology

H*(X') =5 H¥(X) @ H*(BC x X)
Is Injective.

We may suppose that X is a CW-complex and in fact a finite complex because cohom-
ology with coefficients in Z, transforms direct limits into inverse limits. Let we H*(BC) be a
generator. Since the diagonal map X— X'is the inclusion of the fixpoint set for the action of
C, the localization theorem ([12], see also [4] for the argument in K-theory) implies that on
inverting w the map j* becomes an isomorphism:

HX(X'O[w™ '] — H*(BC x X)[w™'].
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Consequently any element in the kernel of j* is killed by a power of w.
On the other hand the spectral sequence of the fibration X'.— BC
EP = HP(BC, HY(X") = H?*1 (X!y)
degenerates on account of the isomorphism [11, Theorem 3.3)
H*(BC, H*(XY)) = H*(X'o).
A non-zero element y of H*(X'.) which is in the kernel of i* has a non-trivial component z
in E%% for some p > 0. As the cohomology of the cyclic group C is periodic with periodicity

map given by multiplying by w, it follows that =, and hence y, is not killed by any power of w.
Thus the intersection of the kernels of i* and j* is zero, proving the proposition.

We shall say that a family #; ie [ of subgroups of a group G detects the cohomology of
G (mod 1), or simply is a detecting family, if the map

H*(BG) — [ H*(BH)

given by the restriction homomorphisms is injective. It is clear from the Kunneth formula
that if Hf;jeJ is also a detecting family for G', then the family H, x H;(i,j)el x J is a
detecting family for G x G’. Moreover, if H;is a detecting family for G and if each H; has a
detecting family H,;, then the subgroups H;; for all i and j form a detecting family for G.
By transfer theory a subgroup of finite index prime / in G detects the cohomology of G

Let H be a permutation group of degree #, i.e. a group endowed with an action on the set
{1,..., n}, and let G be an arbitrary group. Then the wreath product H | G is defined to be
the semidirect product A X G", where H permutes the factors according to the given permu-
tation representation. If EH— BH and EG— BG are universal bundles for G and H respec-
tively, then EH x (EG)" is a contractible space on which H | G has a natural free action,
and hence the quotient space EH x #(BG)" is a classifying space for the wreath product.
Taking H to be C with its standard permutation representation and identifying the maps {
and j of 3.1 with the appropriate restriction homomorphisms we obtain

COROLLARY 3.2. The two subgroups G' and C x G detect the mod | cohomology of the
wreath product C | G.

COROLLARY 3.3. If 4, ie I is adetecting family for G, then the family of subgroups of C | G
A xx A, G =CfG 1i,...,i¢el
CxA,cCxGaC[G el
is a detecting family.
" Denote by Y . the symmetric group of degree n.

ProprosITION 3.4. Let G be a group whose mod | cohomology is detected by a family of
abelian subgroups of exponent dividing 1° with a > 1. Then Y, [ G has the same property.

The proof is by induction on n, the case n = 1 being clear. If n is not divisible by /, then
the subgroup (3, -, | G) x G detects cohomology because it is of index n which is prime to /.
On the other hand if n = ml, then the evident embedding ) ,,{ (C{G) =Y ,{ G gives a
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subgroup of index n!/m!™, which is prime to / by elementary number theory. Using the
induction hypothesis and in the second case 3.3, one obtains detecting families for these
subgroups by taking various products of abelian groups of exponent dividing /¢, hence
Y, | G also has a detecting family of groups of this type.

COROLLARY 3.5. The mod | cohomology of Y , is detected by its family of elementary
abelian [-subgroups.

$4. PROOF OF THEOREM 1.6

Continuing with our preceding notations, let / be a prime number diftfcrent from the
characteristic p of F,. Write n = 2m + ¢ with e = 0 or | and let 7,,(F,) be the subgroup of
O,(F,) which is the * Whitney sum " of m two-by-two blocks of the form

’ 1] b 2 2
(1) (_s a)a+/) =1
together with a trivial block of rank ¢. We suppose that 4 divides q — 1; choosing a square

root i of —1 the block 4.1 becomes isomorphic to F * by the map sending this matrix to
a-+ib. 1If N denotes the normalizer of T,(F,) in O,(F,. then, N is isomorphic to
(zmj OZ(Fq)) X Zle'

LemMMmA 4.2, If 4, [ divide g — |, then the index of N in OF,) is prime to .

One knows that the orders are

m-1

[Oam(FY =2.4""" V(" ~ D]](¢¥ = 1) NI =2"ml{q ~ )"

ji=1
nt

(Osms (FYl =2.9" [](@* = 1) N[ =2"""mli(q - )"

i=1
and by number theory that (¢" — 1)/r(g — 1) 1s a J-adic unit if /is odd and / divides g — 1 or if
! =2 and 4 divides ¢ — 1 [7, pp. 45-46).

THEOREM 4.3. The mod | cohomology of GL(F ) is detected by the subgroup of diagonal
matrices if | divides g — | or if 4 divides ¢ — | and [ = 2. (Here p need not be odd.)

(4.4) If | is odd and 4l divides q — 1, then T,(F,) detects the mod I cohomology of O,(F,).

(4.5) If 4 divides q — 1, then the mod 2 cohomology of O,(F)) is detected by its family
of elementary abelian 2-subgroups.

We first prove 4.4. Using 4.2 and the fact that / is odd, we know that O(F,) has its
(mod /) cohomology detected by the subgroup 3, | O,(F,). The Sylow /[-subgroup of O,(F,)
is cyclic of order a power of / dividing g — 1, hence by 3.4 this wreath product and hence
O,.(F,) has a detecting family consisting of abelian groups 4 of exponent dividing g — 1
But any such subgroup of O,(F,) is conjugate to a subgroup of T,(F,). Indeed let V' = F " be
regarded as an orthogonal representation of A and let L be an irreducible subspace on which
A acts non-trivially. As theexponent of 4 divides ¢ — 1, L isof dimension one, and as / is odd
L is not isomorphic to its dual, so L is an isotropic subspace for the bilinear form on V.
Choosing an invariant complementary subspace to the orthogonal space of L, which is



74 DANIEL QUILLEN

possible since A is of order prime to p, we can write V as an orthogonal direct sum of the
hyperbolic orthogonal representation associated to L and another orthogonal representation.
Continuing in this way V¥ can be decomposed into a direct sum of A-invariant hyperbolic
planes plus perhaps a trivial one-dimensional representation; these may then be transformed
into the eigenspaces of Ty (F,) by an element of O,(F,), thus giving the desired conjugacy.
This concludes the proof of 4.4 and that of 4.3 is similar.

For the proof of 4.5 we can use the same method to reduce to showing that the mod 2
cohomology of O,(F,) is detected by elementary abelian 2-subgroups, and this follows from

Lemsa 4.6. The mod 2 cohomology of a dihedral group is detected by its family of ele-
mentary abelian 2-subgroups.

Passing to the Sylow 2-subgroup, we can assume that the dihedral group D has genera-
tors x,, X, subject to the relations x,? = x,°“ = [, x,x,x, 7! = x,”!. The lemma is clear if
a=1, so suppose a> 1 and let t,¢ H'(BD) = Hom (D, Z,) be given by 1,(x)) =0;;. Let
c¢ H*(BD) be the Euler class of the standard representation of D on the plane. Then

HXBD) =2Z,[t,, ty, elj(t,* + 1, t1).

(This may be derived by considering the Hochschild-Serre spectral sequence of the extension
obtained from the normal cyclic subgroup C generated by x,2*"". Ifwand v are the non-zero
elements of the cohomology of BC in dimensions one and two respectively, then one can
show that dyu = t,2 + t, 1, and dy v = 0 so the spectral sequence collapses at £,.) This ring
has no nifpotent efements. Since a cohomology class which restricts to zero on each elemen-
tary abelian 2-subgroup is necessarily nilpotent by the main theorem of [12], this proves the
femma. One can also compute directly that the elementary abelian 2-subgroups with generat-
ingsets {x,2°7", x,} and {x,2""", x, x,} detect the cohomology of D. Thisconcludesthe proof
of the [emma and hence that of the theorem.

Let k& be an algebraic closure of F, and let ¢ : k* - C* be an embedding. If &, s a
subfield of & then as in Section | we obtain elements

o ginvlim R(GL,(F,)), T & invlim RO(O,(F )
F

Fyek, g <k

which in turn yield well-defined homotopy classes
BGL (k) = BU
B0, (k) = BO.
Denote by c,(0), pi(t), and w,(1) the images of the universal Chern, Pontryagin, and Stiefel-
Whitney classes respectively under these maps.

THEOREM 4.7. Let d be a positive integer prime (o p and suppose that k, contains the
d’-th roots of unity in k for all r. In the case of the orthogonal group we suppose also that p is
odd and that k, contains a square root of — 1. Then

H*(BGL,(k\), Z,) = Z,[c(0), ..., c.(0)]
H*(BO(k), Z) = Z[pi()s..., p(t)] dodd, m={nf2]
H*(BO k), Z,) =Z,{w, (1), ..., w(1)] d=2

where the notation means that the rings are polynomial rings with the indicated generators.
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We can suppose that d = /* where / is a prime number different from p, and even that
d = [ because the ¢;, p; are of even dimensions and hence the relevant Bockstein operations
are zero. Consider the restriction homomorphism

ITRe DA (1. ) 11k DT (1. WP

&) H*BO (k) — H*(BT, (k)

(4.
where the cohomology has Z,; coefficients and where W =3 | Z, is the Weyl group. Now
k(* is an increasing union of cyclic groups and is /-divisible by hypothesis: by passage to the
limit in the known formula for the cohomology of a cyclic group we find H*(Bk,*) = Z,[x].
where x is the first Chern class of the character of k,* obtained from ¢. By Kunneth,
H*(BT, (k) =Z,[x,...... v,] where x; 15 the image of x under the /-th projection T, (k) —
k*. The Weyl group acts by permuting and changing the signs of the x; so if / is odd, the
right side of 4.8 is the subring of symmetric functions of the x,%. It is easy to compute that
the restriction of p (1) to 7,,(k,) is the j-th elementary symmetric function of the x,?. Indeed
by means of characters one sees that the restriction of ¢ to T,(k,) is the direct sum of the
two-dimensional real representations with first Pontryagin classes x,*. so one gets the ele-
mentary symmetric functions from the product formula for the Pontryagin classes. Therefore,
the map 4.8 is surjective. By 4.4 it is injective, which proves the second formula of the theo-
rem. The first formula is handled similarly.

If /=2, one considers instead of 4.8 the restriction to the subgroup Q of diagonal
matrices of O,(k,). The appropriate Weyl group here is ), acting by permuting the factors,
and by the same argument one sees that the restriction map to Q analogous to 4.8 is surjec-
tive. Any maximal elementary abelian 2-subgroup 4 of O,(k,) stabilizes an ordered ortho-
gonal direct sum decomposition of k," into one-dimensional subspace. Since & * is 2-divisible
by hypothesis, all one-dimensional quadratic spaces over k, are isomorphic, so it follows
that 4 is conjugate to a subgroup of Q. Combining this with 4.5 one sees that the restriction
map from O,(k;) to Q is injective, proving the last formula of the theorem.

Theorem 1.6 follows from 4.7 by taking A, = k, letting # go to infinity, and using the
known formulas for the cohomology of BU and BO.

§5. APPENDIX—LIFTING MODULAR ORTHOGONAL AND SYMPLECTIC REPRESENTATIONS

In this appendix we develop a modular character theory for orthogonal and symplectic
representations of a finite group G in a field K of characteristic different from two. We
suppose that K contains a primitive A-th root of unity, where / is the factor of the exponent
of G which is prime to the characteristic of K; this implies that all irreducible representations
of G over K are absolutely irreducible.

(5.1). By an orthogonal (resp. symplectic) representation of G over K we mean a repre-
sentation of G as linear transformations of a finite dimensional vector space over K which
leave invariant a nondegenerate symmetric (resp. skew-symmetric) bilinear form. The
Grothendieck group RO(G) of orthogonal representations is defined (up to canonical
isomorphism) as the target of a universal map ¥~ [V] from the set of isomorphism classes
of orthogonal representations to an abelian group such that the following relations are
satisfied.
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(3.1.L1) If V" and J7" are two orthogonal representations on the same vector space whose
bilinear forms differ by a scalar factor, then [V} = [V'].

(5.1.2) If V is the orthogonal direct sum of two orthogonal representations ¥ and V",
then [V]= [V'1+ V']

(5.1.3) If V is an orthogonal representation and if W is an invariant subspace which is
isotropic, i.e. contained in its annihilator W* for the bilinear form, then [V] = [W°/ W] +
[(Wa V/W*<), where W*/Wand W® V/W*° are endowed with the natural bilinear forms
induced from that of V.

One defines similarly the Grothendieck group RSpg(G) of symplectic representations.

Let Ri(G) be the Grothendieck group of all representations of G over K, and to avoid
confusion denote the element corresponding to a representation Vby (V). If V,se Sisaset of
representatives for the isomorphism classes of irreducible representations, then Rg(G) is
a free abelian group with basis (V). There are homomorphisms

+ Bt

ROK(G)— Ry(G)—— RO(G
5.1.4) x(G) x(G) «(G)

£ he
RSpx(G)— Ry (G)— RSpx(G)
where /* come from forgetting the bilinear form and where 2% come from associating to a
representation V the representation V'@ V* with the * hyperbolic™ bilinear form B(x + y,
X+ vy =(x, ) £ (x’, y), with (,) denoting the natural pairing of a vector space and its
dual. One checks the formulas

2

R =hfT
frhT=f"hT =*+id.

(5.1.5)

If ¥ is an irreducible representation isomorphic to its dual, then by Schur’s lemma the
subspace of invariants in V* ® V* = Hom (¥, V*) is one-dimensional. As the characteristic
is different from 2, this subspace is contained either in A¥* or S?¥* hence ¥ has a non-zero
invariant bilinear form which is either symmetric or skew-symmetric. As ¥ is irreducible
this form is nondegenerate and unique up to scalar multiples, so we obtain an element [V]
(well-defined by 5.1.1) of either the orthogonal or symplectic Grothendieck groups. Divide
the set of irreducibles into a disjoint union

S=§usS*uS,usS._
where S, and S_ are the subsets consisting of those s for which ¥ is orthogonal or sym-

plectic respectively, and where S, is a cross-section of the rest of S under the action of *.

PROPOSITION 5.1.6. RO(G) is a free abelian group with basis [V)seS .and h*(V)se S, u
S_. RSp(G) is a free abelian group with basis [V,]seS_and h~ (V) se S, S, . The mapsf*
are injective and using them to identify RO (G) and RSpy(G) with subgroups of Rg(G) we have

RO (G) N RSpi(G) ={x + x*| xe R(G)}

G171 ROKG) + RSpx(G) ={xe Rg(G)| x = x*}.
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If ¥ is an orthogonal representation having an irreducible invariant subspace ¥, then
either the bilinear form restricted to W is nondegenerate, whence by 5.1.2 (V] = [V,] + [#7]
withse S, , or Wisisotropic and by 5.1.3 [V] = A (V) + [W°/ W] with s¢§. By induction
on the length of ¥ one sees that [V] is a positive linear combination of the elements [V,] with
seS, and A*(F,) with s¢S,w S_. hence these elements generate RO4(G). But these ele-
ments are independent in Rg(G), so they form a basis for RO(G), proving the first assertion
of the proposition as well as the injectivity of /*. The assertions about the symplectic case
follow similarly, while the formulas 3.1.7 result from looking at the bases, so the proposition
is proved. An immediate consequence of 5.1.7. is

COROLLARY 5.1.8. There is an exact sequence

*-id ato=hT)

{ s
Ry(G) —— Rx(G) ——— ROx(G) @ RSpx(G)

s T t-id
> R(G)  R(G).

When K is the field of complex numbers any representation V' possesses an invariant
hermitian metric (, ). If ¥ is orthogonal (resp. symplectic) with bilinear form B, then this
metric may be chosen so that the conjugate linear operator J defined by B(v, v') = (v, Jv)
satisfies J? = id (resp.J? = —id). Hence ¥ is the complexification of a representation over
the real numbers (resp. the restriction of a quaternionic representation). Using this one sees
that RO{G) and RSp,(G) are respectively isomorphic to the Grothendieck groups of real
and symplectic representations and that the maps 5.1.4 are given by the appropriate extension
and restriction of scalars.

(5.2). Given an orthogonal representation ¥ and a symplectic representation V7, consider
he direct sum V@ V’ as a representation of G x Z, where the generator of Z, acts trivially
on the first factor and as -id on the second. This construction gives rise to a homomorphism

(5.2.1) RO (G)® RSpy(G) = R (G x Z5)

which is injective, since on composing this with the homomorphism Rg(G x Z,) — Ry (G) &®
R.{G)giving the twoeigenspaces for the Z,-action one obtains the map /* @ /. Now if two
representations V' and V' are endowed with nondegenerate bilinear forms, then the repre-
sentations ¥ ® ¥’ and A’V inherit natural nondegenerate forms. Using this one sees that
the left side of 5.2.1 is a sub A-ring of the right; in fact, it is a Z,-graded i-ring in the evident
sense (e.8. RO(G) is stable under the J-operations while i° and W' carry RSpi(G) into
RO(G) or RSpg(G) depending on whether 7 is even or odd).

Since the map /% + /™ of 5.1.8 is the composition of 5.2.1 and the restriction homo-
morphism from G x Z, to G, it is a A-homomorphism. Hence by additivity of ¥ and the
identities 5.1.5, one sees that the exact sequence of 5.1.8 is compatible with the action of the
Adams operations,

(5.3). Let 4 be a discrete valuation ring with quotient field K and residue field & both
satisfying the assumptions made at the beginning of Section 5.

Let
(5.3.1) d: R(G) — Re(G)
be the decomposition homomorphism (14, pp. 111-10]; it sends (V) into (L ® k) where L is
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an invariant lattice (i.e. free 4-submodule of maximum rank) in V. 1t is clear that d is a
homomorphism of /-rings. We now wish to show that this homomorphism carries RO (G
and RSpg(G), viewed as subgroups of Rg(G). into the corresponding subgroups over k.

LEMMA 5.3.2. Let © generate the maximal ideal of A, and let V be an orthogonal (resp.
symplectic) representation of G over K with bilinear form B. Then there exists an invariant
lattice L in V such that nl* o L < L*, where L* ={ve V| B(r, L) = A}.

By choosing an invariant lattice and multiplying it by some high power of n we can
find an invariant lattice L such that n"L* < L < L* for some positive integer n. Suppose that
n1s the least integer > 1 for which such an L exists, and write n# = 2j—ewithe=0or!l. Then

L+ njL*)* =L*¥Ar L oL + niL*

(L + rIL*)* = nL* N L < L + n/L*
so that lattice L, = L + n/L* has the same properties as L but with »n replaced by j. By
minimality of n, n = = |, proving the lemma.

Suppose now that ¥ is an orthogonal representation of G over K and let L be a lattice in
V' as in the lemma, so that there is an exact sequence of representations over k

O L*L» L@ k- Linl*-0
where the first map is induced by multiplying by n. Then the map v, v'+—B(v, v) (resp.
v, v’ 71" ' B(v, v")) followed by reduction modulo & gives rise to a nondegenerate invariant
symmetric bilinear form on L/rL* (resp. L*/L), hence (L ® ,k) lies in the subgroup RO(G) of
R (G).Thus we have shown that d(ROk(G)) = RO(G) and the proof for the symplectic case
1s the same.

COROLLARY 3.3.3. The decomposition homomorphisms give rise to a map of exact sequences
Ri(G) = Rk(G) = RO(G) @ RSpr(G) = Ri(G) = Ry(G)
lu ¥ L | la
i v ¥ ¥
R{(G) = R(G) — RO(G) ® RSp,(G) — Ry(G) — R(G)
as in 5.1.8, where all maps commute with the Adams operations and where the vertical maps are
A-ring homomorphisms.

(5.4). Suppose now that K is of characteristic zero and that k is of characteristic p.
Define the modular character of an element of R (G) to be the K-valued central function on
G given on elements of the form (V) by
(5.4.1) (M)(g) = Y a*
where «,, ..., %, are the eigenvalues counted with multiplicity of the linear tranformation of
V produced by g,and where «;* is the unique root of unity of order prime to p which reduces

to a; modulo the maximal ideal of A. The following result (valid even for p = 2) summarizes
those facts about the Brauer theory of modular characters that we need.

PROPOSITION 5.4.2. If m = p°h, (p, h) = 1 is the exponent of G, let q be a power of p
such that p° divides q and h divides q — 1. Then ¥ is an idempotent operator on R (G) whose
image is mapped isomorphically onto R/G) by the decomposition homomorphism. Moreover
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if ve R(G). then the character of the unique element x e \W* (R (G)) with d(x) = y coincides
with the modular character of v.

Recall that by associating to an element its character or modular character one obtains
isomorphisms of K ®, R(G) and K ®, R(G) with the ring of K-valued central functions on
G and G, respectively [14, pp. [11-35]. Serre supposes A" complete, but the results apply
here since Ry(G) = Rg(G) where K is the completion of K). Moreover, the decomposition
homomorphism is given in terms of characters by restriction of a function on G to G-
By computing on cyclic subgroups one obtains the formula

(‘Vix)(g) = x(g%) = x(g,)
valid for x in either R (G) or R (G). where g, is the p-regular component of g. It follows that
W acts trivially on R,(G) and that it is idempotent on R (G) with image the set of x such that
x(g) = x(g,) for all g. Since d is surjective [14, pp. 111-113} and a Ai-homomorphism, the
map WY Ry(G))— R(G)induced by dis surjective. But on tensoring with A this map becomes
an isomorphism, hence it is an isomorphism as claimed. Finally the last assertion of the
proposition follows immediately from the character description of 4.

COROLLARY 5.4.3. W4 is an idempotent operator on RO (G) and RSpg(G) and the decom-
position homomorphism induces a i-ring isomorphism.

YIROG) @ RSpi(G))~ RO(G) @ RSp(G).

Moreover, if ye R(G) comes from RO(G) (resp. RSp(G)). then the unique element x of
R (G) whose character coincides with the modular characier of v comes from RO(G) (resp.
R3pk(G)).

Since the orthogonal and symplectic Grothendieck groups over K both admit injections
into Ri(G) commuting with ¥4, it follows that ¥ {s an idempotent operator on these former
groups. Passing to the image of this idempotent operator acting on the top row of the dia-
gram of 5.3.3 gives an exact sequence which is mapped by d to the bottom row. Since there
are isomorphisms at the four outer places by the above proposition, the middie map is an
isomorphism by the five-lemma. This proves the first part of the corollary, and the rest is
clear.

(5.5). Itremains toconnect up 5.4.3 with whatis used in Section 1. Let &, be a field of odd
characteristic p containing a primitive /-th root of unity, where m = p®h is the exponent of G,
and suppose given an embedding ¢ of y,, the group of A-th roots of unity in &, into C*,
Then given a representation ¥ of G over k, we can define its modular character y with
respect to ¢ using formula 1.3, and we want to show that if V" is an orthogonal (resp. sym-
plectic) representation then y is the character of a virtual real (resp. quaternionic) represen-
tation. By localizing the ring of cyclotomic integers Z[exp 2ri/m] with respect to a maximal
ideal containing p, we find a discrete valuation ring contained in C with residue field &
isomorphic to a subfield of k, containing y, . Consider the modular character z' of V defined
by using the embedding a+— «* of 5.4.1. Since p, is cyclic there is an integer & prime to A,
which one can suppose to be odd, such that ¢(x) = (x*)" for all 2y, , consequently if x and
X' are the elements of R(G) with characters ¥ and 7', then x = P*x’. Using 5.4.3 one finds
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that x' lies in RO(G) (resp. RSp(G)) if V' is an orthogonal (resp. symplectic) representation,
hence the same is true for x as these subgroups are stable under ¥°.
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