Central reflections and nilpotency in exact Mal'cev categories

Clemens Berger

joint work with Dominique Bourn

CT2014 Cambridge, 29 Juin - 5 July, 2014

- 2 Central extensions and nilpotency
- 3 Central reflections and affine morphisms

A category $\mathbb E$ is abelian iff $\mathbb E$ is additive and exact.

_emma

- $\theta_{X,Y}$ is invertible iff \mathbb{E} is *linear*;
- $\theta_{X,Y}$ is monic in the category of pointed objects of a topos;
- $\theta_{X,Y}$ is epic in the category of groups.

A category $\mathbb E$ is abelian iff $\mathbb E$ is additive and exact.

Lemma

- $\theta_{X,Y}$ is invertible iff \mathbb{E} is *linear*;
- $\theta_{X,Y}$ is monic in the category of pointed objects of a topos;
- $\theta_{X,Y}$ is epic in the category of groups.

A category $\mathbb E$ is abelian iff $\mathbb E$ is additive and exact.

additive
$$\implies \exists \begin{cases} \text{pullbacks of split epis} \\ \text{pushouts of split monos} \\ \text{null-object} \end{cases} \implies \exists \begin{cases} \text{products} \\ \text{sums} \\ \text{null-object} \end{cases}$$

pre-additive $\implies \sigma\text{-pointed}$

Lemma

- $\theta_{X,Y}$ is invertible iff \mathbb{E} is *linear*;
- $\theta_{X,Y}$ is monic in the category of pointed objects of a topos;
- $\theta_{X,Y}$ is epic in the category of groups.

A category $\mathbb E$ is abelian iff $\mathbb E$ is additive and exact.

additive
$$\implies \exists \begin{cases} \text{pullbacks of split epis} \\ \text{pushouts of split monos} \\ \text{null-object} \end{cases} \implies \exists \begin{cases} \text{products} \\ \text{sums} \\ \text{null-object} \end{cases}$$

pre-additive $\implies \sigma\text{-pointed}$

Lemma

- $\theta_{X,Y}$ is invertible iff \mathbb{E} is *linear*;
- $\theta_{X,Y}$ is monic in the category of pointed objects of a topos;
- $\theta_{X,Y}$ is epic in the category of groups.

A category $\mathbb E$ is abelian iff $\mathbb E$ is additive and exact.

additive
$$\implies \exists \begin{cases} \text{pullbacks of split epis} \\ \text{pushouts of split monos} \\ \text{null-object} \end{cases} \implies \exists \begin{cases} \text{products} \\ \text{sums} \\ \text{null-object} \end{cases}$$

pre-additive $\implies \sigma\text{-pointed}$

Lemma

- $\theta_{X,Y}$ is invertible iff \mathbb{E} is *linear*;
- $\theta_{X,Y}$ is monic in the category of pointed objects of a topos;
- $\theta_{X,Y}$ is epic in the category of groups.

A category $\mathbb E$ is abelian iff $\mathbb E$ is additive and exact.

additive
$$\implies \exists \begin{cases} \text{pullbacks of split epis} \\ \text{pushouts of split monos} \\ \text{null-object} \end{cases} \implies \exists \begin{cases} \text{products} \\ \text{sums} \\ \text{null-object} \end{cases}$$

pre-additive $\implies \sigma\text{-pointed}$

Lemma

- $\theta_{X,Y}$ is invertible iff \mathbb{E} is *linear*;
- $\theta_{X,Y}$ is monic in the category of pointed objects of a topos;
- $\theta_{X,Y}$ is epic in the category of groups.

A category $\mathbb E$ is abelian iff $\mathbb E$ is additive and exact.

additive
$$\implies \exists \begin{cases} \text{pullbacks of split epis} \\ \text{pushouts of split monos} \\ \text{null-object} \end{cases} \implies \exists \begin{cases} \text{products} \\ \text{sums} \\ \text{null-object} \end{cases}$$

pre-additive $\implies \sigma\text{-pointed}$

Lemma

- $\theta_{X,Y}$ is invertible iff \mathbb{E} is *linear*;
- $\theta_{X,Y}$ is monic in the category of pointed objects of a topos;
- $\theta_{X,Y}$ is epic in the category of groups.

A pre-additive category is

- *protomodular* iff, for every split epi *f*, section and kernel of *f* strongly generate the domain of *f*;
- *Mal'cev* iff every reflexive relation is an equivalence relation;
- *semi-abelian* iff protomodular and exact.

Proposition (Bourn)

protomodular \implies Mal'cev $\implies \theta_{X,Y}$ strong epi for all X, Y

Corollary (for pre-additive categories)

 $\mathbb E$ additive iff $\mathbb E$ and $\mathbb E^{op}$ protomodular iff $\mathbb E$ and $\mathbb E^{op}$ Mal'cev $\mathbb E$ abelian iff $\mathbb E$ and $\mathbb E^{op}$ semi-abelian iff $\mathbb E$ and $\mathbb E^{op}$ exact Mal'cev

A pre-additive category is

- *protomodular* iff, for every split epi *f*, section and kernel of *f* strongly generate the domain of *f*;
- *Mal'cev* iff every reflexive relation is an equivalence relation;
- *semi-abelian* iff protomodular and exact.

Proposition (Bourn)

protomodular \implies Mal'cev $\implies \theta_{X,Y}$ strong epi for all X, Y

Corollary (for pre-additive categories)

 $\mathbb E$ additive iff $\mathbb E$ and $\mathbb E^{op}$ protomodular iff $\mathbb E$ and $\mathbb E^{op}$ Mal'cev $\mathbb E$ abelian iff $\mathbb E$ and $\mathbb E^{op}$ semi-abelian iff $\mathbb E$ and $\mathbb E^{op}$ exact Mal'cev

A pre-additive category is

- *protomodular* iff, for every split epi *f*, section and kernel of *f* strongly generate the domain of *f*;
- Mal'cev iff every reflexive relation is an equivalence relation;

• *semi-abelian* iff protomodular and exact.

Proposition (Bourn)

protomodular \implies Mal'cev $\implies \theta_{X,Y}$ strong epi for all X, Y

Corollary (for pre-additive categories)

 $\mathbb E$ additive iff $\mathbb E$ and $\mathbb E^{op}$ protomodular iff $\mathbb E$ and $\mathbb E^{op}$ Mal'cev $\mathbb E$ abelian iff $\mathbb E$ and $\mathbb E^{op}$ semi-abelian iff $\mathbb E$ and $\mathbb E^{op}$ exact Mal'cev

A pre-additive category is

- *protomodular* iff, for every split epi *f*, section and kernel of *f* strongly generate the domain of *f*;
- Mal'cev iff every reflexive relation is an equivalence relation;
- semi-abelian iff protomodular and exact.

Proposition (Bourn)

protomodular \implies Mal'cev $\implies \theta_{X,Y}$ strong epi for all X, Y

Corollary (for pre-additive categories)

 $\mathbb E$ additive iff $\mathbb E$ and $\mathbb E^{op}$ protomodular iff $\mathbb E$ and $\mathbb E^{op}$ Mal'cev $\mathbb E$ abelian iff $\mathbb E$ and $\mathbb E^{op}$ semi-abelian iff $\mathbb E$ and $\mathbb E^{op}$ exact Mal'cev

A pre-additive category is

- *protomodular* iff, for every split epi *f*, section and kernel of *f* strongly generate the domain of *f*;
- Mal'cev iff every reflexive relation is an equivalence relation;
- semi-abelian iff protomodular and exact.

Proposition (Bourn)

protomodular \implies Mal'cev $\implies \theta_{X,Y}$ strong epi for all X, Y

Corollary (for pre-additive categories)

 $\mathbb E$ additive iff $\mathbb E$ and $\mathbb E^{\operatorname{op}}$ protomodular iff $\mathbb E$ and $\mathbb E^{\operatorname{op}}$ Mal'cev $\mathbb E$ abelian iff $\mathbb E$ and $\mathbb E^{\operatorname{op}}$ semi-abelian iff $\mathbb E$ and $\mathbb E^{\operatorname{op}}$ exact Mal'cev

A pre-additive category is

- *protomodular* iff, for every split epi *f*, section and kernel of *f* strongly generate the domain of *f*;
- Mal'cev iff every reflexive relation is an equivalence relation;
- semi-abelian iff protomodular and exact.

Proposition (Bourn)

protomodular \implies Mal'cev $\implies \theta_{X,Y}$ strong epi for all X, Y

Corollary (for pre-additive categories)

 \mathbb{E} additive iff \mathbb{E} and \mathbb{E}^{op} protomodular iff \mathbb{E} and \mathbb{E}^{op} Mal'cev \mathbb{E} abelian iff \mathbb{E} and \mathbb{E}^{op} semi-abelian iff \mathbb{E} and \mathbb{E}^{op} exact Mal'cev

A pre-additive category is

- *protomodular* iff, for every split epi *f*, section and kernel of *f* strongly generate the domain of *f*;
- Mal'cev iff every reflexive relation is an equivalence relation;
- semi-abelian iff protomodular and exact.

Proposition (Bourn)

protomodular \implies Mal'cev $\implies \theta_{X,Y}$ strong epi for all X, Y

Corollary (for pre-additive categories)

 ${\mathbb E}$ additive iff ${\mathbb E}$ and ${\mathbb E}^{\rm op}$ protomodular iff ${\mathbb E}$ and ${\mathbb E}^{\rm op}$ Mal'cev

 ${\mathbb E}$ abelian iff ${\mathbb E}$ and ${\mathbb E}^{\rm op}$ semi-abelian iff ${\mathbb E}$ and ${\mathbb E}^{\rm op}$ exact Mal'cev

A pre-additive category is

- *protomodular* iff, for every split epi *f*, section and kernel of *f* strongly generate the domain of *f*;
- Mal'cev iff every reflexive relation is an equivalence relation;
- semi-abelian iff protomodular and exact.

Proposition (Bourn)

protomodular \implies Mal'cev $\implies \theta_{X,Y}$ strong epi for all X, Y

Corollary (for pre-additive categories)

 \mathbb{E} additive iff \mathbb{E} and \mathbb{E}^{op} protomodular iff \mathbb{E} and \mathbb{E}^{op} Mal'cev \mathbb{E} abelian iff \mathbb{E} and \mathbb{E}^{op} semi-abelian iff \mathbb{E} and \mathbb{E}^{op} exact Mal'cev

Exact Mal'cev categories

Corollary

semi-abelian $\implies \sigma$ -pointed exact Mal'cev \implies finitely cocomplete

Examples (of semi-abelian categories)

Groups, Lie algebras, cocommutative Hopf algebras over a field of characteristic zero, Heyting algebras, loops, ...

Purpose of the talk

A concept of *nilpotency* for σ -pointed exact Mal'cev categories based on the notion of central extension.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Corollary

semi-abelian $\implies \sigma$ -pointed exact Mal'cev \implies finitely cocomplete

Examples (of semi-abelian categories)

Groups, Lie algebras, cocommutative Hopf algebras over a field of characteristic zero, Heyting algebras, loops, ...

Purpose of the talk

A concept of *nilpotency* for σ -pointed *exact Mal'cev* categories based on the notion of *central extension*.

Corollary

semi-abelian $\implies \sigma$ -pointed exact Mal'cev \implies finitely cocomplete

Examples (of semi-abelian categories)

Groups, Lie algebras, cocommutative Hopf algebras over a field of characteristic zero, Heyting algebras, loops, ...

Purpose of the talk

A concept of *nilpotency* for σ -pointed *exact Mal'cev* categories based on the notion of *central extension*.

Definition

Two equiv. relations R, S on X centralize each other iff there is a map $p : R \times_X S \to X$ such that p(x, x, y) = y and p(x, y, y) = x.

For $R \subset X \times X$ and $S \subset X \times X$ we have $R \times_X S \subset X \times X \times X$.

There is a finest equiv. relation [R, S] (the *Pedicchio-Smith* commutator) such that R and S centralize each other in X/[R, S].

- An equiv. relation R on X is central iff $[R, \nabla_X] = \Delta_X;$
- A central extension is a regular epi with central kernel pair.

Definition

Two equiv. relations R, S on X centralize each other iff there is a map $p : R \times_X S \to X$ such that p(x, x, y) = y and p(x, y, y) = x.

For $R \subset X \times X$ and $S \subset X \times X$ we have $R \times_X S \subset X \times X \times X$.

There is a finest equiv. relation [R, S] (the *Pedicchio-Smith commutator*) such that R and S centralize each other in X/[R, S].

- An equiv. relation R on X is central iff $[R, \nabla_X] = \Delta_X$;
- A central extension is a regular epi with central kernel pair.

Definition

Two equiv. relations R, S on X centralize each other iff there is a map $p : R \times_X S \to X$ such that p(x, x, y) = y and p(x, y, y) = x.

For $R \subset X \times X$ and $S \subset X \times X$ we have $R \times_X S \subset X \times X \times X$.

There is a finest equiv. relation [R, S] (the *Pedicchio-Smith* commutator) such that R and S centralize each other in X/[R, S].

- An equiv. relation R on X is central iff $[R, \nabla_X] = \Delta_X$;
- A central extension is a regular epi with central kernel pair.

Definition

Two equiv. relations R, S on X centralize each other iff there is a map $p : R \times_X S \to X$ such that p(x, x, y) = y and p(x, y, y) = x.

For $R \subset X \times X$ and $S \subset X \times X$ we have $R \times_X S \subset X \times X \times X$.

There is a finest equiv. relation [R, S] (the *Pedicchio-Smith* commutator) such that R and S centralize each other in X/[R, S].

- An equiv. relation R on X is central iff $[R, \nabla_X] = \Delta_X$;
- A central extension is a regular epi with central kernel pair.

Definition

Two equiv. relations R, S on X centralize each other iff there is a map $p : R \times_X S \to X$ such that p(x, x, y) = y and p(x, y, y) = x.

For $R \subset X \times X$ and $S \subset X \times X$ we have $R \times_X S \subset X \times X \times X$.

There is a finest equiv. relation [R, S] (the *Pedicchio-Smith* commutator) such that R and S centralize each other in X/[R, S].

- An equiv. relation R on X is central iff $[R, \nabla_X] = \Delta_X$;
- A central extension is a regular epi with central kernel pair.

• An *n*-nilpotent object of \mathbb{E} is an *n*-fold central extension of $\star_{\mathbb{E}}$;

- Nilⁿ(E) is the subcategory spanned by the n-nilpotent objects;
- \mathbb{E} is an *n*-nilpotent category iff $\operatorname{Nil}^n(\mathbb{E}) = \mathbb{E}$.

Proposition (for pointed exact Mal'cev categories)

- Central equiv. relation are one-to-one with central kernels;
- each central extension is the cokernel of its kernel.

Corollary

- An *n*-nilpotent object of \mathbb{E} is an *n*-fold central extension of $\star_{\mathbb{E}}$;
- $Nil^{n}(\mathbb{E})$ is the subcategory spanned by the *n*-nilpotent objects;
- \mathbb{E} is an *n*-nilpotent category iff $\operatorname{Nil}^n(\mathbb{E}) = \mathbb{E}$.

Proposition (for pointed exact Mal'cev categories)

- Central equiv. relation are one-to-one with central kernels;
- each central extension is the cokernel of its kernel.

Corollary

- An *n*-nilpotent object of \mathbb{E} is an *n*-fold central extension of $\star_{\mathbb{E}}$;
- $Nil^{n}(\mathbb{E})$ is the subcategory spanned by the *n*-nilpotent objects;
- \mathbb{E} is an *n*-nilpotent category iff $\operatorname{Nil}^n(\mathbb{E}) = \mathbb{E}$.

Proposition (for pointed exact Mal'cev categories)

- Central equiv. relation are one-to-one with central kernels;
- each central extension is the cokernel of its kernel.

Corollary

- An *n*-nilpotent object of \mathbb{E} is an *n*-fold central extension of $\star_{\mathbb{E}}$;
- $Nil^{n}(\mathbb{E})$ is the subcategory spanned by the *n*-nilpotent objects;
- \mathbb{E} is an *n*-nilpotent category iff $\operatorname{Nil}^n(\mathbb{E}) = \mathbb{E}$.

Proposition (for pointed exact Mal'cev categories)

- Central equiv. relation are one-to-one with central kernels;
- each central extension is the cokernel of its kernel.

Corollary

- An *n*-nilpotent object of \mathbb{E} is an *n*-fold central extension of $\star_{\mathbb{E}}$;
- $Nil^{n}(\mathbb{E})$ is the subcategory spanned by the *n*-nilpotent objects;
- \mathbb{E} is an *n*-nilpotent category iff $\operatorname{Nil}^n(\mathbb{E}) = \mathbb{E}$.

Proposition (for pointed exact Mal'cev categories)

• Central equiv. relation are one-to-one with central kernels;

• each central extension is the cokernel of its kernel.

Corollary

- An *n*-nilpotent object of \mathbb{E} is an *n*-fold central extension of $\star_{\mathbb{E}}$;
- $Nil^{n}(\mathbb{E})$ is the subcategory spanned by the *n*-nilpotent objects;
- \mathbb{E} is an *n*-nilpotent category iff $\operatorname{Nil}^n(\mathbb{E}) = \mathbb{E}$.

Proposition (for pointed exact Mal'cev categories)

- Central equiv. relation are one-to-one with central kernels;
- each central extension is the cokernel of its kernel.

Corollary

- An *n*-nilpotent object of \mathbb{E} is an *n*-fold central extension of $\star_{\mathbb{E}}$;
- $Nil^{n}(\mathbb{E})$ is the subcategory spanned by the *n*-nilpotent objects;
- \mathbb{E} is an *n*-nilpotent category iff $\operatorname{Nil}^n(\mathbb{E}) = \mathbb{E}$.

Proposition (for pointed exact Mal'cev categories)

- Central equiv. relation are one-to-one with central kernels;
- each central extension is the cokernel of its kernel.

Corollary

A reflective subcategory $\mathbb D$ of $\mathbb E$ is a *Birkhoff subcategory* iff $\mathbb D$ is closed under taking subobjects and quotients in $\mathbb E.$

Lemma (for Birkhoff subcategories of exact Mal'cev categories)

The associated reflection $I : \mathbb{E} \to \mathbb{D}$ is a *Birkhoff reflection*, i.e.

- for each X, the unit $\eta_X : X \to I(X)$ is a regular epi;
- for each regular epi f : X → Y, the direct image under f of the kernel pair of η_X is the kernel pair of η_Y.

Proposition (for finitely cocomplete exact Mal'cev categories) For each *n*, the subcategory $Nil^n(\mathbb{E})$ is a Birkhoff subcategory of \mathbb{E} .

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

A reflective subcategory $\mathbb D$ of $\mathbb E$ is a *Birkhoff subcategory* iff $\mathbb D$ is closed under taking subobjects and quotients in $\mathbb E.$

Lemma (for Birkhoff subcategories of exact Mal'cev categories)

The associated reflection $I : \mathbb{E} \to \mathbb{D}$ is a *Birkhoff reflection*, i.e.

• for each X, the unit $\eta_X : X \to I(X)$ is a regular epi;

 for each regular epi f : X → Y, the direct image under f of the kernel pair of η_X is the kernel pair of η_Y.

Proposition (for finitely cocomplete exact Mal'cev categories) For each *n*, the subcategory $\operatorname{Nil}^n(\mathbb{E})$ is a Birkhoff subcategory of \mathbb{E} .

・ロト ・四ト ・ヨト ・ヨト ・ヨ

A reflective subcategory $\mathbb D$ of $\mathbb E$ is a *Birkhoff subcategory* iff $\mathbb D$ is closed under taking subobjects and quotients in $\mathbb E.$

Lemma (for Birkhoff subcategories of exact Mal'cev categories)

The associated reflection $I : \mathbb{E} \to \mathbb{D}$ is a *Birkhoff reflection*, i.e.

• for each X, the unit $\eta_X : X \to I(X)$ is a regular epi;

• for each regular epi $f: X \to Y$, the direct image under f of the kernel pair of η_X is the kernel pair of η_Y .

Proposition (for finitely cocomplete exact Mal'cev categories) For each *n*, the subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ is a Birkhoff subcategory of \mathbb{E} .

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ う へ ()

A reflective subcategory \mathbb{D} of \mathbb{E} is a *Birkhoff subcategory* iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E} .

Lemma (for Birkhoff subcategories of exact Mal'cev categories)

The associated reflection $I : \mathbb{E} \to \mathbb{D}$ is a *Birkhoff reflection*, i.e.

- for each X, the unit $\eta_X : X \to I(X)$ is a regular epi;
- for each regular epi f : X → Y, the direct image under f of the kernel pair of η_X is the kernel pair of η_Y.

Proposition (for finitely cocomplete exact Mal'cev categories) For each *n*, the subcategory $\operatorname{Nil}^n(\mathbb{E})$ is a Birkhoff subcategory of \mathbb{E} .

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ う へ ()
Definition

A reflective subcategory \mathbb{D} of \mathbb{E} is a *Birkhoff subcategory* iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E} .

Lemma (for Birkhoff subcategories of exact Mal'cev categories)

The associated reflection $I : \mathbb{E} \to \mathbb{D}$ is a *Birkhoff reflection*, i.e.

- for each X, the unit $\eta_X : X \to I(X)$ is a regular epi;
- for each regular epi f : X → Y, the direct image under f of the kernel pair of η_X is the kernel pair of η_Y.

Proposition (for finitely cocomplete exact Mal'cev categories)

For each *n*, the subcategory $Nil^n(\mathbb{E})$ is a Birkhoff subcategory of \mathbb{E} .

The first Birkhoff reflection $I^1 : \mathbb{E} \to \operatorname{Nil}^1(\mathbb{E})$ is abelianization, in particular $\operatorname{Nil}^1(\mathbb{E}) = \operatorname{Ab}(\mathbb{E})$ is an abelian subcategory of \mathbb{E} .

emma

The relative Birkhoff reflection $I^{n,n+1}$: $\operatorname{Nil}^{n+1}(\mathbb{E}) \to \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}(\operatorname{Nil}^{n+1}(\mathbb{E})) = \operatorname{Nil}^{n}(\mathbb{E})$ is a *central* reflection.

Theorem

The unit of a central reflection is pointwise affine.

Corollary

If $I^{n+1,n}(f)$ is invertible then f is affine and thus has a central kernel pair.

・ロト ・ 四ト ・ ヨト ・ ヨト

ъ

The first Birkhoff reflection $I^1 : \mathbb{E} \to \operatorname{Nil}^1(\mathbb{E})$ is abelianization, in particular $\operatorname{Nil}^1(\mathbb{E}) = \operatorname{Ab}(\mathbb{E})$ is an abelian subcategory of \mathbb{E} .

Lemma

The relative Birkhoff reflection $I^{n,n+1}$: $\operatorname{Nil}^{n+1}(\mathbb{E}) \to \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}(\operatorname{Nil}^{n+1}(\mathbb{E})) = \operatorname{Nil}^{n}(\mathbb{E})$ is a *central* reflection.

Theorem

The unit of a central reflection is pointwise affine.

Corollary

If $I^{n+1,n}(f)$ is invertible then f is affine and thus has a central kernel pair.

The first Birkhoff reflection $I^1 : \mathbb{E} \to \operatorname{Nil}^1(\mathbb{E})$ is abelianization, in particular $\operatorname{Nil}^1(\mathbb{E}) = \operatorname{Ab}(\mathbb{E})$ is an abelian subcategory of \mathbb{E} .

Lemma

The relative Birkhoff reflection $I^{n,n+1}$: $\operatorname{Nil}^{n+1}(\mathbb{E}) \to \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}(\operatorname{Nil}^{n+1}(\mathbb{E})) = \operatorname{Nil}^{n}(\mathbb{E})$ is a *central* reflection.

Theorem

The unit of a central reflection is pointwise affine.

Corollary

If $I^{n+1,n}(f)$ is invertible then f is affine and thus has a central kernel pair.

- 日本 - 4 日本 - 4 日本 - 日本

The first Birkhoff reflection $I^1 : \mathbb{E} \to \operatorname{Nil}^1(\mathbb{E})$ is abelianization, in particular $\operatorname{Nil}^1(\mathbb{E}) = \operatorname{Ab}(\mathbb{E})$ is an abelian subcategory of \mathbb{E} .

Lemma

The relative Birkhoff reflection $I^{n,n+1}$: $\operatorname{Nil}^{n+1}(\mathbb{E}) \to \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}(\operatorname{Nil}^{n+1}(\mathbb{E})) = \operatorname{Nil}^{n}(\mathbb{E})$ is a *central* reflection.

Theorem

The unit of a central reflection is pointwise affine.

Corollary

If $I^{n+1,n}(f)$ is invertible then f is affine and thus has a central kernel pair.

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A map f is said to be *affine* if $(f_!, f^*)$ is an adjoint equivalence.

- Every affine map has a central kernel relation;
- Affine maps fulfill two-out-of-three;
- If f regular epi then f* fully faithful;
- A regular epi f is affine iff f* is essentially surjective;
- E protomodular iff f* conservative for all f;
- \mathbb{E} additive iff all f are affine.

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A map f is said to be *affine* if $(f_!, f^*)$ is an adjoint equivalence.

- Every affine map has a central kernel relation;
- Affine maps fulfill two-out-of-three;
- If f regular epi then f* fully faithful;
- A regular epi f is affine iff f* is essentially surjective;
- \mathbb{E} protomodular iff f^* conservative for all f;
- \mathbb{E} additive iff all f are affine.

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A map f is said to be *affine* if $(f_!, f^*)$ is an adjoint equivalence.

- Every affine map has a central kernel relation;
- Affine maps fulfill two-out-of-three;
- If f regular epi then f* fully faithful;
- A regular epi f is affine iff f* is essentially surjective;
- \mathbb{E} protomodular iff f^* conservative for all f;
- \mathbb{E} additive iff all f are affine.

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A map f is said to be *affine* if $(f_!, f^*)$ is an adjoint equivalence.

- Every affine map has a central kernel relation;
- Affine maps fulfill two-out-of-three;
- If f regular epi then f* fully faithful;
- A regular epi f is affine iff f* is essentially surjective;
- \mathbb{E} protomodular iff f^* conservative for all f;
- \mathbb{E} additive iff all f are affine.

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A map f is said to be *affine* if $(f_!, f^*)$ is an adjoint equivalence.

- Every affine map has a central kernel relation;
- Affine maps fulfill two-out-of-three;
- If f regular epi then f* fully faithful;
- A regular epi f is affine iff f* is essentially surjective;
- \mathbb{E} protomodular iff f^* conservative for all f;
- \mathbb{E} additive iff all f are affine.

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A map f is said to be *affine* if $(f_!, f^*)$ is an adjoint equivalence.

- Every affine map has a central kernel relation;
- Affine maps fulfill two-out-of-three;
- If f regular epi then f* fully faithful;
- A regular epi f is affine iff f^* is essentially surjective;
- \mathbb{E} protomodular iff f^* conservative for all f;
- \mathbb{E} additive iff all f are affine.

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A map f is said to be *affine* if $(f_!, f^*)$ is an adjoint equivalence.

- Every affine map has a central kernel relation;
- Affine maps fulfill two-out-of-three;
- If f regular epi then f* fully faithful;
- A regular epi f is affine iff f^* is essentially surjective;
- \mathbb{E} protomodular iff f^* conservative for all f;
- \mathbb{E} additive iff all f are affine.

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A map f is said to be *affine* if $(f_!, f^*)$ is an adjoint equivalence.

- Every affine map has a central kernel relation;
- Affine maps fulfill two-out-of-three;
- If f regular epi then f* fully faithful;
- A regular epi f is affine iff f^* is essentially surjective;
- \mathbb{E} protomodular iff f^* conservative for all f;
- \mathbb{E} additive iff all f are affine.

Remark

- Limits in Nilⁿ(E) are computed in E;
- Colimits in Nilⁿ(E) are computed by applying the reflection Iⁿ to the corresponding colimit in E.

Theorem

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n - 1)-fold central extension of $X \times Y$.

The nilpotency degree of $\mathbb E$ "measures" the difference between sum and product in $\mathbb E.$

Proposition

 \mathbb{E} 2-nilpotent iff $\theta_{X,Y}$ central extension iff $\theta_{X,Y}$ affine extension.

Remark

- Limits in $\operatorname{Nil}^n(\mathbb{E})$ are computed in \mathbb{E} ;
- Colimits in Nilⁿ(E) are computed by applying the reflection Iⁿ to the corresponding colimit in E.

Theorem

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n - 1)-fold central extension of $X \times Y$.

The nilpotency degree of $\mathbb E$ "measures" the difference between sum and product in $\mathbb E.$

Proposition

 \mathbb{E} 2-nilpotent iff $\theta_{X,Y}$ central extension iff $\theta_{X,Y}$ affine extension.

Remark

- Limits in $\operatorname{Nil}^n(\mathbb{E})$ are computed in \mathbb{E} ;
- Colimits in Nilⁿ(𝔅) are computed by applying the reflection Iⁿ to the corresponding colimit in 𝔅.

Theorem

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n - 1)-fold central extension of $X \times Y$.

The nilpotency degree of $\mathbb E$ "measures" the difference between sum and product in $\mathbb E.$

Proposition

 \mathbb{E} 2-nilpotent iff $\theta_{X,Y}$ central extension iff $\theta_{X,Y}$ affine extension.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Remark

- Limits in $\operatorname{Nil}^n(\mathbb{E})$ are computed in \mathbb{E} ;
- Colimits in Nilⁿ(𝔅) are computed by applying the reflection Iⁿ to the corresponding colimit in 𝔅.

Theorem

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n-1)-fold central extension of $X \times Y$.

The nilpotency degree of $\mathbb E$ "measures" the difference between sum and product in $\mathbb E.$

Proposition

 \mathbb{E} 2-nilpotent iff $\theta_{X,Y}$ central extension iff $\theta_{X,Y}$ affine extension.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Remark

- Limits in $\operatorname{Nil}^n(\mathbb{E})$ are computed in \mathbb{E} ;
- Colimits in Nilⁿ(𝔅) are computed by applying the reflection Iⁿ to the corresponding colimit in 𝔅.

Theorem

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n-1)-fold central extension of $X \times Y$.

The nilpotency degree of $\mathbb E$ "measures" the difference between sum and product in $\mathbb E.$

Proposition

 \mathbb{E} 2-nilpotent iff $\theta_{X,Y}$ central extension iff $\theta_{X,Y}$ affine extension.

Remark

- Limits in $\operatorname{Nil}^n(\mathbb{E})$ are computed in \mathbb{E} ;
- Colimits in Nilⁿ(𝔅) are computed by applying the reflection Iⁿ to the corresponding colimit in 𝔅.

Theorem

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n-1)-fold central extension of $X \times Y$.

The nilpotency degree of $\mathbb E$ "measures" the difference between sum and product in $\mathbb E.$

Proposition

 \mathbb{E} 2-nilpotent iff $\theta_{X,Y}$ central extension iff $\theta_{X,Y}$ affine extension.

Central reflections and nilpotency in exact Mal'cev categories

Aspects of nilpotency

Definition $(\Xi_{X_1,...,X_n} \text{ for } n = 2,3)$

Central reflections and nilpotency in exact Mal'cev categories

Aspects of nilpotency

Definition $(\Xi_{X_1,...,X_n} \text{ for } n = 2,3)$

Central reflections and nilpotency in exact Mal'cev categories

Aspects of nilpotency

Definition $(\Xi_{X_1,...,X_n}$ for n = 2,3)

 $X_2 + X_3$

 X_3

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\times}{\equiv} (\text{limit of the punctured cube});$$

- Comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- The identity functor of E is of degree n iff Ξ_{X1,...,Xn+1} is a limit cube iff θ_{X1,...,Xn+1} is invertible for all X₁,...,X_{n+1} in E;

•
$$\diamond(X_1,\ldots,X_n) = \operatorname{Ker}(\theta_{X_1,\ldots,X_n}:X_1+\cdots+X_n\to P_{X_1,\ldots,X_n}).$$

Examples (n=2,3)

 P_{X,Y} = X × Y and θ_{X,Y} : X + Y → X × Y so that (X, Y) = X ◊ Y co-smash product (Carboni-Janelidze) resp. second cross-effect (Hartl-van der Linden);

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\times}{\equiv} (\text{limit of the punctured cube});$$

- Comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- The identity functor of E is of degree n iff Ξ_{X1,...,Xn+1} is a limit cube iff θ_{X1,...,Xn+1} is invertible for all X₁,...,X_{n+1} in E;

•
$$\diamond(X_1,\ldots,X_n) = \operatorname{Ker}(\theta_{X_1,\ldots,X_n}:X_1+\cdots+X_n\to P_{X_1,\ldots,X_n}).$$

Examples (n=2,3)

 P_{X,Y} = X × Y and θ_{X,Y} : X + Y → X × Y so that (X, Y) = X ◊ Y co-smash product (Carboni-Janelidze) resp. second cross-effect (Hartl-van der Linden);

- $P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\times}{\equiv} (\text{limit of the punctured cube});$
- Comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- The identity functor of E is of degree n iff Ξ_{X1,...,Xn+1} is a limit cube iff θ_{X1,...,Xn+1} is invertible for all X₁,...,X_{n+1} in E;
- $\diamond(X_1,\ldots,X_n) = \operatorname{Ker}(\theta_{X_1,\ldots,X_n}:X_1+\cdots+X_n\to P_{X_1,\ldots,X_n}).$

Examples (n=2,3)

 P_{X,Y} = X × Y and θ_{X,Y} : X + Y → X × Y so that (X, Y) = X ◊ Y co-smash product (Carboni-Janelidze) resp. second cross-effect (Hartl-van der Linden);

- $P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{*}{\equiv} (\text{limit of the punctured cube});$
- Comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n};$
- The identity functor of E is of degree n iff Ξ_{X1,...,Xn+1} is a limit cube iff θ_{X1,...,Xn+1} is invertible for all X₁,...,X_{n+1} in E;

• $\diamond(X_1,\ldots,X_n) = \operatorname{Ker}(\theta_{X_1,\ldots,X_n}:X_1+\cdots+X_n\to P_{X_1,\ldots,X_n}).$

Examples (n=2,3)

 P_{X,Y} = X × Y and θ_{X,Y} : X + Y → X × Y so that (X, Y) = X ◊ Y co-smash product (Carboni-Janelidze) resp. second cross-effect (Hartl-van der Linden);

- $P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{*}{\equiv} (\text{limit of the punctured cube});$
- Comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n};$
- The identity functor of E is of degree n iff Ξ_{X1,...,Xn+1} is a limit cube iff θ_{X1,...,Xn+1} is invertible for all X₁,...,X_{n+1} in E;

•
$$\diamond(X_1,\ldots,X_n) = \operatorname{Ker}(\theta_{X_1,\ldots,X_n}:X_1+\cdots+X_n\to P_{X_1,\ldots,X_n}).$$

Examples (n=2,3)

 P_{X,Y} = X × Y and θ_{X,Y} : X + Y → X × Y so that (X, Y) = X ◊ Y co-smash product (Carboni-Janelidze) resp. second cross-effect (Hartl-van der Linden);

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\times}{\equiv} (\text{limit of the punctured cube});$$

- Comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- The identity functor of E is of degree n iff Ξ_{X1,...,Xn+1} is a limit cube iff θ_{X1,...,Xn+1} is invertible for all X₁,...,X_{n+1} in E;

•
$$\diamond(X_1,\ldots,X_n) = \operatorname{Ker}(\theta_{X_1,\ldots,X_n}:X_1+\cdots+X_n\to P_{X_1,\ldots,X_n}).$$

Examples (n=2,3)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\times}{\equiv} (\text{limit of the punctured cube});$$

- Comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- The identity functor of E is of degree n iff Ξ_{X1,...,Xn+1} is a limit cube iff θ_{X1,...,Xn+1} is invertible for all X₁,...,X_{n+1} in E;

•
$$\diamond(X_1,\ldots,X_n) = \operatorname{Ker}(\theta_{X_1,\ldots,X_n}:X_1+\cdots+X_n\to P_{X_1,\ldots,X_n}).$$

Examples (n=2,3)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\times}{\equiv} (\text{limit of the punctured cube});$$

- Comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- The identity functor of E is of degree n iff Ξ_{X1,...,Xn+1} is a limit cube iff θ_{X1,...,Xn+1} is invertible for all X₁,...,X_{n+1} in E;

•
$$\diamond(X_1,\ldots,X_n) = \operatorname{Ker}(\theta_{X_1,\ldots,X_n}:X_1+\cdots+X_n\to P_{X_1,\ldots,X_n}).$$

Examples (n=2,3)

- $P_{X,Y} = X \times Y$ and $\theta_{X,Y} : X + Y \to X \times Y$ so that $\diamond(X, Y) = X \diamond Y$ co-smash product (Carboni-Janelidze) resp. second cross-effect (Hartl-van der Linden);
- P_{X,Y,Z} ⊂ (X + Y) × (X + Z) × (Y + Z) so that ◊(X, Y, Z) third cross-effect. The co-smash product is not associative !

 \mathbb{E} is *n*-nilpotent iff $\theta_{X_1,...,X_n}$ is a central extension for all $X_1,...,X_n$ iff $\theta_{X_1,...,X_n}$ is an affine extension for all $X_1,...,X_n$.

Corollary

If the identity functor of $\mathbb E$ has degree n then $\mathbb E$ is n-nilpotent.

Theorem (for σ -pointed exact Mal'cev categories)

- cobase change (i_Z)_! : E → Pt_Z(E) along initial maps
 i_Z : *_E → Z preserves binary products;
- base change (t_Z)* : E → Pt_Z(E) along terminal maps t_Z : Z → ★_E preserves binary sums.

 \mathbb{E} is *n*-nilpotent iff $\theta_{X_1,...,X_n}$ is a central extension for all $X_1,...,X_n$ iff $\theta_{X_1,...,X_n}$ is an affine extension for all $X_1,...,X_n$.

Corollary

If the identity functor of \mathbb{E} has degree *n* then \mathbb{E} is *n*-nilpotent.

Theorem (for σ -pointed exact Mal'cev categories)

- cobase change (iz)₁ : E → Pt_Z(E) along initial maps
 i_Z : ★_E → Z preserves binary products;
- base change (t_Z)* : E → Pt_Z(E) along terminal maps t_Z : Z → ★_E preserves binary sums.

 \mathbb{E} is *n*-nilpotent iff $\theta_{X_1,...,X_n}$ is a central extension for all $X_1,...,X_n$ iff $\theta_{X_1,...,X_n}$ is an affine extension for all $X_1,...,X_n$.

Corollary

If the identity functor of \mathbb{E} has degree *n* then \mathbb{E} is *n*-nilpotent.

Theorem (for σ -pointed exact Mal'cev categories)

- cobase change (i_Z)_! : E → Pt_Z(E) along initial maps
 i_Z : *_E → Z preserves binary products;
- base change (t_Z)* : E → Pt_Z(E) along terminal maps t_Z : Z → *_E preserves binary sums.

 \mathbb{E} is *n*-nilpotent iff $\theta_{X_1,...,X_n}$ is a central extension for all $X_1,...,X_n$ iff $\theta_{X_1,...,X_n}$ is an affine extension for all $X_1,...,X_n$.

Corollary

If the identity functor of \mathbb{E} has degree *n* then \mathbb{E} is *n*-nilpotent.

Theorem (for σ -pointed exact Mal'cev categories)

- cobase change $(i_Z)_! : \mathbb{E} \to \operatorname{Pt}_Z(\mathbb{E})$ along initial maps $i_Z : \star_{\mathbb{E}} \to Z$ preserves binary products;
- base change (t_Z)* : E → Pt_Z(E) along terminal maps t_Z : Z → *_E preserves binary sums.

 \mathbb{E} is *n*-nilpotent iff $\theta_{X_1,...,X_n}$ is a central extension for all $X_1,...,X_n$ iff $\theta_{X_1,...,X_n}$ is an affine extension for all $X_1,...,X_n$.

Corollary

If the identity functor of \mathbb{E} has degree *n* then \mathbb{E} is *n*-nilpotent.

Theorem (for σ -pointed exact Mal'cev categories)

- cobase change $(i_Z)_! : \mathbb{E} \to \operatorname{Pt}_Z(\mathbb{E})$ along initial maps $i_Z : \star_{\mathbb{E}} \to Z$ preserves binary products;
- base change $(t_Z)^* : \mathbb{E} \to \operatorname{Pt}_Z(\mathbb{E})$ along terminal maps $t_Z : Z \to \star_{\mathbb{E}}$ preserves binary sums.

Definition

A pre-additive category has *semi-exact sums* iff for all Z, cobase change $(i_Z)_! : \mathbb{E} \to Pt_Z(\mathbb{E})$ preserves binary products and monos.

Theorem

For any pointed exact Mal'cev category \mathbb{E} with semi-exact sums the subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity functor of degree *n*.

Remark

- The category of groups (Lie algebras) has semi-exact sums.
 is unclear whether this is preserved under Birkhoff reflection.
- The category E of groups (Lie algebras) has centralizers for subobjects. This implies [Bourn-Gray] that base change (tz)² (E --- Ptz(E) preserves all colimits, whence quadraticity of NUC(E) without computing sums I
A pre-additive category has *semi-exact sums* iff for all Z, cobase change $(i_Z)_! : \mathbb{E} \to Pt_Z(\mathbb{E})$ preserves binary products and monos.

Theorem

For any pointed exact Mal'cev category \mathbb{E} with semi-exact sums the subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity functor of degree n.

- The category of groups (Lie algebras) has semi-exact sums.
 is unclear whether this is preserved under Birkhoff reflection.
- The category E of groups (Lie algebras) has centralizers for subobjects. This implies [Bourn-Gray] that base change (tz)² E Ptz(E) preserves all colimits, whence quadraticity of NIE (E) without computing sums I

A pre-additive category has *semi-exact sums* iff for all Z, cobase change $(i_Z)_! : \mathbb{E} \to Pt_Z(\mathbb{E})$ preserves binary products and monos.

Theorem

For any pointed exact Mal'cev category \mathbb{E} with semi-exact sums the subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity functor of degree n.

- The category of groups (Lie algebras) has semi-exact sums. is unclear whether this is preserved under Birkhoff reflection.
- The category E of groups (Lie algebras) has centralizers for subobjects. This implies [Bourn-Gray] that base change (tz)* : E → Ptz(E) preserves all colimits, whence quadraticity of Nil²(E) without computing sums !

A pre-additive category has *semi-exact sums* iff for all Z, cobase change $(i_Z)_! : \mathbb{E} \to Pt_Z(\mathbb{E})$ preserves binary products and monos.

Theorem

For any pointed exact Mal'cev category \mathbb{E} with semi-exact sums the subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity functor of degree n.

- The category of groups (Lie algebras) has semi-exact sums. It is unclear whether this is preserved under Birkhoff reflection.
- The category E of groups (Lie algebras) has centralizers for subobjects. This implies [Bourn-Gray] that base change (tz)*: E → Ptz(E) preserves all colimits, whence quadraticity of Nil²(E) without computing sums !

A pre-additive category has *semi-exact sums* iff for all Z, cobase change $(i_Z)_! : \mathbb{E} \to Pt_Z(\mathbb{E})$ preserves binary products and monos.

Theorem

For any pointed exact Mal'cev category \mathbb{E} with semi-exact sums the subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity functor of degree n.

- The category of groups (Lie algebras) has semi-exact sums. It is unclear whether this is preserved under Birkhoff reflection.
- The category 𝔅 of groups (Lie algebras) has centralizers for subobjects. This implies [Bourn-Gray] that base change (tz)* : 𝔅 → Pt_Z(𝔅) preserves all colimits, whence quadraticity of Nil²(𝔅) without computing sums !

A pre-additive category has *semi-exact sums* iff for all Z, cobase change $(i_Z)_! : \mathbb{E} \to Pt_Z(\mathbb{E})$ preserves binary products and monos.

Theorem

For any pointed exact Mal'cev category \mathbb{E} with semi-exact sums the subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity functor of degree n.

- The category of groups (Lie algebras) has semi-exact sums. It is unclear whether this is preserved under Birkhoff reflection.
- The category 𝔅 of groups (Lie algebras) has centralizers for subobjects. This implies [Bourn-Gray] that base change (t_Z)* : 𝔅 → Pt_Z(𝔅) preserves all colimits, whence quadraticity of Nil²(𝔅) without computing sums !

A pre-additive category has *semi-exact sums* iff for all Z, cobase change $(i_Z)_! : \mathbb{E} \to Pt_Z(\mathbb{E})$ preserves binary products and monos.

Theorem

For any pointed exact Mal'cev category \mathbb{E} with semi-exact sums the subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity functor of degree n.

- The category of groups (Lie algebras) has semi-exact sums. It is unclear whether this is preserved under Birkhoff reflection.
- The category E of groups (Lie algebras) has centralizers for subobjects. This implies [Bourn-Gray] that base change (t_Z)* : E → Pt_Z(E) preserves all colimits, whence quadraticity of Nil²(E) without computing sums !

$$\diamond(X,\ldots,X) \longrightarrow X + \cdots + X \longrightarrow P_{X,\ldots,X}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$[X,\ldots,X] \longrightarrow X \longrightarrow X/[X,\ldots,X]$$

Lemma (Iterated binary commutator

$$\operatorname{Ker}(\eta^n:X\to I^n(X))=[X,[X,\cdots,[X,X]\cdots]]$$

Lemma (Hartl-van der Linden)

$$[X, [X, \cdots, [X, X] \cdots]] \subset [X, \dots, X]$$

Proposition

$$\diamond(X,\ldots,X) \longrightarrow X + \cdots + X \longrightarrow P_{X,\ldots,X}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$[X,\ldots,X] \longrightarrow X \longrightarrow X/[X,\ldots,X]$$

Lemma (Iterated binary commutator)

 $\operatorname{Ker}(\eta^n:X\to I^n(X))=[X,[X,\cdots,[X,X]\cdots]]$

Lemma (Hartl-van der Linden)

$$[X, [X, \cdots, [X, X] \cdots]] \subset [X, \dots, X]$$

Proposition

$$\diamond(X,\ldots,X) \longrightarrow X + \cdots + X \longrightarrow P_{X,\ldots,X}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$[X,\ldots,X] \longrightarrow X \longrightarrow X/[X,\ldots,X]$$

Lemma (Iterated binary commutator)

 $\operatorname{Ker}(\eta^n:X\to I^n(X))=[X,[X,\cdots,[X,X]\cdots]]$

Lemma (Hartl-van der Linden)

$$[X, [X, \cdots, [X, X] \cdots]] \subset [X, \dots, X]$$

Proposition

Lemma (Iterated binary commutator)

 $\operatorname{Ker}(\eta^n:X\to I^n(X))=[X,[X,\cdots,[X,X]\cdots]]$

Lemma (Hartl-van der Linden)

$$[X, [X, \cdots, [X, X] \cdots]] \subset [X, \dots, X]$$

Proposition