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Definition

A group G is n-nilpotent if commutators of length n+ 1 vanish:

[x1, [x2, X3, -, [Xns Xnt1] - - ]Il = €6 Vx1,..., Xnt1 € G.

A central group extension is a surjective group homomorphism
f: G — H with kernel K[f] contained in the center of G.

A group G is n-nilpotent iff it is an n-fold central extension of the

o . fn fo—1 f f .
trivial group, i.e. G - G,_1 — --- Gy = G — x with f; central.

Problem
In which categories is there a notion of central extension ?
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Definition (Janelidze-Marki-Tholen '01)

A category is called semi-abelian if it is
@ o-pointed (i.e. with null-object and binary sums);
@ exact (Barr '71);

e protomodular (Bourn '91).

Proposition (Bourn '96)

@ A pointed category with pullbacks is protomodular iff section
and kernel of every split epi f : X — Y strongly generate X;

@ A o-pointed category with pullbacks is protomodular iff for
every split epi f : X — Y with section sf : Y — X the
morphism <sg, ir >: Y + K[f] — X is a strong epimorphism;

@ Any protomodular category is a Mal'cev category [CKP '93],
i.e. reflexive relations are equivalence relations.
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Definition
A variety V1 is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere '63)

Each variety V1 is determined by an algebraic theory © 1 where
Ob GT = N;
Or(m, n) = Algr(Fr({L,..., m}), Fr({L,...,n})).

Theorem (Mal'cev)

The variety V1 is a Mal'cev category iff 3p € © (1, 3) such that

p*(x,y,y) = x and p*(x, x,y) = y for any T-algebra.

Example (Mal'cev operation for groups)

p(x,y,z) =xy~ 'z
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Basic hypothesis (on the ambient category E)

(E,*g) is a o-pointed exact Mal'cev category

e.g. any semi-abelian category or any pointed Mal'cev variety.

Lemma

Exact Mal’cev categories have reflexive coequalizers;
o-pointed exact Mal'cev categories have all finite colimits.

A

Examples (of semi-abelian categories)

Groups, Lie algebras, cocommutative Hopf algebras over a field of
characteristic zero, loops, ...
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Proposition (Gran-Van der Linden '08)

In a pointed protomodular category with pullbacks, a regular
epimorphism f : X — Y has a central kernel K[f] if and only if
the kernel pair R[f] = X is a central equivalence relation.
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Definition (Nilpotency)

@ Central extension = regular epi with central kernel pair;

@ An n-nilpotent object is an n-fold central extension of xg;
e Nil"(E) is the subcategory spanned by the n-nilpotent objects;

@ A category is n-nilpotent iff all its objects are n-nilpotent.

The abstract notion of n-nilpotent object yields for groups (Lie
algebras) the classical notion of n-nilpotent group (Lie algebra).

Proposition
E 1-nilpotent <= [E abelian.
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A reflective subcategory D of E is a Birkhoff subcategory iff D is
closed under taking subobjects and quotients in [E.

Lemma

This is the case iff for each regular epi f : X — Y the reflection
| : E — D induces a cocartesian naturality square of reg. epi's

X —% 1(X)

fi ¢I(f)
Y

Proposition

The subcategory Nil"(E) is a reflective Birkhoff subcategory of E.
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Lemma
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The unit of a central reflection is pointwise an affine extension.
Any morphism inverted by a central reflection is affine.
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Definition (Fibration of “points”, Bourn '96)

Let Ptx(E) be the category of split epis of E with codomain X.
Each f : X — Y induces an adjunction fi : Ptx(E) = Pty (E) : £*.
A morphism f is affine iff (fi, f*) is an adjoint equivalence.

Example (split epimorphisms in groups)
A split epimorphism f : G — X in groups
o exhibits G as a semi-direct product X x4 K[f];

@ determines (and is determined by) a group homomorphism
¢ : X — Aut(K|[f]), i.e. an internal X-representation.

Corollary (Gray '12)

For E =(groups) or E =(Lie algebras), pointed base-change
f* : Ptg(Y) — Ptr(X) has a left adjoint i and a right adjoint f..
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Pointed base-change along regular epi's is fully faithful.

A regular epi f : X — Y is an affine extension iff for all objects Z
either of the following two squares is cartesian

X+z "2 yviz X+7Z-"* 4 yviz
wii wii 9x,zi iQY,z
X———Y XxZ —5YxZ

Corollary (for semi-abelian categories)

f: X =Y affine <= foZ:XoZ =Y oZ invertible VZ
X o Z = Kl[fx,z] = co-smash product (Carboni-Janelidze '03).
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Theorem
E is n-nilpotent iff for all X, Y the map Oxy : X +VY = X x Y
exhibits X + Y as an (n — 1)-fold central extension of X x Y.

0
XoX—> X+ X5 X x X

oo

(X, X] X 1(X)

Ox.x (n—1)-fold central ext. = n% (n—1)-fold central ext. [

E 2-nilpotent iff 0x y central extension iff fx y affine extension.
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X1+ Xo— X1

EXl X2 l

Xo

*E
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X1+ Xo - X1

X1+ X+ X3

EXI ,X2,X3 Xo > X

X2+ X3 - X3
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Definition (cubical cross-effects)

Pxi,.X, = |i<_m[071]n\{(07._.,0)} = (limit of the punctured cube);

comparison map Ox, . x,: X1+ -+ Xp = Px, . x,;
crn(Xe, ..., Xn) = Kl0x,,... x,) ="total kernel” of =x,  x.;
The identity functor of E is said to be of degree < n if
=X1,...Xn1 IS Cartesian, i.e. Ox,  x, ., invertible.

Example (linear identity functors)

@ EE has linear identity functor iff [E is a linear category !

0)(17)(2 X1+ Xo — X1 x X, e CI’2(X1,X2) =X10X

279 cross-effect=co-smash product

Proposition (for semi-abelian categories)
crn(Xi, ..., Xn) = K[m]N---NK[rp] (Hartl-Van der Linden '13)
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Proposition

If E has an identity functor of degree < n then E is n-nilpotent.

E has a quadratic identity functor iff [E is 2-nilpotent and moreover
one of the following two conditions is satisfied for all X, Y, Z:
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If E has an identity functor of degree < n then E is n-nilpotent.

E has a quadratic identity functor iff [E is 2-nilpotent and moreover
one of the following two conditions is satisfied for all X, Y, Z:

o (X xY)+Z=(X+Z)xz(Y+ Z) (alg. codistributivity)
o (X xZ)+z(YxZ)=(X+Y)x Z (alg. distributivity)

Corollary

If E is algebraically distributive then Nil?(E) has a quadratic
identity functor. In particular, iterated Hug=Higgins commutator:
[X, [X, X]] = [X, X, X] (cf. Cigoli-Gray-Van der Linden '14).
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0x,....x
crnp1 (X, ., X)——X+---+ X Px,..x

[X,..., X] X = X/[X,..., X]

X is n-additive iff 5}“ factors through 6x . x. For semi-abelian
[E, this amounts to vanishing Higgins commutator of length n + 1.

Proposition (cf. Hartl-Van der Linden '13)

Every n-additive object is n-nilpotent.

The identity functor is of degree < n iff all objects are n-additive.
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Definition (Algebraic distributivity /coherence/extensivity of E)

(a) alg distributive: f* : Ptg(x) — Ptg(Z) binary-sum-preserving;
(b) alg coherent: f* : Ptg(Z') — Ptg(Z) coherent (CGV '14);
(c) alg extensive: f*: Ptg(Z') — Ptg(Z) binary-sum-preserving.

() = (b) = ()

Definition (6-linearity)

F :E — E'is 6-linear iff F(6x y) invertible V.X, Y.

Abelianization E — Nil*(E) is 6-linear.
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Proposition

If E is alg extensive and has multi-6-linear n-th cross-effect
then E has an identity functor of degree < n.

Proposition

Any alg extensive n-nilpotent IE has multi-f-linear n-th cross-effect.

If E is alg extensive then Nil"(E) has an identity of degree < n.
Each n-nilpotent object is n-additive (iterated Hug=Higgins).

This is the case for the category of groups, resp. Lie algebras.
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Definition (Quillen model category)

A Quillen model structure on a bicomplete [E consists of three
composable classes of morphisms cofy, weg, fibg such that

o weg fulfills 2-out-of-3;
o (cofg Nweg, fibg) is a weak factorization system;

o (cofg, weg N fibg) is a weak factorization system.

Theorem (Quillen '66)
(E, cofg, weg, fibg) ~» 3Ho(E) = E/weg within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen adjunction F : E < E': G is an adjunction such that

F preserves cofibrations and G preserves fibrations.

A Quillen equivalence is a Quillen adjunction such that the derived
adjunction LF : Ho(E) < Ho(E') : RG is an equivalence.
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Problem (Homotopy invariance)

Which constructions of E carry over to Ho(E) ?

Example (pullback vs homotopy pullback)

C X xz Y Yy’
/ | /g;\g,
XxzY - Y
|
X' — 7
o
S e

Even if o, 3, are we's, d is NOT a we in general. Yet, if moreover
f,g,f', g’ are fibrations between fibrant objects, then 4 is a we !
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Theorem (Quillen '66)

@ The adjunction |—| : sSets <= Top : Sing is a Quillen
equivalence: the simplicial fibrations are the Kan fibrations;

@ There is a canonical model structure on sV whenever
Ut : sV — sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V1 of T-algebras is a Mal'cev variety if and only if
Ut : sV — sSets takes values in fibrant simplicial sets.

Corollary

For each pointed Mal'cev variety V3 model structure on sVt sth

@ we's are the maps inducing a quasi-iso on Moore complexes;

@ every regular epi is a fibration;

@ trivial fibrations are the regular epi's with h-trivial kernel.
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cross-effect crp(X1, ..., Xn) is homotopy-invariant.
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For cofibrant objects Xi,..., X, in sVt the n-th “algebraic”
cross-effect crp(X1, ..., Xn) is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in sV7.

o nil{ (X) = n iff n is the least integer for which
ny : X — 1"(X) is a trivial fibration;

o nil] (X) = niff n is the least integer for which 6% factors up
to homotopy through 0x . x : X +---+X — Px _ x;

o nild (X) = n iff n is the least integer for which X is value of
an n-excisive approximation of the identity of sVr.

Proposition

For cofibrant X in sV one has nil{ (X) < nilj (X) < nilJ (X)
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Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration
(n+ 1)-cubes to h-cartesian (n + 1)-cubes.




Algebraic and homotopical nilpotency
Homotopical nilpotency and cocategory

Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration
(n+ 1)-cubes to h-cartesian (n + 1)-cubes.
Enough to check the following cofibration cubes (n = 3):

X - CX Ux CX
_— |

\
CX Ux CX

/

X - CX Ux CX

X - CX

- CXUx CX Ux CX




Algebraic and homotopical nilpotency
Homotopical nilpotency and cocategory

Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration
(n+ 1)-cubes to h-cartesian (n + 1)-cubes.
Enough to check the following cofibration cubes (n = 3):

X - CX Uy CX
X | . CX

€X Uy X - CX Ux CX Ux CX
x = - CX Ux CX




Algebraic and homotopical nilpotency
Homotopical nilpotency and cocategory

Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration
(n+ 1)-cubes to h-cartesian (n + 1)-cubes.
Enough to check the following cofibration cubes (n = 3):

X - CX Uy CX
X | . CX

€X Uy X - CX Ux CX Ux CX
x = - CX Ux CX

Proposition
o F l-excisive if and only if F ~ QF%;




Algebraic and homotopical nilpotency
Homotopical nilpotency and cocategory

Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration
(n+ 1)-cubes to h-cartesian (n + 1)-cubes.
Enough to check the following cofibration cubes (n = 3):

X - CX Uy CX
X | . CX

€X Uy X - CX Ux CX Ux CX
x = - CX Ux CX

Proposition
o F l-excisive if and only if F ~ QF%;

@ l-excisive endofunctors takes values in “infinite loop spaces”.
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The free-forgetful adjunction U : sGr < sSets, : F breaks into two
adjunctions
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Lemma

For n-excisive endofunctors F and cofibrant objects Xi, ..., Xyt1,
the image-cube F(=x,, . x,,,) is homotopy-cartesian, i.e. F is
homotopically of degree < n.

Theorem (special case V' = (groups), Kan '56, Quillen '66)

The free-forgetful adjunction U : sGr < sSets, : F breaks into two
adjunctions

w Q
SGr — sSetS,eqg = SSets,
G >

the first of which is a Quillen equivalence.

Remark

Simplicial groups model loop spaces/loop maps, resp. based
connected spaces and based maps. The free simpl. group gen. by
a pointed simpl. set X is a model of Q¥ |X|, cf. James.
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° nilg’(GX) = cocatHovey (| X|);
o nil§"(GX) = nilgiedermann—Dwyer (2X]).

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

nilge (2X) < cocatyo, (X) < nilgp(2X)

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

cat;s(X) < n <= Jopen cover X C Uy U---U Upq1 sth.
U; < X null-homotopic Vi <= the diagonal X — X"*! can be
deformed into the fat wedge Qx_.. x = {x € X"T1|3i: x; = x}.
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