Algebraic and homotopical nilpotency

Clemens Berger

joint work with Dominique Bourn

CT 2015 Aveiro, 14 - 19 Juin, 2015

1 Central extensions and affine extensions

2 Algebraic nilpotency and cross-effects

Homotopical nilpotency and cocategory

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A group G is *n*-nilpotent if commutators of length n + 1 vanish:

$$[x_1, [x_2, [x_3, \dots, [x_n, x_{n+1}] \cdots]]] = e_G \quad \forall x_1, \dots, x_{n+1} \in G.$$

Definition

A central group extension is a surjective group homomorphism $f: G \rightarrow H$ with kernel K[f] contained in the center of G.

Lemma

A group G is *n*-nilpotent iff it is an *n*-fold central extension of the trivial group, i.e. $G \xrightarrow{f_n} G_{n-1} \xrightarrow{f_{n-1}} \cdots G_2 \xrightarrow{f_2} G_1 \xrightarrow{f_1} \star$ with f_i central.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Problem

A group G is *n*-nilpotent if commutators of length n + 1 vanish:

$$[x_1, [x_2, [x_3, \ldots, [x_n, x_{n+1}] \cdots]]] = e_G \quad \forall x_1, \ldots, x_{n+1} \in G.$$

Definition

A central group extension is a surjective group homomorphism $f: G \rightarrow H$ with kernel K[f] contained in the center of G.

_emma

A group *G* is *n*-nilpotent iff it is an *n*-fold central extension of the trivial group, i.e. $G \xrightarrow{f_n} G_{n-1} \xrightarrow{f_{n-1}} \cdots G_2 \xrightarrow{f_2} G_1 \xrightarrow{f_1} \star$ with f_i central.

- 日本 - 1 日本 - 日本 - 日本

Problem

A group G is *n*-nilpotent if commutators of length n + 1 vanish:

$$[x_1, [x_2, [x_3, \ldots, [x_n, x_{n+1}] \cdots]]] = e_G \quad \forall x_1, \ldots, x_{n+1} \in G.$$

Definition

A central group extension is a surjective group homomorphism $f: G \rightarrow H$ with kernel K[f] contained in the center of G.

Lemma

A group G is *n*-nilpotent iff it is an *n*-fold central extension of the trivial group, i.e. $G \xrightarrow{f_n} G_{n-1} \xrightarrow{f_{n-1}} \cdots G_2 \xrightarrow{f_2} G_1 \xrightarrow{f_1} \star$ with f_i central.

Problem

A group G is *n*-nilpotent if commutators of length n + 1 vanish:

$$[x_1, [x_2, [x_3, \ldots, [x_n, x_{n+1}] \cdots]]] = e_G \quad \forall x_1, \ldots, x_{n+1} \in G.$$

Definition

A central group extension is a surjective group homomorphism $f: G \rightarrow H$ with kernel K[f] contained in the center of G.

Lemma

A group G is *n*-nilpotent iff it is an *n*-fold central extension of the trivial group, i.e. $G \xrightarrow{f_n} G_{n-1} \xrightarrow{f_{n-1}} \cdots G_2 \xrightarrow{f_2} G_1 \xrightarrow{f_1} \star$ with f_i central.

Problem

A category is called semi-abelian if it is

- σ -pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

- A pointed category with pullbacks is *protomodular* iff section and kernel of every split epi *f* : *X* → *Y* strongly generate *X*;
- A σ-pointed category with pullbacks is protomodular iff for every split epi f : X → Y with section s_f : Y → X the morphism < s_f, i_f >: Y + K[f] → X is a strong epimorphism
- Any protomodular category is a *Mal'cev category* [CKP '93].
 i.e. reflexive relations are equivalence relations.

A category is called semi-abelian if it is

- σ -pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi f : X → Y strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi f : X → Y with section s_f : Y → X the morphism < s_f, i_f >: Y + K[f] → X is a strong epimorphism
- Any protomodular category is a *Mal'cev category* [CKP '93] i.e. reflexive relations are equivalence relations.

A category is called semi-abelian if it is

- σ -pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi f : X → Y strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi f : X → Y with section s_f : Y → X the morphism < s_f, i_f >: Y + K[f] → X is a strong epimorphism
- Any protomodular category is a *Mal'cev category* [CKP '93].
 i.e. reflexive relations are equivalence relations.

A category is called semi-abelian if it is

- σ -pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi f : X → Y strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi f : X → Y with section s_f : Y → X the morphism < s_f, i_f >: Y + K[f] → X is a strong epimorphism
- Any protomodular category is a *Mal'cev category* [CKP '93] i.e. reflexive relations are equivalence relations.

A category is called semi-abelian if it is

- σ -pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi f : X → Y strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi f : X → Y with section s_f : Y → X the morphism < s_f, i_f >: Y + K[f] → X is a strong epimorphism
- Any protomodular category is a *Mal'cev category* [CKP '93], i.e. reflexive relations are equivalence relations.

A category is called semi-abelian if it is

- σ -pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi f : X -->> Y strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi f : X → Y with section s_f : Y → X the morphism < s_f, i_f >: Y + K[f] → X is a strong epimorphism;
- Any protomodular category is a *Mal'cev category* [CKP '93], i.e. reflexive relations are equivalence relations.

A category is called semi-abelian if it is

- σ -pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi f : X → Y strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi f : X → Y with section s_f : Y → X the morphism < s_f, i_f >: Y + K[f] → X is a strong epimorphism;
- Any protomodular category is a *Mal'cev category* [CKP '93], i.e. reflexive relations are equivalence relations.

A category is called semi-abelian if it is

- σ -pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi f : X ---- Y strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi f : X → Y with section s_f : Y → X the morphism < s_f, i_f >: Y + K[f] → X is a strong epimorphism;
- Any protomodular category is a *Mal'cev category* [CKP '93], i.e. reflexive relations are equivalence relations.

A variety V_T is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere '63)

Each variety V_T is determined by an *algebraic theory* Θ_T where

$$\begin{cases} \operatorname{Ob} \Theta_{\mathcal{T}} = \mathbb{N}; \\ \Theta_{\mathcal{T}}(m, n) = \operatorname{Alg}_{\mathcal{T}}(F_{\mathcal{T}}(\{1, \dots, m\}), F_{\mathcal{T}}(\{1, \dots, n\})). \end{cases}$$

Theorem (Mal'cev)

The variety V_T is a Mal'cev category iff $\exists p \in \Theta_T(1,3)$ such that $p^*(x, y, y) = x$ and $p^*(x, x, y) = y$ for any T-algebra.

$$p(x, y, z) = xy^{-1}z$$

A variety V_T is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere '63)

Each variety $V_{\mathcal{T}}$ is determined by an algebraic theory $\Theta_{\mathcal{T}}$ where

$$\begin{cases} \operatorname{Ob} \Theta_{\mathcal{T}} = \mathbb{N}; \\ \Theta_{\mathcal{T}}(m, n) = \operatorname{Alg}_{\mathcal{T}}(F_{\mathcal{T}}(\{1, \dots, m\}), F_{\mathcal{T}}(\{1, \dots, n\})). \end{cases}$$

Theorem (Mal'cev)

The variety V_T is a Mal'cev category iff $\exists p \in \Theta_T(1,3)$ such that $p^*(x, y, y) = x$ and $p^*(x, x, y) = y$ for any T-algebra.

$$p(x, y, z) = xy^{-1}z$$

A variety V_T is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere '63)

Each variety $V_{\mathcal{T}}$ is determined by an algebraic theory $\Theta_{\mathcal{T}}$ where

$$\begin{cases} \operatorname{Ob} \Theta_{\mathcal{T}} = \mathbb{N}; \\ \Theta_{\mathcal{T}}(m, n) = \operatorname{Alg}_{\mathcal{T}}(F_{\mathcal{T}}(\{1, \dots, m\}), F_{\mathcal{T}}(\{1, \dots, n\})). \end{cases}$$

Theorem (Mal'cev)

The variety $V_{\mathcal{T}}$ is a Mal'cev category iff $\exists p \in \Theta_{\mathcal{T}}(1,3)$ such that

$$p^*(x, y, y) = x$$
 and $p^*(x, x, y) = y$ for any *T*-algebra.

$$p(x, y, z) = xy^{-1}z$$

A variety V_T is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere '63)

Each variety $V_{\mathcal{T}}$ is determined by an algebraic theory $\Theta_{\mathcal{T}}$ where

$$\begin{cases} \operatorname{Ob} \Theta_{\mathcal{T}} = \mathbb{N}; \\ \Theta_{\mathcal{T}}(m, n) = \operatorname{Alg}_{\mathcal{T}}(F_{\mathcal{T}}(\{1, \dots, m\}), F_{\mathcal{T}}(\{1, \dots, n\})). \end{cases}$$

Theorem (Mal'cev)

The variety $V_{\mathcal{T}}$ is a Mal'cev category iff $\exists p \in \Theta_{\mathcal{T}}(1,3)$ such that

$$p^*(x, y, y) = x$$
 and $p^*(x, x, y) = y$ for any *T*-algebra.

$$p(x, y, z) = xy^{-1}z$$

$(\mathbb{E}, \star_{\mathbb{E}})$ is a σ -pointed exact Mal'cev category

e.g. any semi-abelian category or any pointed Mal'cev variety.

_emma

Exact Mal'cev categories have reflexive coequalizers; σ -pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)

$(\mathbb{E}, \star_{\mathbb{E}})$ is a σ -pointed exact Mal'cev category

e.g. any semi-abelian category or any pointed Mal'cev variety.

_emma

Exact Mal'cev categories have reflexive coequalizers; σ -pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)

 $(\mathbb{E}, \star_{\mathbb{E}})$ is a σ -pointed exact Mal'cev category

e.g. any semi-abelian category or any pointed Mal'cev variety.

_emma

Exact Mal'cev categories have reflexive coequalizers; σ -pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)

 $(\mathbb{E}, \star_{\mathbb{E}})$ is a σ -pointed exact Mal'cev category

e.g. any semi-abelian category or any pointed Mal'cev variety.

Lemma

Exact Mal'cev categories have reflexive coequalizers; σ -pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)

Groups, Lie algebras, cocommutative Hopf algebras over a field of characteristic zero, loops, ...

 $(\mathbb{E}, \star_{\mathbb{E}})$ is a σ -pointed exact Mal'cev category

e.g. any semi-abelian category or any pointed Mal'cev variety.

Lemma

Exact Mal'cev categories have reflexive coequalizers; σ -pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)

A subobject N of X is *central* iff the inclusion of N into X commutes with the identity of X (in the sense of Huq). An equivalence relation R on X is *central* iff R commutes with the indiscrete equivalence relation on X (in the sense of Smith).

Proposition (Gran-Van der Linden '08)

A subobject N of X is *central* iff the inclusion of N into X commutes with the identity of X (in the sense of Huq).

An equivalence relation R on X is *central* iff R commutes with the indiscrete equivalence relation on X (in the sense of Smith).

Proposition (Gran-Van der Linden '08)

A subobject N of X is *central* iff the inclusion of N into X commutes with the identity of X (in the sense of Huq). An equivalence relation R on X is *central* iff R commutes with the indiscrete equivalence relation on X (in the sense of Smith).

Proposition (Gran-Van der Linden '08)

A subobject N of X is *central* iff the inclusion of N into X commutes with the identity of X (in the sense of Huq). An equivalence relation R on X is *central* iff R commutes with the indiscrete equivalence relation on X (in the sense of Smith).

Proposition (Gran-Van der Linden '08)

A subobject N of X is *central* iff the inclusion of N into X commutes with the identity of X (in the sense of Huq). An equivalence relation R on X is *central* iff R commutes with the indiscrete equivalence relation on X (in the sense of Smith).

Proposition (Gran-Van der Linden '08)

• Central extension = regular epi with central kernel pair;

- An *n*-nilpotent object is an *n*-fold central extension of ★_E;
- Nilⁿ(E) is the subcategory spanned by the n-nilpotent objects;
- A category is *n-nilpotent* iff all its objects are *n*-nilpotent.

Remark

The abstract notion of *n*-nilpotent object yields for groups (Lie algebras) the classical notion of *n*-nilpotent group (Lie algebra).

Proposition

 \mathbb{E} 1-nilpotent $\iff \mathbb{E}$ abelian.

- Central extension = regular epi with central kernel pair;
- An *n*-nilpotent object is an *n*-fold central extension of $\star_{\mathbb{E}}$;
- Nilⁿ(E) is the subcategory spanned by the n-nilpotent objects;
- A category is *n-nilpotent* iff all its objects are *n*-nilpotent.

Remark

The abstract notion of *n*-nilpotent object yields for groups (Lie algebras) the classical notion of *n*-nilpotent group (Lie algebra).

Proposition

 \mathbb{E} 1-nilpotent $\iff \mathbb{E}$ abelian.

- Central extension = regular epi with central kernel pair;
- An *n*-nilpotent object is an *n*-fold central extension of ★_E;
- Nilⁿ(E) is the subcategory spanned by the *n*-nilpotent objects;

• A category is *n*-nilpotent iff all its objects are *n*-nilpotent.

Remark

The abstract notion of *n*-nilpotent object yields for groups (Lie algebras) the classical notion of *n*-nilpotent group (Lie algebra).

Proposition

 \mathbb{E} 1-nilpotent $\iff \mathbb{E}$ abelian.

- Central extension = regular epi with central kernel pair;
- An *n*-nilpotent object is an *n*-fold central extension of $\star_{\mathbb{E}}$;
- Nilⁿ(E) is the subcategory spanned by the *n*-nilpotent objects;
- A category is *n*-nilpotent iff all its objects are *n*-nilpotent.

Remark

The abstract notion of *n*-nilpotent object yields for groups (Lie algebras) the classical notion of *n*-nilpotent group (Lie algebra).

Proposition

 \mathbb{E} 1-nilpotent $\iff \mathbb{E}$ abelian.

- Central extension = regular epi with central kernel pair;
- An *n*-nilpotent object is an *n*-fold central extension of ★_E;
- Nilⁿ(E) is the subcategory spanned by the *n*-nilpotent objects;
- A category is *n*-nilpotent iff all its objects are *n*-nilpotent.

Remark

The abstract notion of *n*-nilpotent object yields for groups (Lie algebras) the classical notion of *n*-nilpotent group (Lie algebra).

Proposition

 \mathbb{E} 1-nilpotent $\iff \mathbb{E}$ abelian.

- Central extension = regular epi with central kernel pair;
- An *n*-nilpotent object is an *n*-fold central extension of ★_E;
- Nilⁿ(E) is the subcategory spanned by the *n*-nilpotent objects;
- A category is *n*-nilpotent iff all its objects are *n*-nilpotent.

Remark

The abstract notion of *n*-nilpotent object yields for groups (Lie algebras) the classical notion of *n*-nilpotent group (Lie algebra).

Proposition

 \mathbb{E} 1-nilpotent $\iff \mathbb{E}$ abelian.

A reflective subcategory \mathbb{D} of \mathbb{E} is a *Birkhoff subcategory* iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E} .

_emma

This is the case iff for each regular epi $f : X \rightarrow Y$ the reflection $I : \mathbb{E} \rightarrow \mathbb{D}$ induces a *cocartesian* naturality square of reg. epi's

Proposition

The subcategory $\mathrm{Nil}^n(\mathbb{E})$ is a reflective Birkhoff subcategory of $\mathbb{E}.$

A reflective subcategory \mathbb{D} of \mathbb{E} is a *Birkhoff subcategory* iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E} .

Lemma

This is the case iff for each regular epi $f : X \rightarrow Y$ the reflection $I : \mathbb{E} \rightarrow \mathbb{D}$ induces a *cocartesian* naturality square of reg. epi's

$$\begin{array}{c} X \xrightarrow{\eta_X} I(X) \\ f \downarrow & \downarrow^{I(f)} \\ Y \xrightarrow{\eta_Y} I(Y) \end{array}$$

Proposition

The subcategory $\mathrm{Nil}^n(\mathbb{E})$ is a reflective Birkhoff subcategory of $\mathbb{E}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-
Definition

A reflective subcategory \mathbb{D} of \mathbb{E} is a *Birkhoff subcategory* iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E} .

Lemma

This is the case iff for each regular epi $f : X \rightarrow Y$ the reflection $I : \mathbb{E} \rightarrow \mathbb{D}$ induces a *cocartesian* naturality square of reg. epi's

$$\begin{array}{c} X \xrightarrow{\eta_X} I(X) \\ f \downarrow & \downarrow^{I(f)} \\ Y \xrightarrow{\eta_Y} I(Y) \end{array}$$

Proposition

The subcategory $\operatorname{Nil}^n(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E} .

The first Birkhoff reflection $I^1 : \mathbb{E} \to \operatorname{Nil}^1(\mathbb{E})$ is abelianization and $\operatorname{Nil}^1(\mathbb{E})$ is the full subcategory of abelian group objects of \mathbb{E} .

Lemma

The relative Birkhoff reflections $I^{n,n+1}$: $\operatorname{Nil}^{n+1}(\mathbb{E}) \to \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}(\operatorname{Nil}^{n+1}(\mathbb{E})) = \operatorname{Nil}^{n}(\mathbb{E})$ are *central* reflections.

Theorem

The first Birkhoff reflection $I^1 : \mathbb{E} \to \operatorname{Nil}^1(\mathbb{E})$ is abelianization and $\operatorname{Nil}^1(\mathbb{E})$ is the full subcategory of abelian group objects of \mathbb{E} .

Lemma

The relative Birkhoff reflections $I^{n,n+1}$: $\operatorname{Nil}^{n+1}(\mathbb{E}) \to \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}(\operatorname{Nil}^{n+1}(\mathbb{E})) = \operatorname{Nil}^{n}(\mathbb{E})$ are *central* reflections.

Theorem

The first Birkhoff reflection $I^1 : \mathbb{E} \to \operatorname{Nil}^1(\mathbb{E})$ is abelianization and $\operatorname{Nil}^1(\mathbb{E})$ is the full subcategory of abelian group objects of \mathbb{E} .

Lemma

The relative Birkhoff reflections $I^{n,n+1}$: $\operatorname{Nil}^{n+1}(\mathbb{E}) \to \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}(\operatorname{Nil}^{n+1}(\mathbb{E})) = \operatorname{Nil}^{n}(\mathbb{E})$ are *central* reflections.

Theorem

The first Birkhoff reflection $I^1 : \mathbb{E} \to \operatorname{Nil}^1(\mathbb{E})$ is abelianization and $\operatorname{Nil}^1(\mathbb{E})$ is the full subcategory of abelian group objects of \mathbb{E} .

Lemma

The relative Birkhoff reflections $I^{n,n+1}$: $\operatorname{Nil}^{n+1}(\mathbb{E}) \to \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}(\operatorname{Nil}^{n+1}(\mathbb{E})) = \operatorname{Nil}^{n}(\mathbb{E})$ are *central* reflections.

Theorem

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f : X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A morphism f is affine iff $(f_!, f^*)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f : G \rightarrow X$ in groups

- exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;
- determines (and is determined by) a group homomorphism
 φ : X → Aut(K[f]), i.e. an internal X-representation.

Corollary (Gray '12)

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A morphism f is *affine* iff $(f_!, f^*)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f : G \rightarrow X$ in groups

- exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;
- determines (and is determined by) a group homomorphism φ : X → Aut(K[f]), i.e. an internal X-representation.

Corollary (Gray '12)

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A morphism f is *affine* iff $(f_!, f^*)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f : G \twoheadrightarrow X$ in groups

• exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;

• determines (and is determined by) a group homomorphism $\phi: X \to \operatorname{Aut}(K[f])$, i.e. an *internal X-representation*.

Corollary (Gray '12)

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A morphism f is *affine* iff $(f_!, f^*)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f : G \twoheadrightarrow X$ in groups

• exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;

determines (and is determined by) a group homomorphism
 φ : X → Aut(K[f]), i.e. an internal X-representation.

Corollary (Gray '12)

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A morphism f is *affine* iff $(f_!, f^*)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f : G \twoheadrightarrow X$ in groups

- exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;
- determines (and is determined by) a group homomorphism $\phi: X \to \operatorname{Aut}(K[f])$, i.e. an *internal X-representation*.

Corollary (Gray '12)

Let $\operatorname{Pt}_X(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \to Y$ induces an adjunction $f_! : \operatorname{Pt}_X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_Y(\mathbb{E}) : f^*$. A morphism f is *affine* iff $(f_!, f^*)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f : G \twoheadrightarrow X$ in groups

- exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;
- determines (and is determined by) a group homomorphism $\phi: X \to \operatorname{Aut}(K[f])$, i.e. an *internal X-representation*.

Corollary (Gray '12)

Pointed base-change along regular epi's is fully faithful.

Proposition

A regular epi $f : X \rightarrow Y$ is an *affine extension* iff for all objects Z either of the following two squares is cartesian

$$\begin{array}{c|c} X + Z & \xrightarrow{f+Z} Y + Z \\ \hline \theta_{X,Z} & & & & \\ \theta_{X,Z} & & & & \\ X \times Z & \xrightarrow{f \times Z} Y \times Z \end{array}$$

Corollary (for semi-abelian categories)

 $f: X \to Y \text{ affine } \iff f \diamond Z : X \diamond Z \cong Y \diamond Z \text{ invertible } \forall Z \\ X \diamond Z = K[\theta_{X,Z}] = \text{ co-smash product (Carboni-Janelidze '03).}$

Pointed base-change along regular epi's is fully faithful.

Proposition

A regular epi $f : X \rightarrow Y$ is an *affine extension* iff for all objects Z either of the following two squares is cartesian

Corollary (for semi-abelian categories)

 $\begin{array}{l} f: X \twoheadrightarrow Y \text{ affine } & \longleftrightarrow \quad f \diamond Z : X \diamond Z \cong Y \diamond Z \text{ invertible } \forall Z \\ X \diamond Z = K[\theta_{X,Z}] = \text{ co-smash product (Carboni-Janelidze '03).} \end{array}$

-

.

Pointed base-change along regular epi's is fully faithful.

Proposition

A regular epi $f : X \rightarrow Y$ is an *affine extension* iff for all objects Z either of the following two squares is cartesian

Corollary (for semi-abelian categories)

 $\begin{array}{l} f: X \twoheadrightarrow Y \text{ affine } & \longleftrightarrow \quad f \diamond Z : X \diamond Z \cong Y \diamond Z \text{ invertible } \forall Z \\ X \diamond Z = \mathcal{K}[\theta_{X,Z}] = \text{ co-smash product (Carboni-Janelidze '03).} \end{array}$

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n-1)-fold central extension of $X \times Y$.

Proof.

$$\begin{array}{c} X \diamond X \rightarrowtail X + X \xrightarrow{\theta_{X,X}} X \times X \\ \downarrow & \delta_{X}^{2} \downarrow & \downarrow \\ [X,X] \rightarrowtail X \xrightarrow{\eta_{X}^{1}} I^{1}(X) \end{array}$$

 $heta_{X,X} \; (n-1)$ -fold central ext. $\implies \eta^1_X \; (n-1)$ -fold central ext.

Corollary

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n-1)-fold central extension of $X \times Y$.

 \mathbb{E} 2-nilpotent iff $\theta_{X,Y}$ central extension iff $\theta_{X,Y}$ affine extension.

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n - 1)-fold central extension of $X \times Y$.

Proof.

 $heta_{X,X} (n-1)$ -fold central ext. $\implies \eta^1_X (n-1)$ -fold central ext.

Corollary

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n - 1)-fold central extension of $X \times Y$.

Proof.

$$\begin{array}{c} X \diamond X \rightarrowtail X + X \xrightarrow{\theta_{X,X}} X \times X \\ \downarrow & \delta_X^2 \downarrow & \downarrow \\ [X,X] \rightarrowtail X \xrightarrow{\theta_{X,X}} I^1(X) \end{array}$$

 $\theta_{X,X}$ (n-1)-fold central ext. $\implies \eta^1_X (n-1)$ -fold central ext.

Corollary

 \mathbb{E} is *n*-nilpotent iff for all X, Y the map $\theta_{X,Y} : X + Y \to X \times Y$ exhibits X + Y as an (n - 1)-fold central extension of $X \times Y$.

Proof.

$$\begin{array}{c} X \diamond X \rightarrowtail X + X \xrightarrow{\theta_{X,X}} X \times X \\ \downarrow & \delta_X^2 \downarrow & \downarrow \\ [X,X] \rightarrowtail X \xrightarrow{\theta_{X,X}} X \xrightarrow{\eta_X^1} I^1(X) \end{array}$$

 $heta_{X,X}$ (n-1)-fold central ext. $\implies \eta^1_X$ (n-1)-fold central ext.

Corollary

Algebraic and homotopical nilpotency Algebraic nilpotency and cross-effects

Definition (Goodwillie-cubes $\Xi_{X_1,...,X_n}$ for n = 2,3)

Algebraic and homotopical nilpotency Algebraic nilpotency and cross-effects

Definition (Goodwillie-cubes $\Xi_{X_1,...,X_n}$ for n = 2,3)

Algebraic and homotopical nilpotency Algebraic nilpotency and cross-effects

Definition (Goodwillie-cubes $\Xi_{X_1,...,X_n}$ for $n = \overline{2,3}$)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\simeq}{\equiv} (\text{limit of the punctured cube});$$

• comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;

•
$$cr_n(X_1,\ldots,X_n) = K[\theta_{X_1,\ldots,X_n}] =$$
 "total kernel" of Ξ_{X_1,\ldots,X_n} ;

• The *identity functor* of \mathbb{E} is said to be *of degree* $\leq n$ if $\Xi_{X_1,...,X_{n+1}}$ is cartesian, i.e. $\theta_{X_1,...,X_{n+1}}$ invertible.

Example (linear identity functors)

•
$$heta_{X_1,X_2}: X_1 + X_2
ightarrow X_1 imes X_2$$
, i.e. $cr_2(X_1,X_2) = X_1 \diamond X_2$

2nd cross-effect=co-smash product

ullet $\mathbb E$ has linear identity functor iff $\mathbb E$ is a linear category !

Proposition (for semi-abelian categories)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{{}_{\scriptstyle{\doteq}}}{\equiv} (\text{limit of the punctured cube});$$

• comparison map $\theta_{X_1,\dots,X_n}: X_1 + \dots + X_n \to P_{X_1,\dots,X_n}$;

•
$$cr_n(X_1,\ldots,X_n) = K[\theta_{X_1,\ldots,X_n}] =$$
 "total kernel" of Ξ_{X_1,\ldots,X_n} ;

• The *identity functor* of \mathbb{E} is said to be *of degree* $\leq n$ if $\Xi_{X_1,...,X_{n+1}}$ is cartesian, i.e. $\theta_{X_1,...,X_{n+1}}$ invertible.

Example (linear identity functors)

•
$$heta_{X_1,X_2}: X_1 + X_2
ightarrow X_1 imes X_2$$
, i.e. $cr_2(X_1,X_2) = X_1 \diamond X_2$

2nd cross-effect=co-smash product

ullet $\mathbb E$ has linear identity functor iff $\mathbb E$ is a linear category !

Proposition (for semi-abelian categories)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\simeq}{\equiv} (\text{limit of the punctured cube});$$

- comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- $cr_n(X_1,\ldots,X_n) = K[\theta_{X_1,\ldots,X_n}] =$ "total kernel" of Ξ_{X_1,\ldots,X_n} ;
- The *identity functor* of \mathbb{E} is said to be *of degree* $\leq n$ if $\Xi_{X_1,...,X_{n+1}}$ is cartesian, i.e. $\theta_{X_1,...,X_{n+1}}$ invertible.

Example (linear identity functors)

• $heta_{X_1,X_2}: X_1 + X_2
ightarrow X_1 imes X_2$, i.e. $cr_2(X_1,X_2) = X_1 \diamond X_2$

2nd cross-effect=co-smash product

ullet $\mathbb E$ has linear identity functor iff $\mathbb E$ is a linear category !

Proposition (for semi-abelian categories)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\simeq}{\equiv} (\text{limit of the punctured cube});$$

- comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- $cr_n(X_1,\ldots,X_n) = K[\theta_{X_1,\ldots,X_n}] =$ "total kernel" of Ξ_{X_1,\ldots,X_n} ;
- The *identity functor* of \mathbb{E} is said to be *of degree* $\leq n$ if $\Xi_{X_1,...,X_{n+1}}$ is cartesian, i.e. $\theta_{X_1,...,X_{n+1}}$ invertible.

Example (linear identity functors)

• $heta_{X_1,X_2}: X_1 + X_2 o X_1 imes X_2$, i.e. $cr_2(X_1,X_2) = X_1 \diamond X_2$

2nd cross-effect=co-smash product

ullet $\mathbb E$ has linear identity functor iff $\mathbb E$ is a linear category !

Proposition (for semi-abelian categories)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\simeq}{\equiv} (\text{limit of the punctured cube});$$

- comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- $cr_n(X_1,\ldots,X_n) = K[\theta_{X_1,\ldots,X_n}] =$ "total kernel" of Ξ_{X_1,\ldots,X_n} ;
- The *identity functor* of \mathbb{E} is said to be *of degree* $\leq n$ if $\Xi_{X_1,...,X_{n+1}}$ is cartesian, i.e. $\theta_{X_1,...,X_{n+1}}$ invertible.

Example (linear identity functors)

• $heta_{X_1,X_2}: X_1 + X_2
ightarrow X_1 imes X_2$, i.e. $cr_2(X_1,X_2) = X_1 \diamond X_2$

2nd cross-effect=co-smash product

ullet $\mathbb E$ has linear identity functor iff $\mathbb E$ is a linear category !

Proposition (for semi-abelian categories)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\simeq}{\equiv} (\text{limit of the punctured cube});$$

- comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- $cr_n(X_1,\ldots,X_n) = K[\theta_{X_1,\ldots,X_n}] =$ "total kernel" of Ξ_{X_1,\ldots,X_n} ;
- The *identity functor* of \mathbb{E} is said to be *of degree* $\leq n$ if $\Xi_{X_1,...,X_{n+1}}$ is cartesian, i.e. $\theta_{X_1,...,X_{n+1}}$ invertible.

Example (linear identity functors)

•
$$heta_{X_1,X_2}: X_1 + X_2 o X_1 imes X_2$$
, i.e. $\mathit{cr}_2(X_1,X_2) = X_1 \diamond X_2$

2nd cross-effect=co-smash product

 $\bullet~\mathbb{E}$ has linear identity functor iff \mathbb{E} is a linear category !

Proposition (for semi-abelian categories)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\simeq}{\equiv} (\text{limit of the punctured cube});$$

- comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- $cr_n(X_1,\ldots,X_n) = K[\theta_{X_1,\ldots,X_n}] =$ "total kernel" of Ξ_{X_1,\ldots,X_n} ;
- The *identity functor* of \mathbb{E} is said to be *of degree* $\leq n$ if $\Xi_{X_1,...,X_{n+1}}$ is cartesian, i.e. $\theta_{X_1,...,X_{n+1}}$ invertible.

Example (linear identity functors)

•
$$heta_{X_1,X_2}: X_1 + X_2 o X_1 imes X_2$$
, i.e. $\mathit{cr}_2(X_1,X_2) = X_1 \diamond X_2$

2nd cross-effect=co-smash product

 $\bullet~\mathbb{E}$ has linear identity functor iff \mathbb{E} is a linear category !

Proposition (for semi-abelian categories)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\simeq}{\equiv} (\text{limit of the punctured cube});$$

- comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- $cr_n(X_1,\ldots,X_n) = K[\theta_{X_1,\ldots,X_n}] =$ "total kernel" of Ξ_{X_1,\ldots,X_n} ;
- The *identity functor* of \mathbb{E} is said to be *of degree* $\leq n$ if $\Xi_{X_1,...,X_{n+1}}$ is cartesian, i.e. $\theta_{X_1,...,X_{n+1}}$ invertible.

Example (linear identity functors)

•
$$heta_{X_1,X_2}: X_1 + X_2
ightarrow X_1 imes X_2$$
, i.e. $\mathit{cr}_2(X_1,X_2) = X_1 \diamond X_2$

2nd cross-effect=co-smash product

• $\mathbb E$ has linear identity functor iff $\mathbb E$ is a linear category !

Proposition (for semi-abelian categories)

•
$$P_{X_1,...,X_n} = \varprojlim_{[0,1]^n \setminus \{(0,...,0)\}} \stackrel{\simeq}{\equiv} (\text{limit of the punctured cube});$$

- comparison map $\theta_{X_1,...,X_n}: X_1 + \cdots + X_n \to P_{X_1,...,X_n}$;
- $cr_n(X_1,\ldots,X_n) = K[\theta_{X_1,\ldots,X_n}] =$ "total kernel" of Ξ_{X_1,\ldots,X_n} ;
- The *identity functor* of \mathbb{E} is said to be *of degree* $\leq n$ if $\Xi_{X_1,...,X_{n+1}}$ is cartesian, i.e. $\theta_{X_1,...,X_{n+1}}$ invertible.

Example (linear identity functors)

•
$$heta_{X_1,X_2}: X_1 + X_2
ightarrow X_1 imes X_2$$
, i.e. $\mathit{cr}_2(X_1,X_2) = X_1 \diamond X_2$

2nd cross-effect=co-smash product

• $\mathbb E$ has linear identity functor iff $\mathbb E$ is a linear category !

Proposition (for semi-abelian categories)

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is *n*-nilpotent.

Theorem

 \mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z:

• $(X \times Z) +_Z (Y \times Z) \cong (X + Y) \times Z$ (alg. distributivity)

Corollary

If \mathbb{E} is algebraically distributive then Nil²(\mathbb{E}) has a quadratic identity functor. In particular, iterated Huq=Higgins commutator: [X, [X, X]] = [X, X, X] (cf. Cigoli-Gray-Van der Linden '14).

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is *n*-nilpotent.

Theorem

 \mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z: • $(X \times Y) + Z \cong (X + Z) \times_Z (Y + Z)$ (alg. codistributivity) • $(X \times Z) +_Z (Y \times Z) \cong (X + Y) \times Z$ (alg. distributivity)

Corollary

If \mathbb{E} is algebraically distributive then $\operatorname{Nil}^2(\mathbb{E})$ has a quadratic identity functor. In particular, iterated Huq=Higgins commutator: [X, [X, X]] = [X, X, X] (cf. Cigoli-Gray-Van der Linden '14).

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is *n*-nilpotent.

Theorem

 \mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z:

• $(X \times Y) + Z \cong (X + Z) \times_Z (Y + Z)$ (alg. codistributivity)

• $(X \times Z) +_Z (Y \times Z) \cong (X + Y) \times Z$ (alg. distributivity)

Corollary

If \mathbb{E} is algebraically distributive then $\operatorname{Nil}^2(\mathbb{E})$ has a quadratic identity functor. In particular, iterated Huq=Higgins commutator: [X, [X, X]] = [X, X, X] (cf. Cigoli-Gray-Van der Linden '14).

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is *n*-nilpotent.

Theorem

 \mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z:

- $(X \times Y) + Z \cong (X + Z) \times_Z (Y + Z)$ (alg. codistributivity)
- $(X \times Z) +_Z (Y \times Z) \cong (X + Y) \times Z$ (alg. distributivity)

Corollary

If \mathbb{E} is algebraically distributive then Nil²(\mathbb{E}) has a quadratic identity functor. In particular, iterated Huq=Higgins commutator: [X, [X, X]] = [X, X, X] (cf. Cigoli-Gray-Van der Linden '14).

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is *n*-nilpotent.

Theorem

 \mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z:

- $(X \times Y) + Z \cong (X + Z) \times_Z (Y + Z)$ (alg. codistributivity)
- $(X \times Z) +_Z (Y \times Z) \cong (X + Y) \times Z$ (alg. distributivity)

Corollary

If \mathbb{E} is algebraically distributive then Nil²(\mathbb{E}) has a quadratic identity functor. In particular, iterated Huq=Higgins commutator: [X,[X,X]] = [X,X,X] (cf. Cigoli-Gray-Van der Linden '14).
If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is *n*-nilpotent.

Theorem

 \mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z:

- $(X \times Y) + Z \cong (X + Z) \times_Z (Y + Z)$ (alg. codistributivity)
- $(X \times Z) +_Z (Y \times Z) \cong (X + Y) \times Z$ (alg. distributivity)

Corollary

If \mathbb{E} is algebraically distributive then $\operatorname{Nil}^2(\mathbb{E})$ has a quadratic identity functor. In particular, iterated Huq=Higgins commutator: [X, [X, X]] = [X, X, X] (cf. Cigoli-Gray-Van der Linden '14).

Definition (*n*-additivity)

X is *n*-additive iff δ_X^{n+1} factors through $\theta_{X,...,X}$. For semi-abelian \mathbb{E} , this amounts to vanishing Higgins commutator of length n+1.

Proposition (cf. Hartl-Van der Linden '13)

Every *n*-additive object is *n*-nilpotent.

Theorem

The identity functor is of degree $\leq n$ iff all objects are *n*-additive.

- 日本 - 4 日本 - 4 日本 - 日本

Definition (*n*-additivity)

X is *n*-additive iff δ_X^{n+1} factors through $\theta_{X,...,X}$. For semi-abelian \mathbb{E} , this amounts to vanishing Higgins commutator of length n+1.

Proposition (cf. Hartl-Van der Linden '13)

Every *n*-additive object is *n*-nilpotent.

Theorem

The identity functor is of degree $\leq n$ iff all objects are *n*-additive.

Definition (*n*-additivity)

X is *n*-additive iff δ_X^{n+1} factors through $\theta_{X,...,X}$. For semi-abelian \mathbb{E} , this amounts to vanishing Higgins commutator of length n+1.

Proposition (cf. Hartl-Van der Linden '13)

Every *n*-additive object is *n*-nilpotent.

Theorem

The identity functor is of degree $\leq n$ iff all objects are *n*-additive.

(a) alg distributive: f*: Pt_E(★) → Pt_E(Z) binary-sum-preserving;
(b) alg coherent: f*: Pt_E(Z') → Pt_E(Z) coherent (CGV '14);
(c) alg extensive: f*: Pt_E(Z') → Pt_E(Z) binary-sum-preserving.

_emma

$$(\mathsf{c}) \Longrightarrow (\mathsf{b}) \Longrightarrow (\mathsf{a})$$

Definition (θ -linearity)

 $F: \mathbb{E} \to \mathbb{E}'$ is θ -linear iff $F(\theta_{X,Y})$ invertible $\forall X, Y$.

Example

(a) alg distributive: $f^*: \operatorname{Pt}_{\mathbb{E}}(\star) \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;

b) alg coherent: $f^*: \operatorname{Pt}_{\operatorname{\mathbb{E}}}(Z') o \operatorname{Pt}_{\operatorname{\mathbb{E}}}(Z)$ coherent (CGV '14);

(c) alg extensive: $f^*: \operatorname{Pt}_{\mathbb{E}}(Z') o \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

_emma

$$(c) \Longrightarrow (b) \Longrightarrow (a)$$

Definition (θ -linearity)

 $F : \mathbb{E} \to \mathbb{E}'$ is θ -linear iff $F(\theta_{X,Y})$ invertible $\forall X, Y$.

Example

(a) alg distributive: $f^* : \operatorname{Pt}_{\mathbb{E}}(\star) \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;

(b) alg coherent:
$$f^* : \operatorname{Pt}_{\mathbb{E}}(Z') \to \operatorname{Pt}_{\mathbb{E}}(Z)$$
 coherent (CGV '14);

(c) alg extensive: $f^*: \operatorname{Pt}_{\mathbb{E}}(Z') o \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

_emma

$$(\mathsf{c}) \Longrightarrow (\mathsf{b}) \Longrightarrow (\mathsf{a})$$

Definition (θ -linearity)

 $F : \mathbb{E} \to \mathbb{E}'$ is θ -linear iff $F(\theta_{X,Y})$ invertible $\forall X, Y$.

Example

(a) alg distributive: $f^* : \operatorname{Pt}_{\mathbb{E}}(\star) \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;

(b) alg coherent:
$$f^* : \operatorname{Pt}_{\mathbb{E}}(Z') \to \operatorname{Pt}_{\mathbb{E}}(Z)$$
 coherent (CGV '14);

(c) alg extensive: $f^* : \operatorname{Pt}_{\mathbb{E}}(Z') \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

_emma

$$(c) \Longrightarrow (b) \Longrightarrow (a)$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Definition (θ -linearity)

 $F : \mathbb{E} \to \mathbb{E}'$ is θ -linear iff $F(\theta_{X,Y})$ invertible $\forall X, Y$.

Example

(a) alg distributive: $f^* : \operatorname{Pt}_{\mathbb{E}}(\star) \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;

(b) alg coherent:
$$f^* : \operatorname{Pt}_{\mathbb{E}}(Z') \to \operatorname{Pt}_{\mathbb{E}}(Z)$$
 coherent (CGV '14);

(c) alg extensive: $f^* : \operatorname{Pt}_{\mathbb{E}}(Z') \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

Lemma

$$(\mathsf{c}) \Longrightarrow (\mathsf{b}) \Longrightarrow (\mathsf{a})$$

Definition (θ -linearity)

 $F : \mathbb{E} \to \mathbb{E}'$ is θ -linear iff $F(\theta_{X,Y})$ invertible $\forall X, Y$.

Example

(a) alg distributive: $f^* : \operatorname{Pt}_{\mathbb{E}}(\star) \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;

(b) alg coherent:
$$f^* : \operatorname{Pt}_{\mathbb{E}}(Z') \to \operatorname{Pt}_{\mathbb{E}}(Z)$$
 coherent (CGV '14);

(c) alg extensive: $f^* : \operatorname{Pt}_{\mathbb{E}}(Z') \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

Lemma

$$(\mathsf{c}) \Longrightarrow (\mathsf{b}) \Longrightarrow (\mathsf{a})$$

Definition (θ -linearity)

 $F : \mathbb{E} \to \mathbb{E}'$ is θ -linear iff $F(\theta_{X,Y})$ invertible $\forall X, Y$.

Example

(a) alg distributive: $f^* : \operatorname{Pt}_{\mathbb{E}}(\star) \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;

(b) alg coherent:
$$f^* : \operatorname{Pt}_{\mathbb{E}}(Z') \to \operatorname{Pt}_{\mathbb{E}}(Z)$$
 coherent (CGV '14);

(c) alg extensive: $f^* : \operatorname{Pt}_{\mathbb{E}}(Z') \to \operatorname{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

Lemma

$$(\mathsf{c}) \Longrightarrow (\mathsf{b}) \Longrightarrow (\mathsf{a})$$

Definition (θ -linearity)

 $F : \mathbb{E} \to \mathbb{E}'$ is θ -linear iff $F(\theta_{X,Y})$ invertible $\forall X, Y$.

Example

If \mathbb{E} is alg extensive and has multi- θ -linear *n*-th cross-effect then \mathbb{E} has an identity functor of degree $\leq n$.

Proposition

Any alg extensive *n*-nilpotent \mathbb{E} has multi- θ -linear *n*-th cross-effect.

Theorem

If \mathbb{E} is alg extensive then $\operatorname{Nil}^n(\mathbb{E})$ has an identity of degree $\leq n$. Each *n*-nilpotent object is *n*-additive (iterated Huq=Higgins).

Examples

This is the case for the category of groups, resp. Lie algebras.

If \mathbb{E} is alg extensive and has multi- θ -linear *n*-th cross-effect then \mathbb{E} has an identity functor of degree $\leq n$.

Proposition

Any alg extensive *n*-nilpotent \mathbb{E} has multi- θ -linear *n*-th cross-effect.

Theorem

If \mathbb{E} is alg extensive then $\operatorname{Nil}^n(\mathbb{E})$ has an identity of degree $\leq n$. Each *n*-nilpotent object is *n*-additive (iterated Huq=Higgins).

Examples

This is the case for the category of groups, resp. Lie algebras.

If \mathbb{E} is alg extensive and has multi- θ -linear *n*-th cross-effect then \mathbb{E} has an identity functor of degree $\leq n$.

Proposition

Any alg extensive *n*-nilpotent \mathbb{E} has multi- θ -linear *n*-th cross-effect.

Theorem

If \mathbb{E} is alg extensive then $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity of degree $\leq n$. Each *n*-nilpotent object is *n*-additive (iterated Huq=Higgins).

Examples

This is the case for the category of groups, resp. Lie algebras.

If \mathbb{E} is alg extensive and has multi- θ -linear *n*-th cross-effect then \mathbb{E} has an identity functor of degree $\leq n$.

Proposition

Any alg extensive *n*-nilpotent \mathbb{E} has multi- θ -linear *n*-th cross-effect.

Theorem

If \mathbb{E} is alg extensive then $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity of degree $\leq n$. Each *n*-nilpotent object is *n*-additive (iterated Huq=Higgins).

Examples

This is the case for the category of groups, resp. Lie algebras.

A Quillen model structure on a bicomplete $\mathbb E$ consists of three composable classes of morphisms $cof_\mathbb E, we_\mathbb E, fib_\mathbb E$ such that

- $we_{\mathbb{E}}$ fulfills 2-out-of-3;
- $(cof_{\mathbb{E}} \cap we_{\mathbb{E}}, fib_{\mathbb{E}})$ is a weak factorization system;
- $(cof_{\mathbb{E}}, we_{\mathbb{E}} \cap fib_{\mathbb{E}})$ is a weak factorization system.

Theorem (Quillen '66)

 $(\mathbb{E}, \mathrm{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}) \rightsquigarrow \exists \operatorname{Ho}(\mathbb{E}) = \mathbb{E}/\mathrm{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen model structure on a bicomplete $\mathbb E$ consists of three composable classes of morphisms $cof_\mathbb E, we_\mathbb E, fib_\mathbb E$ such that

- $\bullet \ \mathrm{we}_{\mathbb{E}}$ fulfills 2-out-of-3;
- $(cof_{\mathbb{E}} \cap we_{\mathbb{E}}, fib_{\mathbb{E}})$ is a weak factorization system;
- $(cof_{\mathbb{E}}, we_{\mathbb{E}} \cap fib_{\mathbb{E}})$ is a weak factorization system.

Theorem (Quillen '66)

 $(\mathbb{E}, \mathrm{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}) \rightsquigarrow \exists \operatorname{Ho}(\mathbb{E}) = \mathbb{E}/\mathrm{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen model structure on a bicomplete $\mathbb E$ consists of three composable classes of morphisms $cof_\mathbb E, we_\mathbb E, fib_\mathbb E$ such that

- $we_{\mathbb{E}}$ fulfills 2-out-of-3;
- $(cof_{\mathbb{E}} \cap we_{\mathbb{E}}, fib_{\mathbb{E}})$ is a weak factorization system;
- $(cof_{\mathbb{E}}, we_{\mathbb{E}} \cap fib_{\mathbb{E}})$ is a weak factorization system.

Theorem (Quillen '66)

 $(\mathbb{E}, \mathrm{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}) \rightsquigarrow \exists \operatorname{Ho}(\mathbb{E}) = \mathbb{E}/\mathrm{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen model structure on a bicomplete $\mathbb E$ consists of three composable classes of morphisms $cof_\mathbb E, we_\mathbb E, fib_\mathbb E$ such that

- $we_{\mathbb{E}}$ fulfills 2-out-of-3;
- $(cof_{\mathbb{E}} \cap we_{\mathbb{E}}, fib_{\mathbb{E}})$ is a weak factorization system;
- $(cof_{\mathbb{E}}, we_{\mathbb{E}} \cap fib_{\mathbb{E}})$ is a weak factorization system.

Theorem (Quillen '66)

 $(\mathbb{E}, \mathrm{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}) \rightsquigarrow \exists \operatorname{Ho}(\mathbb{E}) = \mathbb{E}/\mathrm{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen model structure on a bicomplete $\mathbb E$ consists of three composable classes of morphisms $cof_\mathbb E, we_\mathbb E, fib_\mathbb E$ such that

- $we_{\mathbb{E}}$ fulfills 2-out-of-3;
- $(cof_{\mathbb{E}} \cap we_{\mathbb{E}}, fib_{\mathbb{E}})$ is a weak factorization system;
- $(cof_{\mathbb{E}}, we_{\mathbb{E}} \cap fib_{\mathbb{E}})$ is a weak factorization system.

Theorem (Quillen '66)

 $(\mathbb{E}, \mathrm{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}) \rightsquigarrow \exists \operatorname{Ho}(\mathbb{E}) = \mathbb{E}/\mathrm{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen model structure on a bicomplete $\mathbb E$ consists of three composable classes of morphisms $cof_\mathbb E, we_\mathbb E, fib_\mathbb E$ such that

- $we_{\mathbb{E}}$ fulfills 2-out-of-3;
- $(cof_{\mathbb{E}} \cap we_{\mathbb{E}}, fib_{\mathbb{E}})$ is a weak factorization system;
- $(cof_{\mathbb{E}}, we_{\mathbb{E}} \cap fib_{\mathbb{E}})$ is a weak factorization system.

Theorem (Quillen '66)

 $(\mathbb{E}, \mathrm{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}) \rightsquigarrow \exists \operatorname{Ho}(\mathbb{E}) = \mathbb{E}/\mathrm{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen adjunction $F : \mathbb{E} \hookrightarrow \mathbb{E}' : G$ is an adjunction such that F preserves cofibrations and G preserves fibrations.

A Quillen equivalence is a Quillen adjunction such that the derived adjunction $LF : Ho(\mathbb{E}) \leftrightarrows Ho(\mathbb{E}') : RG$ is an equivalence.

A Quillen model structure on a bicomplete $\mathbb E$ consists of three composable classes of morphisms $cof_\mathbb E, we_\mathbb E, fib_\mathbb E$ such that

- $we_{\mathbb{E}}$ fulfills 2-out-of-3;
- $(cof_{\mathbb{E}} \cap we_{\mathbb{E}}, fib_{\mathbb{E}})$ is a weak factorization system;
- $(cof_{\mathbb{E}}, we_{\mathbb{E}} \cap fib_{\mathbb{E}})$ is a weak factorization system.

Theorem (Quillen '66)

 $(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}, \operatorname{we}_{\mathbb{E}}, \operatorname{fib}_{\mathbb{E}}) \rightsquigarrow \exists \operatorname{Ho}(\mathbb{E}) = \mathbb{E}/\operatorname{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen adjunction $F : \mathbb{E} \leftrightarrows \mathbb{E}' : G$ is an adjunction such that

F preserves cofibrations and G preserves fibrations.

A Quillen equivalence is a Quillen adjunction such that the derived adjunction $LF : Ho(\mathbb{E}) \leftrightarrows Ho(\mathbb{E}') : RG$ is an equivalence.

Which constructions of \mathbb{E} carry over to $Ho(\mathbb{E})$?

Which constructions of \mathbb{E} carry over to $Ho(\mathbb{E})$?

Example (pullback vs homotopy pullback)

Even if α, β, γ are we's, δ is NOT a we in general. Yet, if moreover f, g, f', g' are fibrations between fibrant objects, then δ is a we !

Which constructions of \mathbb{E} carry over to $Ho(\mathbb{E})$?

Example (pullback vs homotopy pullback)

Even if α, β, γ are we's, δ is NOT a we in general. Yet, if moreover f, g, f', g' are fibrations between fibrant objects, then δ is a we !

Which constructions of \mathbb{E} carry over to $Ho(\mathbb{E})$?

Example (pullback vs homotopy pullback)

Even if α, β, γ are we's, δ is NOT a we in general. Yet, if moreover f, g, f', g' are fibrations between fibrant objects, then δ is a we !

- The adjunction |−|: sSets ⇒ Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on sV_T whenever U_T : sV_T → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_T of T-algebras is a Mal'cev variety if and only if $U_T : sV_T \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with *h*-trivial kernel.

The adjunction |−|: sSets
 ^t Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;

 There is a canonical model structure on sV_T whenever U_T : sV_T → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_T of T-algebras is a Mal'cev variety if and only if $U_T : sV_T \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with *h*-trivial kernel.

- The adjunction |−|: sSets
 ⁱ Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on sV_T whenever U_T : sV_T → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_T of T-algebras is a Mal'cev variety if and only if $U_T : sV_T \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with *h*-trivial kernel.

- The adjunction |−|: sSets
 ⁱ Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on sV_T whenever U_T : sV_T → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_T of T-algebras is a Mal'cev variety if and only if $U_T : sV_T \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with *h*-trivial kernel.

- The adjunction |−|: sSets
 ⁱ Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on sV_T whenever U_T : sV_T → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_T of T-algebras is a Mal'cev variety if and only if $U_T : sV_T \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with *h*-trivial kernel.

- The adjunction |−|: sSets
 ⁱ Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on sV_T whenever U_T : sV_T → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_T of T-algebras is a Mal'cev variety if and only if $U_T : sV_T \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

- we's are the maps inducing a quasi-iso on *Moore complexes*;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with *h*-trivial kernel.

- The adjunction |−|: sSets
 ⁱ Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on sV_T whenever U_T : sV_T → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_T of T-algebras is a Mal'cev variety if and only if $U_T : sV_T \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with *h*-trivial kernel.

- The adjunction |−|: sSets
 ⁱ Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on sV_T whenever U_T : sV_T → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_T of T-algebras is a Mal'cev variety if and only if $U_T : sV_T \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with *h*-trivial kernel.

- The adjunction |−|: sSets
 ⁱ Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on sV_T whenever U_T : sV_T → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_T of T-algebras is a Mal'cev variety if and only if $U_T : sV_T \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with *h*-trivial kernel.

For cofibrant objects X_1, \ldots, X_n in sV_T the *n*-th "algebraic" cross-effect $cr_n(X_1, \ldots, X_n)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in sV_T .

- $\operatorname{nl}_1^T(X) = n$ iff *n* is the least integer for which $\eta_X^n : X \to I^n(X)$ is a trivial fibration;
- nil^T₂(X) = n iff n is the least integer for which δⁿ⁺¹_X factors up to homotopy through θ_{X,...,X} : X + · · · + X → P_{X,...,X};
- $\operatorname{nil}_3^T(X) = n$ iff *n* is the least integer for which X is value of an *n*-excisive approximation of the identity of sV_T .

Proposition

For cofibrant X in sV_T one has $\operatorname{nil}_1^T(X) \le \operatorname{nil}_2^T(X) \le \operatorname{nil}_3^T(X)$
For cofibrant objects X_1, \ldots, X_n in sV_T the *n*-th "algebraic" cross-effect $cr_n(X_1, \ldots, X_n)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in sV_T .

- $\operatorname{nil}_1^T(X) = n$ iff *n* is the least integer for which $\eta_X^n : X \twoheadrightarrow I^n(X)$ is a trivial fibration;
- $\operatorname{nil}_2^T(X) = n$ iff *n* is the least integer for which δ_X^{n+1} factors up to homotopy through $\theta_{X,\dots,X} : X + \dots + X \twoheadrightarrow P_{X,\dots,X}$;
- nil^T₃(X) = n iff n is the least integer for which X is value of an *n*-excisive approximation of the identity of sV_T.

Proposition

For cofibrant objects X_1, \ldots, X_n in sV_T the *n*-th "algebraic" cross-effect $cr_n(X_1, \ldots, X_n)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in sV_T .

- $\operatorname{nil}_1^T(X) = n$ iff *n* is the least integer for which $\eta_X^n : X \twoheadrightarrow I^n(X)$ is a trivial fibration;
- nil^T₂(X) = n iff n is the least integer for which δⁿ⁺¹_X factors up to homotopy through θ_{X,...,X} : X + · · · + X → P_{X,...,X};
- nil^T₃(X) = n iff n is the least integer for which X is value of an n-excisive approximation of the identity of sV_T.

Proposition

For cofibrant objects X_1, \ldots, X_n in sV_T the *n*-th "algebraic" cross-effect $cr_n(X_1, \ldots, X_n)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in sV_T .

- $\operatorname{nil}_1^T(X) = n$ iff *n* is the least integer for which $\eta_X^n : X \twoheadrightarrow I^n(X)$ is a trivial fibration;
- $\operatorname{nil}_2^T(X) = n$ iff *n* is the least integer for which δ_X^{n+1} factors up to homotopy through $\theta_{X,\dots,X} : X + \dots + X \twoheadrightarrow P_{X,\dots,X}$;
- nil^T₃(X) = n iff n is the least integer for which X is value of an *n*-excisive approximation of the identity of sV_T.

Proposition

For cofibrant objects X_1, \ldots, X_n in sV_T the *n*-th "algebraic" cross-effect $cr_n(X_1, \ldots, X_n)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in sV_T .

- $\operatorname{nil}_1^T(X) = n$ iff *n* is the least integer for which $\eta_X^n : X \twoheadrightarrow I^n(X)$ is a trivial fibration;
- $\operatorname{nil}_2^T(X) = n$ iff *n* is the least integer for which δ_X^{n+1} factors up to homotopy through $\theta_{X,\dots,X} : X + \dots + X \twoheadrightarrow P_{X,\dots,X}$;
- nil^T₃(X) = n iff n is the least integer for which X is value of an n-excisive approximation of the identity of sV_T.

Proposition

For cofibrant objects X_1, \ldots, X_n in sV_T the *n*-th "algebraic" cross-effect $cr_n(X_1, \ldots, X_n)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in sV_T .

- $\operatorname{nil}_1^T(X) = n$ iff *n* is the least integer for which $\eta_X^n : X \twoheadrightarrow I^n(X)$ is a trivial fibration;
- $\operatorname{nil}_2^T(X) = n$ iff *n* is the least integer for which δ_X^{n+1} factors up to homotopy through $\theta_{X,\dots,X} : X + \dots + X \twoheadrightarrow P_{X,\dots,X}$;
- nil^T₃(X) = n iff n is the least integer for which X is value of an n-excisive approximation of the identity of sV_T.

Proposition

A homotopy functor is *n*-excisive if it takes cofibration (n + 1)-cubes to *h*-cartesian (n + 1)-cubes.

Enough to check the following cofibration cubes (n = 3):

Proposition

- F 1-excisive if and only if $F \simeq \Omega F \Sigma$;
- 1-excisive endofunctors takes values in "infinite loop spaces".

A homotopy functor is *n*-excisive if it takes cofibration (n + 1)-cubes to *h*-cartesian (n + 1)-cubes. Enough to check the following cofibration cubes (n = 3):

Proposition

- F 1-excisive if and only if $F \simeq \Omega F \Sigma$;
- 1-excisive endofunctors takes values in "infinite loop spaces".

A homotopy functor is *n*-excisive if it takes cofibration (n + 1)-cubes to *h*-cartesian (n + 1)-cubes. Enough to check the following cofibration cubes (n = 3):

Proposition

• *F* 1-excisive if and only if $F \simeq \Omega F \Sigma$;

1-excisive endofunctors takes values in "infinite loop spaces".

A homotopy functor is *n*-excisive if it takes cofibration (n + 1)-cubes to *h*-cartesian (n + 1)-cubes. Enough to check the following cofibration cubes (n = 3):

Proposition

• F 1-excisive if and only if $F \simeq \Omega F \Sigma$;

1-excisive endofunctors takes values in "infinite loop spaces".

A homotopy functor is *n*-excisive if it takes cofibration (n + 1)-cubes to *h*-cartesian (n + 1)-cubes. Enough to check the following cofibration cubes (n = 3):

Proposition

- F 1-excisive if and only if $F \simeq \Omega F \Sigma$;
- 1-excisive endofunctors takes values in "infinite loop spaces".

For *n*-excisive endofunctors F and cofibrant objects X_1, \ldots, X_{n+1} , the image-cube $F(\Xi_{X_1,\ldots,X_{n+1}})$ is homotopy-cartesian, i.e. F is homotopically of degree $\leq n$.

Theorem (special case $V_{\mathcal{T}} = (ext{groups})$, Kan '56, Quillen '66)

The free-forgetful adjunction $U : sGr \leftrightarrows sSets_* : F$ breaks into two adjunctions

$$Gr \xrightarrow{W}_{G} sSets_{red} \xrightarrow{\Omega}_{\Sigma} sSets_{*}$$

the first of which is a Quillen equivalence.

Remark

For *n*-excisive endofunctors F and cofibrant objects X_1, \ldots, X_{n+1} , the image-cube $F(\Xi_{X_1,\ldots,X_{n+1}})$ is homotopy-cartesian, i.e. F is homotopically of degree $\leq n$.

Theorem (special case $V_{\mathcal{T}} = (ext{groups})$, Kan '56, Quillen '66)

The free-forgetful adjunction $U : sGr \leftrightarrows sSets_* : F$ breaks into two adjunctions

$$GGr \xleftarrow{W}_{G} SSets_{red} \xleftarrow{\Omega}_{\Sigma} SSets_{*}$$

the first of which is a Quillen equivalence.

Remark

For *n*-excisive endofunctors F and cofibrant objects X_1, \ldots, X_{n+1} , the image-cube $F(\Xi_{X_1,\ldots,X_{n+1}})$ is homotopy-cartesian, i.e. F is homotopically of degree $\leq n$.

Theorem (special case $V_{\mathcal{T}} = (ext{groups})$, Kan '56, Quillen '66)

The free-forgetful adjunction $U : sGr \leftrightarrows sSets_* : F$ breaks into two adjunctions

$$sGr \xrightarrow{\overline{W}}_{G} sSets_{red} \xrightarrow{\Omega}_{\Sigma} sSets_{*}$$

the first of which is a Quillen equivalence.

Remark

For *n*-excisive endofunctors F and cofibrant objects X_1, \ldots, X_{n+1} , the image-cube $F(\Xi_{X_1,\ldots,X_{n+1}})$ is homotopy-cartesian, i.e. F is homotopically of degree $\leq n$.

Theorem (special case $V_{\mathcal{T}} = (ext{groups})$, Kan '56, Quillen '66)

The free-forgetful adjunction $U : sGr \leftrightarrows sSets_* : F$ breaks into two adjunctions

$$sGr \xrightarrow{\overline{W}}_{G} sSets_{red} \xrightarrow{\Omega}_{\Sigma} sSets_{*}$$

the first of which is a Quillen equivalence.

Remark

For a reduced simplical set X one has

- $\operatorname{nil}_1^{Gr}(GX) = \operatorname{nil}_{Berstein-Ganea}(\Omega|X|);$
- $\operatorname{nil}_{2}^{Gr}(GX) = \operatorname{cocat}_{Hovey}(|X|);$
- $\operatorname{nil}_{3}^{Gr}(GX) = \operatorname{nil}_{Biedermann-Dwyer}(\Omega|X|).$

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

 $\operatorname{nil}_{BG}(\Omega X) \leq \operatorname{cocat}_{Hov}(X) \leq \operatorname{nil}_{BD}(\Omega X)$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

For a reduced simplical set X one has

•
$$\operatorname{nil}_{1}^{Gr}(GX) = \operatorname{nil}_{Berstein-Ganea}(\Omega|X|);$$

- $\operatorname{nil}_{2}^{Gr}(GX) = \operatorname{cocat}_{Hovey}(|X|);$
- $\operatorname{nil}_{3}^{Gr}(GX) = \operatorname{nil}_{Biedermann-Dwyer}(\Omega|X|).$

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

 $\operatorname{nil}_{BG}(\Omega X) \leq \operatorname{cocat}_{Hov}(X) \leq \operatorname{nil}_{BD}(\Omega X)$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

For a reduced simplical set X one has

•
$$\operatorname{nil}_{1}^{Gr}(GX) = \operatorname{nil}_{Berstein-Ganea}(\Omega|X|);$$

•
$$\operatorname{nil}_{2}^{Gr}(GX) = \operatorname{cocat}_{Hovey}(|X|);$$

• $\operatorname{nil}_{3}^{Gr}(GX) = \operatorname{nil}_{Biedermann-Dwyer}(\Omega|X|).$

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

 $\operatorname{nil}_{BG}(\Omega X) \leq \operatorname{cocat}_{Hov}(X) \leq \operatorname{nil}_{BD}(\Omega X)$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

For a reduced simplical set X one has

•
$$\operatorname{nil}_1^{Gr}(GX) = \operatorname{nil}_{Berstein-Ganea}(\Omega|X|);$$

•
$$\operatorname{nil}_{2}^{Gr}(GX) = \operatorname{cocat}_{Hovey}(|X|);$$

• $\operatorname{nil}_{3}^{Gr}(GX) = \operatorname{nil}_{Biedermann-Dwyer}(\Omega|X|).$

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

 $\operatorname{nil}_{BG}(\Omega X) \leq \operatorname{cocat}_{Hov}(X) \leq \operatorname{nil}_{BD}(\Omega X)$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

For a reduced simplical set X one has

•
$$\operatorname{nil}_1^{Gr}(GX) = \operatorname{nil}_{Berstein-Ganea}(\Omega|X|);$$

•
$$\operatorname{nil}_{2}^{Gr}(GX) = \operatorname{cocat}_{Hovey}(|X|);$$

• $\operatorname{nil}_{3}^{Gr}(GX) = \operatorname{nil}_{Biedermann-Dwyer}(\Omega|X|).$

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$\operatorname{nil}_{BG}(\Omega X) \leq \operatorname{cocat}_{Hov}(X) \leq \operatorname{nil}_{BD}(\Omega X)$$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

For a reduced simplical set X one has

•
$$\operatorname{nil}_1^{Gr}(GX) = \operatorname{nil}_{Berstein-Ganea}(\Omega|X|);$$

•
$$\operatorname{nil}_{2}^{Gr}(GX) = \operatorname{cocat}_{Hovey}(|X|);$$

• $\operatorname{nil}_{3}^{Gr}(GX) = \operatorname{nil}_{Biedermann-Dwyer}(\Omega|X|).$

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$\operatorname{nil}_{BG}(\Omega X) \leq \operatorname{cocat}_{Hov}(X) \leq \operatorname{nil}_{BD}(\Omega X)$$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

For a reduced simplical set X one has

•
$$\operatorname{nil}_1^{Gr}(GX) = \operatorname{nil}_{Berstein-Ganea}(\Omega|X|);$$

•
$$\operatorname{nil}_{2}^{Gr}(GX) = \operatorname{cocat}_{Hovey}(|X|);$$

• $\operatorname{nil}_{3}^{Gr}(GX) = \operatorname{nil}_{Biedermann-Dwyer}(\Omega|X|).$

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$\operatorname{nil}_{BG}(\Omega X) \leq \operatorname{cocat}_{Hov}(X) \leq \operatorname{nil}_{BD}(\Omega X)$$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

For a reduced simplical set X one has

•
$$\operatorname{nil}_1^{Gr}(GX) = \operatorname{nil}_{Berstein-Ganea}(\Omega|X|);$$

•
$$\operatorname{nil}_{2}^{Gr}(GX) = \operatorname{cocat}_{Hovey}(|X|);$$

• $\operatorname{nil}_{3}^{Gr}(GX) = \operatorname{nil}_{Biedermann-Dwyer}(\Omega|X|).$

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$\operatorname{nil}_{BG}(\Omega X) \leq \operatorname{cocat}_{Hov}(X) \leq \operatorname{nil}_{BD}(\Omega X)$$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)