Algebraic and homotopical nilpotency

Clemens Berger

joint work with Dominique Bourn
CT 2015
Aveiro, 14-19 Juin, 2015
(1) Central extensions and affine extensions
(2) Algebraic nilpotency and cross-effects
(3) Homotopical nilpotency and cocategory

Definition

A group G is n-nilpotent if commutators of length $n+1$ vanish:

$$
\left[x_{1},\left[x_{2},\left[x_{3}, \ldots,\left[x_{n}, x_{n+1}\right] \cdots\right]\right]\right]=e_{G} \quad \forall x_{1}, \ldots, x_{n+1} \in G .
$$

Definition

A central group extension is a surjective group homomorphism $f: G \rightarrow H$ with kernel $K[f]$ contained in the center of G.

Lemma

A group G is n-nilpotent iff it is an n-fold central extension of the trivial group, i.e. $G \stackrel{f_{n}}{\longrightarrow} G_{n-1} \xrightarrow{f_{n-1}} \cdots G_{2} \xrightarrow{f_{2}} G_{1} \xrightarrow{f_{1}} \star$ with f_{i} central.

Problem

In which categories is there a notion of central extension ?

Definition

A group G is n-nilpotent if commutators of length $n+1$ vanish:

$$
\left[x_{1},\left[x_{2},\left[x_{3}, \ldots,\left[x_{n}, x_{n+1}\right] \cdots\right]\right]\right]=e_{G} \quad \forall x_{1}, \ldots, x_{n+1} \in G .
$$

Definition

A central group extension is a surjective group homomorphism $f: G \rightarrow H$ with kernel $K[f]$ contained in the center of G.

Lemma

A group G is n-nilpotent iff it is an n-fold central extension of the trivial group, i.e. $G \xrightarrow{f_{n}} G_{n-1} \xrightarrow{f_{n-1}} \cdots G_{2} \xrightarrow{f_{2}} G_{1} \xrightarrow{f_{1}} *$ with f_{i} central

Problem
In which categories is there a notion of central extension ?

Definition

A group G is n-nilpotent if commutators of length $n+1$ vanish:

$$
\left[x_{1},\left[x_{2},\left[x_{3}, \ldots,\left[x_{n}, x_{n+1}\right] \cdots\right]\right]\right]=e_{G} \quad \forall x_{1}, \ldots, x_{n+1} \in G .
$$

Definition

A central group extension is a surjective group homomorphism $f: G \rightarrow H$ with kernel $K[f]$ contained in the center of G.

Lemma

A group G is n-nilpotent iff it is an n-fold central extension of the trivial group, i.e. $G \xrightarrow{f_{n}} G_{n-1} \xrightarrow{f_{n-1}} \cdots G_{2} \xrightarrow{f_{2}} G_{1} \xrightarrow{f_{1}} \star$ with f_{i} central.

Problem
In which categories is there a notion of central extension ?

Definition

A group G is n-nilpotent if commutators of length $n+1$ vanish:

$$
\left[x_{1},\left[x_{2},\left[x_{3}, \ldots,\left[x_{n}, x_{n+1}\right] \cdots\right]\right]\right]=e_{G} \quad \forall x_{1}, \ldots, x_{n+1} \in G .
$$

Definition

A central group extension is a surjective group homomorphism $f: G \rightarrow H$ with kernel $K[f]$ contained in the center of G.

Lemma

A group G is n-nilpotent iff it is an n-fold central extension of the trivial group, i.e. $G \xrightarrow{f_{n}} G_{n-1} \xrightarrow{f_{n-1}} \cdots G_{2} \xrightarrow{f_{2}} G_{1} \xrightarrow{f_{1}} \star$ with f_{i} central.

Problem

In which categories is there a notion of central extension ?

Definition (Janelidze-Màrki-Tholen '01)

A category is called semi-abelian if it is

- σ-pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- nrotomodular (Bourn '91).

Proposition (Bourn '96)

Definition (Janelidze-Màrki-Tholen '01)

A category is called semi-abelian if it is

- σ-pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

Proposition (Bourn '96)

Definition (Janelidze-Màrki-Tholen '01)

A category is called semi-abelian if it is

- σ-pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

Proposition (Bourn '96)

Definition (Janelidze-Màrki-Tholen '01)

A category is called semi-abelian if it is

- σ-pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

Proposition (Bourn '96)

Definition (Janelidze-Màrki-Tholen '01)

A category is called semi-abelian if it is

- σ-pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

Proposition (Bourn '96)

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi $f: X \rightarrow Y$ strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi $f: X \rightarrow Y$ with section $s_{f}: Y \mapsto X$ the morphism $<s_{f}, i_{f}>: Y+K[f] \rightarrow X$ is a strong epimorphism;
- Any protomodular category is a Mal'cev category [CKP '93], i.e. reflexive relations are equivalence relations.

Definition (Janelidze-Màrki-Tholen '01)

A category is called semi-abelian if it is

- σ-pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

Proposition (Bourn '96)

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi $f: X \rightarrow Y$ strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi $f: X \rightarrow Y$ with section $s_{f}: Y \multimap X$ the morphism $<s_{f}, i_{f}>: Y+K[f] \rightarrow X$ is a strong epimorphism
- Any protomodular category is a Mal'cev category [CKP '93] i.e. reflexive relations are equivalence relations.

Definition (Janelidze-Màrki-Tholen '01)

A category is called semi-abelian if it is

- σ-pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

Proposition (Bourn '96)

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi $f: X \rightarrow Y$ strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi $f: X \rightarrow Y$ with section $s_{f}: Y \mapsto X$ the morphism $\left.<s_{f}, i_{f}\right\rangle: Y+K[f] \rightarrow X$ is a strong epimorphism;
- Any protomodular category is a Mal'cev category [CKP '93], i.e. reflexive relations are equivalence relations.

Definition (Janelidze-Màrki-Tholen '01)

A category is called semi-abelian if it is

- σ-pointed (i.e. with null-object and binary sums);
- exact (Barr '71);
- protomodular (Bourn '91).

Proposition (Bourn '96)

- A pointed category with pullbacks is protomodular iff section and kernel of every split epi $f: X \rightarrow Y$ strongly generate X;
- A σ-pointed category with pullbacks is protomodular iff for every split epi $f: X \rightarrow Y$ with section $s_{f}: Y \rightharpoondown X$ the morphism $<s_{f}, i_{f}>: Y+K[f] \rightarrow X$ is a strong epimorphism;
- Any protomodular category is a Mal'cev category [CKP '93], i.e. reflexive relations are equivalence relations.

Definition

A variety V_{T} is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere '63)

Each variety V_{T} is determined by an algebraic theory Θ_{T} where

```
Ob 的 = N
\Theta
```

Theorem (Mal'cev)
The variety V_{T} is a Mal'cev category iff $\exists p \in \Theta_{T}(1,3)$ such that

$$
p^{*}(x, y, y)=x \text { and } p^{*}(x, x, y)=y \text { for any } T \text {-algebra. }
$$

Example (Mal'cev operation for groups)
$p(x, y, z)=x y^{-1} z$

Definition

A variety V_{T} is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere '63)

Each variety V_{T} is determined by an algebraic theory Θ_{T} where

$$
\left\{\begin{array}{l}
\operatorname{Ob} \Theta_{T}=\mathbb{N} ; \\
\Theta_{T}(m, n)=\operatorname{Alg}_{T}\left(F_{T}(\{1, \ldots, m\}), F_{T}(\{1, \ldots, n\})\right)
\end{array}\right.
$$

Theorem (Mal'cev)
The variety V_{T} is a Mal'cev category iff $\exists p \in \Theta_{T}(1,3)$ such that $p^{*}(x, y, y)=x$ and $p^{*}(x, x, y)=y$ for any T-algebra.

Example (Mal'cev operation for groups)

Definition

A variety V_{T} is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere '63)

Each variety V_{T} is determined by an algebraic theory Θ_{T} where

$$
\left\{\begin{array}{l}
\operatorname{Ob} \Theta_{T}=\mathbb{N} ; \\
\Theta_{T}(m, n)=\operatorname{Alg}_{T}\left(F_{T}(\{1, \ldots, m\}), F_{T}(\{1, \ldots, n\})\right)
\end{array}\right.
$$

Theorem (Mal'cev)

The variety V_{T} is a Mal'cev category iff $\exists p \in \Theta_{T}(1,3)$ such that

$$
p^{*}(x, y, y)=x \text { and } p^{*}(x, x, y)=y \text { for any } T \text {-algebra. }
$$

Example (Mal'cev operation for groups)

Definition

A variety V_{T} is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere '63)

Each variety V_{T} is determined by an algebraic theory Θ_{T} where

$$
\left\{\begin{array}{l}
\mathrm{Ob} \Theta_{T}=\mathbb{N} ; \\
\Theta_{T}(m, n)=\operatorname{Alg}_{T}\left(F_{T}(\{1, \ldots, m\}), F_{T}(\{1, \ldots, n\})\right)
\end{array}\right.
$$

Theorem (Mal'cev)

The variety V_{T} is a Mal'cev category iff $\exists p \in \Theta_{T}(1,3)$ such that

$$
p^{*}(x, y, y)=x \text { and } p^{*}(x, x, y)=y \text { for any } T \text {-algebra. }
$$

Example (Mal'cev operation for groups)

$$
p(x, y, z)=x y^{-1} z
$$

Basic hypothesis (on the ambient category \mathbb{E})

$\left(\mathbb{E}, \star_{\mathbb{E}}\right)$ is a σ-pointed exact Mal'cev category

e.g. any semi-abelian category or any pointed Mal'cev variety.

Lemma

Exact Mal'cev categories have reflexive coequalizers;

σ-pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)

Groups, Lie algebras, cocommutative Ho ff algebras over a field of characteristic zero, loops,

Basic hypothesis (on the ambient category \mathbb{E})

$\left(\mathbb{E}, \star_{\mathbb{E}}\right)$ is a σ-pointed exact Mal'cev category

e.g. any semi-abelian category or any pointed Mal'cev variety.

Lemma

Exact Mal'cev categories have reflexive coequalizers;
σ-pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)
Groups, Lie algebras, cocommutative Hopf algebras over a field of characteristic zero, loops,

Basic hypothesis (on the ambient category \mathbb{E})

$\left(\mathbb{E}, \star_{\mathbb{E}}\right)$ is a σ-pointed exact Mal'cev category

e.g. any semi-abelian category or any pointed Mal'cev variety.

Lemma

Fvact M al' cev categories have reflexive coequalizers;
σ-pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)
Grouns lie algebras cocommutative Hopf algebras over a field of characteristic zero, loops,

Basic hypothesis (on the ambient category \mathbb{E}) $\left(\mathbb{E}, \star_{\mathbb{E}}\right)$ is a σ-pointed exact Mal'cev category
e.g. any semi-abelian category or any pointed Mal'cev variety.

Lemma

Exact Mal'cev categories have reflexive coequalizers; σ-pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)
Groups, Lie algebras, cocommutative Hopf algebras over a field of
characteristic zero, loops,

Basic hypothesis (on the ambient category \mathbb{E}) $\left(\mathbb{E}, \star_{\mathbb{E}}\right)$ is a σ-pointed exact Mal'cev category
e.g. any semi-abelian category or any pointed Mal'cev variety.

Lemma

Exact Mal'cev categories have reflexive coequalizers; σ-pointed exact Mal'cev categories have all finite colimits.

Examples (of semi-abelian categories)

Groups, Lie algebras, cocommutative Hopf algebras over a field of characteristic zero, loops, ...

Definition (Centrality)

A subobject N of X is central iff the inclusion of N into X commutes with the identity of X (in the sense of Huq). An equivalence relation R on X is central iff R commutes with the indiscrete equivalence relation on X (in the sense of Smith).

Proposition (Gran-Van der Linden '08)

In a pointed protomodular category with pullbacks, a regular epimorphism $f: X \rightarrow Y$ has a central kernel $K[f]$ if and only if the kernel pair $R[f] \rightrightarrows X$ is a central equivalence relation.

Definition (Centrality)

A subobject N of X is central iff the inclusion of N into X commutes with the identity of X (in the sense of Huq).

An equivalence relation R on X is central iff R commutes with the

 indiscrete equivalence relation on X (in the sense of Smith).

Proposition (Gran-Van der Linden '08)

In a pointed protomodular category with pullbacks, a regular
epimorphism $f: X \rightarrow Y$ has a central kernel $K[f]$ if and only if
the kernel pair $R[f] \rightrightarrows X$ is a central equivalence relation.

Definition (Centrality)

A subobject N of X is central iff the inclusion of N into X commutes with the identity of X (in the sense of Huq). An equivalence relation R on X is central iff R commutes with the indiscrete equivalence relation on X (in the sense of Smith).

> Proposition (Gran-Van der Linden '08)
> In a pointed protomodular category with pullbacks, a regular epimorphism $f: X \rightarrow Y$ has a central kernel $K[f]$ if and only if the kernel pair $R[f] \rightrightarrows X$ is a central equivalence relation

Definition (Centrality)

A subobject N of X is central iff the inclusion of N into X commutes with the identity of X (in the sense of Huq).
An equivalence relation R on X is central iff R commutes with the indiscrete equivalence relation on X (in the sense of Smith).

Proposition (Gran-Van der Linden '08)

In a pointed protomodular category with pullbacks, a regular
epimorphism $f: X \rightarrow Y$ has a central kernel $K[f]$ if and only if
the kernel pair $R[f] \rightrightarrows X$ is a central equivalence relation

Definition (Centrality)

A subobject N of X is central iff the inclusion of N into X commutes with the identity of X (in the sense of Huq).
An equivalence relation R on X is central iff R commutes with the indiscrete equivalence relation on X (in the sense of Smith).

Proposition (Gran-Van der Linden '08)

In a pointed protomodular category with pullbacks, a regular epimorphism $f: X \rightarrow Y$ has a central kernel $K[f]$ if and only if the kernel pair $R[f] \rightrightarrows X$ is a central equivalence relation.

Definition (Nilpotency)

- Central extension = regular epi with central kernel pair;
- An n-nilpotent object is an n-fold central extension of $\star_{\mathbb{E}}$;
- $\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects;
- A category is n-nilpotent iff all its objects are n-nilpotent.

Remark

The abstract notion of n-nilpotent object yields for groups (Lie algebras) the classical notion of n-nilpotent group (Lie algebra)

Proposition

$$
\mathbb{E} \text { 1-nilpotent } \Longleftrightarrow \mathbb{E} \text { abelian. }
$$

Definition (Nilpotency)

- Central extension = regular epi with central kernel pair;
- An n-nilpotent object is an n-fold central extension of $\star_{\mathbb{E}}$;
- $\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects;
- A category is n-nilpotent iff all its objects are n-nilpotent.

Remark

The abstract notion of n-nilpotent object yields for groups (Lie algebras) the classical notion of n-nilpotent group (Lie algebra)

Proposition

$$
\mathbb{E} \text { 1-nilpotent } \Longleftrightarrow \mathbb{E} \text { abelian. }
$$

Definition (Nilpotency)

- Central extension = regular epi with central kernel pair;
- An n-nilpotent object is an n-fold central extension of $\star_{\mathbb{E}}$;
- $\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects;
- A category is n-nilpotent iff all its objects are n-nilpotent.

Remark

The abstract notion of n-nilpotent object yields for groups (Lie algebras) the classical notion of n-nilpotent group (Lie algebra)

Proposition

$$
\mathbb{E} \text { 1-nilpotent } \Longleftrightarrow \mathbb{E} \text { abelian. }
$$

Definition (Nilpotency)

- Central extension = regular epi with central kernel pair;
- An n-nilpotent object is an n-fold central extension of $\star_{\mathbb{E}}$;
- $\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects;
- A category is n-nilpotent iff all its objects are n-nilpotent.

> Remark
> The abstract notion of n-nilpotent object yields for groups (Lie algebras) the classical notion of n-nilpotent group (Lie algebra)

Proposition

$$
\mathbb{E} \text { 1-nilpotent } \Longleftrightarrow \mathbb{E} \text { abelian. }
$$

Definition (Nilpotency)

- Central extension = regular epi with central kernel pair;
- An n-nilpotent object is an n-fold central extension of $\star_{\mathbb{E}}$;
- $\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects;
- A category is n-nilpotent iff all its objects are n-nilpotent.

Remark

The abstract notion of n-nilpotent object yields for groups (Lie algebras) the classical notion of n-nilpotent group (Lie algebra).
\mathbb{E} 1-nilpotent $\Longleftrightarrow \mathbb{E}$ abelian.

Definition (Nilpotency)

- Central extension = regular epi with central kernel pair;
- An n-nilpotent object is an n-fold central extension of $\star_{\mathbb{E}}$;
- $\operatorname{Nil}^{n}(\mathbb{E})$ is the subcategory spanned by the n-nilpotent objects;
- A category is n-nilpotent iff all its objects are n-nilpotent.

Remark

The abstract notion of n-nilpotent object yields for groups (Lie algebras) the classical notion of n-nilpotent group (Lie algebra).

Proposition

$$
\mathbb{E} \text { 1-nilpotent } \Longleftrightarrow \mathbb{E} \text { abelian. }
$$

Definition

A reflective subcategory \mathbb{D} of \mathbb{E} is a Birkhoff subcategory iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E}.

Lemma
This is the case iff for each regular epi $f: X \rightarrow Y$ the reflection $I: \mathbb{E} \rightarrow \mathbb{D}$ induces a cocartesian naturality square of reg. epi's

Proposition

The subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E}

Definition

A reflective subcategory \mathbb{D} of \mathbb{E} is a Birkhoff subcategory iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E}.

Lemma

This is the case iff for each regular epi $f: X \rightarrow Y$ the reflection $I: \mathbb{E} \rightarrow \mathbb{D}$ induces a cocartesian naturality square of reg. epi's

$$
\begin{aligned}
& X \xrightarrow{\eta x} I(X) \\
& \begin{array}{c}
f \\
Y \underset{\eta_{Y}}{\longrightarrow} I(Y)
\end{array}
\end{aligned}
$$

Proposition

The subcategory $\mathrm{Nil}^{n}(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E}.

Definition

A reflective subcategory \mathbb{D} of \mathbb{E} is a Birkhoff subcategory iff \mathbb{D} is closed under taking subobjects and quotients in \mathbb{E}.

Lemma

This is the case iff for each regular epi $f: X \rightarrow Y$ the reflection $I: \mathbb{E} \rightarrow \mathbb{D}$ induces a cocartesian naturality square of reg. epi's

$$
\begin{aligned}
& X \xrightarrow{\eta x} I(X) \\
& f \downarrow \quad{ }^{*} /(f) \\
& Y \underset{\eta_{Y}}{ } I(Y)
\end{aligned}
$$

Proposition

The subcategory $\operatorname{Nil}^{n}(\mathbb{E})$ is a reflective Birkhoff subcategory of \mathbb{E}.

Lemma

The first Birkhoff reflection $I^{1}: \mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is abelianization and $\mathrm{Nil}^{1}(\mathbb{E})$ is the full subcategory of abelian group objects of \mathbb{E}.

Lemma
The relative Birkhoff reflections $I^{n, n+1}: \operatorname{Nil}^{n+1}(\mathbb{E}) \rightarrow \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}\left(\operatorname{Nil}^{n+1}(\mathbb{E})\right)=\operatorname{Nil}^{n}(\mathbb{E})$ are central reflections.

[^0]
Lemma

The first Birkhoff reflection $I^{1}: \mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is abelianization and $\mathrm{Nil}^{1}(\mathbb{E})$ is the full subcategory of abelian group objects of \mathbb{E}.

Lemma

The relative Birkhoff reflections $I^{n, n+1}: \operatorname{Nil}^{n+1}(\mathbb{E}) \rightarrow \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}\left(\mathrm{Nil}^{n+1}(\mathbb{E})\right)=\mathrm{Nil}^{n}(\mathbb{E})$ are central reflections.

[^1]
Lemma

The first Birkhoff reflection $I^{1}: \mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is abelianization and $\mathrm{Nil}^{1}(\mathbb{E})$ is the full subcategory of abelian group objects of \mathbb{E}.

Lemma

The relative Birkhoff reflections $I^{n, n+1}: \operatorname{Nil}^{n+1}(\mathbb{E}) \rightarrow \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}\left(\mathrm{Nil}^{n+1}(\mathbb{E})\right)=\mathrm{Nil}^{n}(\mathbb{E})$ are central reflections.

[^2]
Lemma

The first Birkhoff reflection $I^{1}: \mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is abelianization and $\mathrm{Nil}^{1}(\mathbb{E})$ is the full subcategory of abelian group objects of \mathbb{E}.

Lemma

The relative Birkhoff reflections $I^{n, n+1}: \operatorname{Nil}^{n+1}(\mathbb{E}) \rightarrow \operatorname{Nil}^{n}(\mathbb{E})$ defined by $\operatorname{Nil}^{n}\left(\operatorname{Nil}^{n+1}(\mathbb{E})\right)=\operatorname{Nil}^{n}(\mathbb{E})$ are central reflections.

Theorem

The unit of a central reflection is pointwise an affine extension. Any morphism inverted by a central reflection is affine.

Definition (Fibration of "points", Bourn '96)

Let $\operatorname{Pt}_{X}(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \rightarrow Y$ induces an adjunction $f_{!}: \operatorname{Pt}_{X}(\mathbb{E}) \leftrightarrows \operatorname{Pt}_{Y}(\mathbb{E}): f^{*}$. A morphism f is affine iff $\left(f_{!}, f^{*}\right)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism f
 in groups

Definition (Fibration of "points", Bourn '96)

Let $\operatorname{Pt}_{X}(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \rightarrow Y$ induces an adjunction $f_{!}: \operatorname{Pt} X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_{Y}(\mathbb{E}): f^{*}$. A morphism f is affine iff $\left(f_{!}, f^{*}\right)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f: G \rightarrow X$ in groups

Corollary (Gray '12)
For $\mathbb{E}=($ groups $)$ or $\mathbb{E}=($ Lie algebras $)$, pointed base-change $f^{*}: \operatorname{Pt}_{\mathbb{E}}(Y) \rightarrow \mathrm{Pt}_{\mathbb{E}}(X)$ has a left adjoint $f_{!}$and a right adjoint f_{*}

Definition (Fibration of "points", Bourn '96)

Let $\operatorname{Pt}_{X}(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \rightarrow Y$ induces an adjunction $f_{!}: \operatorname{Pt} X(\mathbb{E}) \leftrightarrows \operatorname{Pt}(\mathbb{E}): f^{*}$. A morphism f is affine iff $\left(f_{!}, f^{*}\right)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f: G \rightarrow X$ in groups

- exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;
- determines (and is determined by) a group homomorphism $\phi: X \rightarrow \operatorname{Aut}(K[f])$, i.e. an internal X-representation.

Corollary (Gray '12)

For $\mathbb{E}=($ groups $)$ or $\mathbb{E}=($ Lie algebras $)$, pointed base-change

Definition (Fibration of "points", Bourn '96)

Let $\operatorname{Pt}_{X}(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \rightarrow Y$ induces an adjunction $f_{!}: \operatorname{Pt} X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_{Y}(\mathbb{E}): f^{*}$. A morphism f is affine iff $\left(f_{!}, f^{*}\right)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f: G \rightarrow X$ in groups

- exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;
- determines (and is determined by) a group homomorphism $\phi: X \rightarrow \operatorname{Aut}(K[f])$, i.e. an internal X-representation.

Definition (Fibration of "points", Bourn '96)

Let $\operatorname{Pt}_{X}(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \rightarrow Y$ induces an adjunction $f_{!}: \operatorname{Pt} X(\mathbb{E}) \leftrightarrows \operatorname{Pt}_{Y}(\mathbb{E}): f^{*}$. A morphism f is affine iff $\left(f_{!}, f^{*}\right)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f: G \rightarrow X$ in groups

- exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;
- determines (and is determined by) a group homomorphism $\phi: X \rightarrow \operatorname{Aut}(K[f])$, i.e. an internal X-representation.

Definition (Fibration of "points", Bourn '96)

Let $\operatorname{Pt}_{X}(\mathbb{E})$ be the category of split epis of \mathbb{E} with codomain X. Each $f: X \rightarrow Y$ induces an adjunction $f_{!}: \operatorname{Pt} X(\mathbb{E}) \leftrightarrows \operatorname{Pt}(\mathbb{E}): f^{*}$. A morphism f is affine iff $\left(f_{!}, f^{*}\right)$ is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism $f: G \rightarrow X$ in groups

- exhibits G as a semi-direct product $X \ltimes_{\phi} K[f]$;
- determines (and is determined by) a group homomorphism $\phi: X \rightarrow \operatorname{Aut}(K[f])$, i.e. an internal X-representation.

Corollary (Gray '12)

For $\mathbb{E}=($ groups $)$ or $\mathbb{E}=($ Lie algebras $)$, pointed base-change $f^{*}: \mathrm{Pt}_{\mathbb{E}}(Y) \rightarrow \mathrm{Pt}_{\mathbb{E}}(X)$ has a left adjoint $f_{!}$and a right adjoint f_{*}.

Proposition

Pointed base-change along regular epi's is fully faithful.

Proposition

A regular epi $f: X \rightarrow Y$ is an affine extension iff for all objects Z either of the following two squares is cartesian

Corollary (for semi-abelian categories)

$f: X \rightarrow Y$ affine $\Longleftrightarrow f \diamond Z: X \diamond Z \cong Y \diamond Z$ invertible $\forall Z$
$X \diamond Z=K[\theta x, z]=$ co-smash product (Carboni-Janelidze '03).

Proposition

Pointed base-change along regular epi's is fully faithful.

Proposition

A regular epi $f: X \rightarrow Y$ is an affine extension iff for all objects Z either of the following two squares is cartesian

$$
\begin{aligned}
& X+Z \xrightarrow{f+Z} Y+Z \\
& X+Z \xrightarrow{f+Z} Y+Z \\
& \stackrel{\pi_{X}^{Z}}{\downarrow} \xrightarrow{\downarrow} \xrightarrow{\pi_{Y}^{z}} \underset{\downarrow}{\downarrow} \\
& \begin{array}{c}
\theta_{X, Z} \\
\forall \times Z \xrightarrow[f \times Z]{ } Y^{\theta_{Y, Z}} \times Z
\end{array}
\end{aligned}
$$

\square
\square

Proposition

Pointed base-change along regular epi's is fully faithful.

Proposition

A regular epi $f: X \rightarrow Y$ is an affine extension iff for all objects Z either of the following two squares is cartesian

$$
\begin{aligned}
& X+Z \xrightarrow{f+Z} Y+Z \quad X+Z \xrightarrow{f+Z} Y+Z
\end{aligned}
$$

Corollary (for semi-abelian categories)
$f: X \rightarrow Y$ affine $\Longleftrightarrow f \diamond Z: X \diamond Z \cong Y \diamond Z$ invertible $\forall Z$
$X \diamond Z=K\left[\theta_{X, Z}\right]=$ co-smash product (Carboni-Janelidze '03).

Theorem

\mathbb{E} is n-nilpotent iff for all X, Y the $\operatorname{map} \theta X, Y: X+Y \rightarrow X \times Y$ exhibits $X+Y$ as an ($n-1$)-fold central extension of $X \times Y$.

Proof.

Corollary

\mathbb{E} 2-nilpotent of $\theta_{x, Y}$ central extension of $\theta_{X, Y}$ affine extension.

Theorem

\mathbb{E} is n-nilpotent iff for all X, Y the map $\theta_{X, Y}: X+Y \rightarrow X \times Y$ exhibits $X+Y$ as an ($n-1$)-fold central extension of $X \times Y$.

Proof.

Corollary
\mathbb{E} 2-nilpotent iff $\theta_{X . Y}$ central extension iff $\theta_{X .}, y$ affine extension.

Theorem

\mathbb{E} is n-nilpotent iff for all X, Y the map $\theta_{X, Y}: X+Y \rightarrow X \times Y$ exhibits $X+Y$ as an ($n-1$)-fold central extension of $X \times Y$.

Proof.

$$
\begin{array}{cc}
X \diamond X>X+X \xrightarrow{\theta_{X, X}} X \times X \\
\downarrow & \\
{[X, X]>} & \delta_{X}^{2}
\end{array}
$$

$\theta_{X, X}(n-1)$-fold central ext. $\Longrightarrow \eta_{X}^{1}(n-1)$-fold central ext.

Corollary

\mathbb{E} 2-nilpotent iff $\theta_{X, Y}$ central extension iff $\theta_{X, Y}$ affine extension

Theorem

\mathbb{E} is n-nilpotent iff for all X, Y the map $\theta_{X, Y}: X+Y \rightarrow X \times Y$ exhibits $X+Y$ as an ($n-1$)-fold central extension of $X \times Y$.

Proof.

$$
\begin{array}{cc}
X \diamond X>X+X \xrightarrow{\theta_{X, X}} X \times X \\
\downarrow & \\
{[X, X]>} & \delta_{X}^{2} \downarrow
\end{array} \begin{gathered}
\downarrow \\
\\
\\
\\
\\
\eta_{X}^{1}
\end{gathered} I^{1}(X)
$$

$\theta_{X, X}(n-1)$-fold central ext. $\Longrightarrow \eta_{X}^{1}(n-1)$-fold central ext. \square

Corollary
\mathbb{E} 2-nilpotent iff $\theta_{X, Y}$ central extension iff $\theta_{X, Y}$ affine extension

Theorem

\mathbb{E} is n-nilpotent iff for all X, Y the map $\theta_{X, Y}: X+Y \rightarrow X \times Y$ exhibits $X+Y$ as an ($n-1$)-fold central extension of $X \times Y$.

Proof.

$$
\begin{aligned}
& X \diamond X>X+X \xrightarrow{\theta_{X, x}} X \times X \\
& {[X, X]>\stackrel{\delta_{X}^{2}}{\stackrel{\downarrow}{*}} \underset{\longrightarrow}{\stackrel{\eta_{X}^{1}}{\longrightarrow} I^{1}(X)} \stackrel{\downarrow}{\downarrow}}
\end{aligned}
$$

$\theta_{X, X}(n-1)$-fold central ext. $\Longrightarrow \eta_{X}^{1}(n-1)$-fold central ext. \square

Corollary

\mathbb{E} 2-nilpotent iff $\theta_{X, Y}$ central extension iff $\theta_{X, Y}$ affine extension.

Definition (Goodwillie-cubes ${ }_{\chi_{1}, \ldots, \chi_{n}}$ for $n=2,3$)

Definition (Goodwillie-cubes $\bar{\Xi}_{x_{1}, \ldots, x_{n}}$ for $n=2,3$)

Definition (Goodwillie-cubes $\bar{E}_{1}, \ldots, x_{n}$ for $n=2,3$)

$$
\Xi_{x_{1}, x_{2}} \stackrel{x_{1}+X_{2} \longrightarrow x_{1}}{\dot{x}_{2} \longrightarrow \star_{\mathbb{E}}}
$$

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}=\lim _{[0,1]^{n} \backslash\{(0, \ldots, 0)\}} \stackrel{\check{三}}{ }$ (limit of the punctured cube);
- comparison map $\theta X_{1}, \ldots, X_{n}: X_{1}+\cdots+X_{n} \rightarrow P_{X_{1}, \ldots, X_{n}}$;
- $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\theta X_{1}, \ldots, X_{n}\right]=$ "total kernel" of $\equiv_{x_{1}} \ldots X_{n}$;
- The identity functor of \mathbb{E} is said to be of degree $\leq n$ if $\bar{X}_{1}, \ldots, X_{n+1}$ is cartesian, i.e. $\theta_{X_{1}, \ldots, X_{n+1}}$ invertible.

Example (linear identity functors)

Proposition (for semi-abelian categories)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}=\lim _{\leftarrow}[0,1]^{n} \backslash\{(0, \ldots, 0)\}$ (limit of the punctured cube);
- comparison map $\theta X_{1}, \ldots, X_{n}: X_{1}+\cdots+X_{n} \rightarrow P_{X_{1}, \ldots, X_{n}}$;
- $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\theta x_{1}, \ldots, X_{n}\right]=$ "total kernel" of $\equiv x_{1}, \ldots, X_{n}$;
- The identity functor of \mathbb{E} is said to be of degree $\leq n$ if ${ }^{X_{1}, \ldots, X_{n+1}}$ is cartesian, i.e. $\theta_{x_{1}, \ldots, X_{n+1}}$ invertible.

Example (linear identity functors)

Proposition (for semi-abelian categories)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}=\lim _{\leftrightarrows[0,1]^{n} \backslash\{(0, \ldots, 0)\}} \stackrel{\sum}{\overline{=}}$ (limit of the punctured cube);
- comparison map $\theta_{X_{1}, \ldots, X_{n}}: X_{1}+\cdots+X_{n} \rightarrow P_{X_{1}, \ldots, X_{n}}$;
- $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\theta x_{1}, \ldots, x_{n}\right]=$ "total kernel" of $_{x_{1}}, \ldots, x_{n}$;
- The identity functor of \mathbb{E} is said to be of degree $\leq n$ if三 x_{1}, \ldots, X_{n+1} is cartesian, i.e. $\theta_{X_{1}, \ldots, X_{n+1}}$ invertible.

Example (linear identity functors)

Proposition (for semi-abelian categories)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}=\lim _{\leftrightarrows 0,1]^{n} \backslash\{(0, \ldots, 0)\}} \stackrel{\doteq}{\Xi}$ (limit of the punctured cube);
- comparison map $\theta_{X_{1}, \ldots, X_{n}}: X_{1}+\cdots+X_{n} \rightarrow P_{X_{1}, \ldots, X_{n}}$;
- $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\theta_{X_{1}, \ldots, X_{n}}\right]=$ "total kernel" of $\equiv x_{1}, \ldots, X_{n}$;
- The identity functor of \mathbb{E} is said to be of degree $\leq n$ if ${ } X_{1}, \ldots, X_{n+1}$ is cartesian, i.e. $\theta_{X_{1}, \ldots, X_{n+1}}$ invertible.

Example (inear identity functors)

Proposition (for semi-abelian categories)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}=\lim _{[0,1]^{n} \backslash\{(0, \ldots, 0)\}} \stackrel{\doteq}{\bar{E}}$ (limit of the punctured cube);
- comparison map $\theta_{X_{1}, \ldots, X_{n}}: X_{1}+\cdots+X_{n} \rightarrow P_{X_{1}, \ldots, X_{n}}$;
- $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\theta_{X_{1}, \ldots, X_{n}}\right]=$ "total kernel" of $\equiv X_{1}, \ldots, X_{n}$;
- The identity functor of \mathbb{E} is said to be of degree $\leq n$ if三 x_{1}, \ldots, X_{n+1} is cartesian, i.e. $\theta_{X_{1}, \ldots, X_{n+1}}$ invertible.

Example (linear identity functors)

Proposition (for semi-abelian categories)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}=\lim _{\leftarrow}[0,1]^{n} \backslash\{(0, \ldots, 0)\}$ (limit of the punctured cube);
- comparison map $\theta_{X_{1}, \ldots, X_{n}}: X_{1}+\cdots+X_{n} \rightarrow P_{X_{1}, \ldots, X_{n}}$;
- $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\theta_{\left.X_{1}, \ldots, X_{n}\right]}=\right.$ "total kernel" of $\bar{X}_{1}, \ldots, X_{n}$;
- The identity functor of \mathbb{E} is said to be of degree $\leq n$ if三 x_{1}, \ldots, X_{n+1} is cartesian, i.e. $\theta_{X_{1}, \ldots, X_{n+1}}$ invertible.

Example (linear identity functors)

- $\theta_{X_{1}, X_{2}}: X_{1}+X_{2} \rightarrow X_{1} \times X_{2}$, i.e. $\operatorname{cr}_{2}\left(X_{1}, X_{2}\right)=X_{1} \diamond X_{2}$
$2^{\text {nd }}$ cross-effect $=$ co-smash product
- \mathbb{E} has linear identity functor iff \mathbb{E}, is a linear category !

Proposition (for semi-abelian categories)
$c r_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\pi_{1}\right] \cap \cdots \cap K\left[\pi_{n}\right] \quad$ (Hartl-Van der Linden '13)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}=\lim _{\leftarrow}[0,1]^{n} \backslash\{(0, \ldots, 0)\}$ (limit of the punctured cube);
- comparison map $\theta_{X_{1}, \ldots, X_{n}}: X_{1}+\cdots+X_{n} \rightarrow P_{X_{1}, \ldots, X_{n}}$;
- $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\theta_{X_{1}, \ldots, X_{n}}\right]=$ "total kernel" of $\equiv x_{1}, \ldots, X_{n}$;
- The identity functor of \mathbb{E} is said to be of degree $\leq n$ if三 x_{1}, \ldots, X_{n+1} is cartesian, i.e. $\theta_{X_{1}, \ldots, X_{n+1}}$ invertible.

Example (linear identity functors)

- $\theta_{X_{1}, X_{2}}: X_{1}+X_{2} \rightarrow X_{1} \times X_{2}$, i.e. $\operatorname{cr}_{2}\left(X_{1}, X_{2}\right)=X_{1} \diamond X_{2}$ $2^{\text {nd }}$ cross-effect $=$ co-smash product
- \mathbb{E} has linear identity functor iff \mathbb{E} is a linear category !

Proposition (for semi-abelian categories)
$c r_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\pi_{1}\right] \cap \cdots \cap K\left[\pi_{n}\right] \quad$ (Hartl-Van der Linden '13)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}=\lim _{\leftrightarrows 0,1]^{n} \backslash\{(0, \ldots, 0)\}} \stackrel{\doteq}{\Xi}$ (limit of the punctured cube);
- comparison map $\theta_{X_{1}, \ldots, X_{n}}: X_{1}+\cdots+X_{n} \rightarrow P_{X_{1}, \ldots, X_{n}}$;
- $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\theta_{X_{1}, \ldots, X_{n}}\right]=$ "total kernel" of $\equiv x_{1}, \ldots, X_{n}$;
- The identity functor of \mathbb{E} is said to be of degree $\leq n$ if三 x_{1}, \ldots, X_{n+1} is cartesian, i.e. $\theta_{X_{1}, \ldots, X_{n+1}}$ invertible.

Example (linear identity functors)

- $\theta_{X_{1}, X_{2}}: X_{1}+X_{2} \rightarrow X_{1} \times X_{2}$, i.e. $c r_{2}\left(X_{1}, X_{2}\right)=X_{1} \diamond X_{2}$ $2^{\text {nd }}$ cross-effect $=$ co-smash product
- \mathbb{E} has linear identity functor iff \mathbb{E} is a linear category !

Proposition (for semi-abelian categories) $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\pi_{1}\right] \cap \cdots \cap K\left[\pi_{n}\right] \quad$ (Hartl-Van der Linden '13)

Definition (cubical cross-effects)

- $P_{X_{1}, \ldots, X_{n}}=\lim _{\leftarrow}[0,1]^{n} \backslash\{(0, \ldots, 0)\}$ (limit of the punctured cube);
- comparison map $\theta_{X_{1}, \ldots, X_{n}}: X_{1}+\cdots+X_{n} \rightarrow P_{X_{1}, \ldots, X_{n}}$;
- $\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\theta_{X_{1}, \ldots, X_{n}}\right]=$ "total kernel" of $X_{X_{1}, \ldots, X_{n}}$;
- The identity functor of \mathbb{E} is said to be of degree $\leq n$ if三 x_{1}, \ldots, X_{n+1} is cartesian, i.e. $\theta_{X_{1}, \ldots, X_{n+1}}$ invertible.

Example (linear identity functors)

- $\theta_{X_{1}, X_{2}}: X_{1}+X_{2} \rightarrow X_{1} \times X_{2}$, i.e. $\operatorname{cr}_{2}\left(X_{1}, X_{2}\right)=X_{1} \diamond X_{2}$ $2^{\text {nd }}$ cross-effect $=$ co-smash product
- \mathbb{E} has linear identity functor iff \mathbb{E} is a linear category !

Proposition (for semi-abelian categories)

$$
\operatorname{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)=K\left[\pi_{1}\right] \cap \cdots \cap K\left[\pi_{n}\right] \quad \text { (Hartl-Van der Linden '13) }
$$

Proposition

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is n-nilpotent.

```
Theorem
\mathbb{E} has a quadratic identity functor iff \mathbb{E}\mathrm{ is 2-nilpotent and moreover}
one of the following two conditions is satisfied for all X,Y,Z
```

Corollary
If \mathbb{E} is algebraically distributive then $\operatorname{Nil}^{2}(\mathbb{E})$ has a quadratic identity functor

Proposition

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is n-nilpotent.

Theorem

\mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z :

Corollary

If \mathbb{E} is algebraically distributive then $\operatorname{Nil}^{2}(\mathbb{E})$ has a quadratic
identity functor

Proposition

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is n-nilpotent.

Theorem

\mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z :

- $(X \times Y)+Z \cong(X+Z) \times_{Z}(Y+Z)$ (alg. codistributivity)

Corollary
If \mathbb{E} is algebraically distributive then $\operatorname{Nil}^{2}(\mathbb{E})$ has a quadratic
identity functor

Proposition

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is n-nilpotent.

Theorem

\mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z :

- $(X \times Y)+Z \cong(X+Z) \times_{Z}(Y+Z)$ (alg. codistributivity)
- $(X \times Z)+z(Y \times Z) \cong(X+Y) \times Z$ (alg. distributivity)

Corollary
If \mathbb{E} is algebraically distributive then $\operatorname{Nil}^{2}(\mathbb{E})$ has a quadratic identity functor

Proposition

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is n-nilpotent.

Theorem

\mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z :

- $(X \times Y)+Z \cong(X+Z) \times_{Z}(Y+Z)$ (alg. codistributivity)
- $(X \times Z)+z(Y \times Z) \cong(X+Y) \times Z$ (alg. distributivity)

Corollary

If \mathbb{E} is algebraically distributive then $\operatorname{Nil}^{2}(\mathbb{E})$ has a quadratic identity functor.

Proposition

If \mathbb{E} has an identity functor of degree $\leq n$ then \mathbb{E} is n-nilpotent.

Theorem

\mathbb{E} has a quadratic identity functor iff \mathbb{E} is 2-nilpotent and moreover one of the following two conditions is satisfied for all X, Y, Z :

- $(X \times Y)+Z \cong(X+Z) \times_{Z}(Y+Z)$ (alg. codistributivity)
- $(X \times Z)+z(Y \times Z) \cong(X+Y) \times Z$ (alg. distributivity)

Corollary

If \mathbb{E} is algebraically distributive then $\operatorname{Nil}^{2}(\mathbb{E})$ has a quadratic identity functor. In particular, iterated Huq=Higgins commutator: $[X,[X, X]]=[X, X, X]$ (cf. Cigoli-Gray-Van der Linden '14).

Definition (n-additivity)

$$
\begin{aligned}
c r_{n+1}(X, \ldots, X)> & X+\cdots+X \xrightarrow{\theta_{X}, \ldots, x}>P_{X, \ldots, X} \\
\forall & \delta_{X}^{n+1} \\
{[X, \ldots, X]>} & X /[X, \ldots, X]
\end{aligned}
$$

X is n-additive iff δ_{X}^{n+1} factors through θ_{X}, \ldots, X. For semi-abelian \mathbb{E}, this amounts to vanishing Higgins commutator of length $n+1$.

Proposition (cf. Hart-Van der Linden '13)

Every n-additive object is n-nilpotent.

Theorem

The identity functor is of degree $\leq n$ iff all objects are n-additive

Definition (n-additivity)

$$
\begin{aligned}
c_{n+1}(X, \ldots, X)> & X+\cdots+X \xrightarrow{\theta_{X}, \ldots, x}>P_{X, \ldots, X} \\
\forall & \delta_{X}^{n+1} \\
{[X, \ldots, X]>} & \nsim
\end{aligned}
$$

X is n-additive iff δ_{X}^{n+1} factors through θ_{X}, \ldots, X. For semi-abelian \mathbb{E}, this amounts to vanishing Higgins commutator of length $n+1$.

Proposition (cf. Hartl-Van der Linden '13)

Every n-additive object is n-nilpotent.

The identity functor is of degree $\leq n$ iff all objects are n-additive

Definition (n-additivity)

$$
\begin{aligned}
& \operatorname{cr}_{n+1}(X, \ldots, X)>X+\cdots+X \xrightarrow{\theta \times, \ldots, x} P_{X, \ldots, X} \\
& \delta_{X}^{n+1} \downarrow \downarrow \downarrow \\
& {[X, \ldots, X]>X \longleftrightarrow X /[X, \ldots, X]}
\end{aligned}
$$

X is n-additive iff δ_{X}^{n+1} factors through θ_{X}, \ldots, X. For semi-abelian \mathbb{E}, this amounts to vanishing Higgins commutator of length $n+1$.

Proposition (cf. Hartl-Van der Linden '13)

Every n-additive object is n-nilpotent.

Theorem

The identity functor is of degree $\leq n$ iff all objects are n-additive.

Definition (Algebraic distributivity/coherence/extensivity of \mathbb{E})

(a) alg distributive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}(\star) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;
(b) alg coherent: $f^{*}: \operatorname{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ coherent (CGV '14);
(c) alg extensive: $f^{*}: \mathrm{Pt}_{\boldsymbol{\pi}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{T}}(Z)$ binarv-sum-preserving.

Lemma

$$
(\mathrm{c}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{a})
$$

Definition (θ-linearity)

\square

Example

Ahelianization $\mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is θ-linear

Definition (Algebraic distributivity/coherence/extensivity of \mathbb{E})

(a) alg distributive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}(\star) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;
(b) alg coherent: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ coherent (CGV '14);
(c) alg extensive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

Lemma

$$
(\mathrm{c}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{a})
$$

Definition (θ-linearity)

\square

Example

Abelianization $\mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is θ-linear

Definition (Algebraic distributivity/coherence/extensivity of \mathbb{E})

(a) alg distributive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}(\star) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;
(b) alg coherent: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ coherent (CGV '14);

(c) alg extensive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

Lemma

Definition (θ-linearity)

$F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is θ-linear iff $F(\theta \times, y)$ invertible $\forall X, Y$

Example

Ahelianization $\mathbb{E} \rightarrow \mathrm{Nil}^{1}(\mathbb{E})$ is θ-linear

Definition (Algebraic distributivity/coherence/extensivity of \mathbb{E})

(a) alg distributive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}(\star) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;
(b) alg coherent: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ coherent (CGV '14);
(c) alg extensive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

Lemma

Definition (θ-linearity)

\square

Example
Abelianization $\mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is θ-linear

Definition (Algebraic distributivity/coherence/extensivity of \mathbb{E})

(a) alg distributive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}(\star) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;
(b) alg coherent: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ coherent (CGV '14);
(c) alg extensive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

Lemma

$$
(c) \Longrightarrow(b) \Longrightarrow(a)
$$

Definition (θ-linearity)

$F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is θ-linear iff $F(\theta X, Y)$ invertible $\forall X, Y$

Example

Ahelianization $\mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is θ-linear

Definition (Algebraic distributivity/coherence/extensivity of \mathbb{E})

(a) alg distributive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}(\star) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;
(b) alg coherent: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ coherent (CGV '14);
(c) alg extensive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

Lemma

$$
(c) \Longrightarrow(b) \Longrightarrow(a)
$$

Definition (θ-linearity)

$F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is θ-linear iff $F\left(\theta_{X, Y}\right)$ invertible $\forall X, Y$.

Example
Abelianization $\mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is θ-linear

Definition (Algebraic distributivity/coherence/extensivity of \mathbb{E})

(a) alg distributive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}(\star) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving;
(b) alg coherent: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ coherent (CGV '14);
(c) alg extensive: $f^{*}: \mathrm{Pt}_{\mathbb{E}}\left(Z^{\prime}\right) \rightarrow \mathrm{Pt}_{\mathbb{E}}(Z)$ binary-sum-preserving.

Lemma

$$
(c) \Longrightarrow(b) \Longrightarrow(a)
$$

Definition (θ-linearity)

$F: \mathbb{E} \rightarrow \mathbb{E}^{\prime}$ is θ-linear iff $F\left(\theta_{X, Y)}\right.$ invertible $\forall X, Y$.

Example

Abelianization $\mathbb{E} \rightarrow \operatorname{Nil}^{1}(\mathbb{E})$ is θ-linear.

Proposition

If \mathbb{E} is alg extensive and has multi- θ-linear n-th cross-effect then \mathbb{E} has an identity functor of degree $\leq n$.

Proposition

Any alg extensive n-nilpotent \mathbb{E} has multi- θ-linear n-th cross-effect.

Theorem
If \mathbb{E} is alg extensive then $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity of degree $\leq n$ Each n-nilpotent object is n-additive (iterated Huq=Higgins).

Examples

This is the case for the category of groups, resp. Lie algebras.

Proposition

If \mathbb{E} is alg extensive and has multi- θ-linear n-th cross-effect then \mathbb{E} has an identity functor of degree $\leq n$.

Proposition

Any alg extensive n-nilpotent \mathbb{E} has multi- θ-linear n-th cross-effect.

Theorem

If \mathbb{E} is alg extensive then $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity of degree $\leq n$
Each n-nilpotent object is n-additive (iterated Huq=Higgins).

Examples

This is the case for the category of groups, resp. Lie algebras.

Proposition

If \mathbb{E} is alg extensive and has multi- θ-linear n-th cross-effect then \mathbb{E} has an identity functor of degree $\leq n$.

Proposition

Any alg extensive n-nilpotent \mathbb{E} has multi- θ-linear n-th cross-effect.

Theorem

If \mathbb{E} is alg extensive then $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity of degree $\leq n$.
Each n-nilpotent object is n-additive (iterated Huq=Higgins).

Proposition

If \mathbb{E} is alg extensive and has multi- θ-linear n-th cross-effect then \mathbb{E} has an identity functor of degree $\leq n$.

Proposition

Any alg extensive n-nilpotent \mathbb{E} has multi- θ-linear n-th cross-effect.

Theorem

If \mathbb{E} is alg extensive then $\operatorname{Nil}^{n}(\mathbb{E})$ has an identity of degree $\leq n$.
Each n-nilpotent object is n-additive (iterated Huq=Higgins).

Examples

This is the case for the category of groups, resp. Lie algebras.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- we ${ }_{E}$ fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- ($\left.\operatorname{cof}_{\mathbb{E}}, w_{\mathbb{F}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}, \operatorname{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \mathrm{Ho}(\mathbb{E})=\mathbb{E} /$ we $_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen adjunction $F: \mathbb{E} \leftrightarrows \mathbb{E}^{\prime}: G$ is an adjunction such that
F preserves cofibrations and G preserves fibrations.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- we \mathbb{E} fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}, w_{\mathbb{E}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}, \operatorname{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \mathrm{Ho}(\mathbb{E})=\mathbb{E} / \mathrm{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen adjunction $F: \mathbb{E} \leftrightarrows \mathbb{E}^{\prime}: G$ is an adjunction such that
F preserves cofibrations and G preserves fibrations.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}$, we $_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- we ${ }_{E}$ fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}\right.$, we $\left._{\mathbb{E}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}, \operatorname{we}_{\mathbb{E}}, \operatorname{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists H o(\mathbb{E})=\mathbb{E} / \mathrm{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Ouillen adjunction $F: \mathbb{E} \leftrightarrows \mathbb{E} \mathbb{E}^{\prime} \cdot G$ is an adjunction such that
F preserves cofibrations and G preserves fibrations.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}$, we $_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- $\mathrm{we}_{\mathbb{E}}$ fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- ($\left.\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \mathrm{Ho}(\mathbb{E})=\mathbb{E} / \mathrm{we}_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen adjunction $F: \mathbb{E} \leftrightarrows \mathbb{E} \mathbb{E}^{\prime}: G$ is an adjunction such that
F preserves cofibrations and G preserves fibrations.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}$, we $_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- $\mathrm{we}_{\mathbb{E}}$ fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}, \operatorname{we}_{\mathbb{E}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}\right.$, we $\left._{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \mathrm{Ho}(\mathbb{E})=\mathbb{E} /$ we $_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)
A Quillen adjunction $F: \mathbb{E} \leftrightarrows \mathbb{E}^{\prime}: G$ is an adjunction such that
F preserves cofibrations and G preserves fibrations.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- we \mathbb{E} fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \mathrm{Ho}(\mathbb{E})=\mathbb{E} /$ we $_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen adjunction $F: \mathbb{E} \leftrightarrows \mathbb{E}^{\prime}: G$ is an adjunction such that F preserves cofibrations and G preserves fibrations.
A Quillen equivalence is a Quillen adjunction such that the derived adjunction $L F: \operatorname{Ho}(\mathbb{E}) \leftrightarrows \operatorname{Ho}\left(\mathbb{E}^{\prime}\right): R G$ is an equivalence.

Definition (Quillen model category)

A Quillen model structure on a bicomplete \mathbb{E} consists of three composable classes of morphisms $\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}$ such that

- we \mathbb{E} fulfills 2-out-of-3;
- $\left(\operatorname{cof}_{\mathbb{E}} \cap \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system;
- $\left(\operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}} \cap \mathrm{fib}_{\mathbb{E}}\right)$ is a weak factorization system.

Theorem (Quillen '66)

$\left(\mathbb{E}, \operatorname{cof}_{\mathbb{E}}, \mathrm{we}_{\mathbb{E}}, \mathrm{fib}_{\mathbb{E}}\right) \rightsquigarrow \exists \mathrm{Ho}(\mathbb{E})=\mathbb{E} /$ we $_{\mathbb{E}}$ within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen adjunction $F: \mathbb{E} \leftrightarrows \mathbb{E}^{\prime}: G$ is an adjunction such that F preserves cofibrations and G preserves fibrations.
A Quillen equivalence is a Quillen adjunction such that the derived adjunction $L F: \operatorname{Ho}(\mathbb{E}) \leftrightarrows \operatorname{Ho}\left(\mathbb{E}^{\prime}\right): R G$ is an equivalence.

Problem (Homotopy invariance)

Which constructions of \mathbb{E} carry over to $\operatorname{Ho}(\mathbb{E})$?

Example (pullback vs homotopy pullback)

Problem (Homotopy invariance)

Which constructions of \mathbb{E} carry over to $\operatorname{Ho}(\mathbb{E})$?

Example (pullback vs homotopy pullback)

Even if α, β, γ are we's, δ is NOT a we in general. Yet, if moreover $f, g, f^{\prime}, g^{\prime}$ are fibrations between fibrant objects, then δ is a we !

Problem (Homotopy invariance)

Which constructions of \mathbb{E} carry over to $\operatorname{Ho}(\mathbb{E})$?

Example (pullback vs homotopy pullback)

Even if α, β, γ are we's, δ is NOT a we in general. $f, g, f^{\prime}, g^{\prime}$ are fibrations between fibrant objects, then δ is a we

Problem (Homotopy invariance)

Which constructions of \mathbb{E} carry over to $\operatorname{Ho}(\mathbb{E})$?

Example (pullback vs homotopy pullback)

Even if α, β, γ are we's, δ is NOT a we in general. Yet, if moreover $f, g, f^{\prime}, g^{\prime}$ are fibrations between fibrant objects, then δ is a we !

Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

```
Theorem (Carboni-Kelly-Pedicchio '93)
A variety }\mp@subsup{V}{T}{}\mathrm{ of T-algebras is a Mal'cev variety if and only if
UT :s s}\mp@subsup{V}{T}{}->s\mathrm{ Sets takes values in fibrant simplicial sets.
```


Corollary

For each pointed Mal'cev variety $V_{T} \exists$ model structure on V_{T} sth

Theorem (Quillen '66)

- The adjunction $|-|:$ sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

For each pointed Mal'cev variety $V_{T} \exists$ model structure on V_{T} sth

Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

> Theorem (Carboni-Kelly-Pedicchio '93)
> A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary
For each pointed Mal'cev variety $V_{T} \exists$ model structure on $s V_{T}$ sth

Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary
For each pointed Mal'cev variety $V_{T} \exists$ model structure on $s V_{T}$ sth

Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary
For each pointed Mal'cev variety $V_{T} \exists$ model structure on $s V_{T}$ sth

Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

For each pointed Mal'cev variety $V_{T} \exists$ model structure on $s V_{T}$ sth

```
- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with h-trivial kernel
```


Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

For each pointed Mal'cev variety $V_{T} \exists$ model structure on $s V_{T}$ sth

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with h-trivial kernel.

Theorem (Quillen '66)

- The adjunction $|-|$: sSets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

For each pointed Mal'cev variety $V_{T} \exists$ model structure on $s V_{T}$ sth

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;

Theorem (Quillen '66)

- The adjunction $|-|: s$ Sets \leftrightarrows Top : Sing is a Quillen equivalence: the simplicial fibrations are the Kan fibrations;
- There is a canonical model structure on $s V_{T}$ whenever $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio '93)

A variety V_{T} of T-algebras is a Mal'cev variety if and only if $U_{T}: s V_{T} \rightarrow s$ Sets takes values in fibrant simplicial sets.

Corollary

For each pointed Mal'cev variety $V_{T} \exists$ model structure on $s V_{T}$ sth

- we's are the maps inducing a quasi-iso on Moore complexes;
- every regular epi is a fibration;
- trivial fibrations are the regular epi's with h-trivial kernel.

Proposition

For cofibrant objects X_{1}, \ldots, X_{n} in $s V_{T}$ the n-th "algebraic" cross-effect $\mathrm{cr}_{n}\left(X_{1}, \ldots, X_{n}\right)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X) \leq \operatorname{nil}_{2}^{T}(X) \leq \operatorname{nil}_{3}^{T}(X)$

Proposition

For cofibrant objects X_{1}, \ldots, X_{n} in $s V_{T}$ the n-th "algebraic" cross-effect $c r_{n}\left(X_{1}, \ldots, X_{n}\right)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which $\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
$\operatorname{nil}_{2}^{T}(X)=n$ iff n is the least integer for which δ_{x}^{n+1} factors up to homotopy through θ_{X},
- $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity of $s V_{T}$.

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X) \leq \operatorname{nil}_{2}^{T}(X) \leq \operatorname{nil}_{3}^{T}(X)$

Proposition

For cofibrant objects X_{1}, \ldots, X_{n} in $s V_{T}$ the n-th "algebraic" cross-effect $c r_{n}\left(X_{1}, \ldots, X_{n}\right)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which $\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
- $\operatorname{nil}_{2}^{T}(X)=n$ iff n is the least integer for which δ_{X}^{n+1} factors up
to homotopy through $\theta_{X, \ldots, X}: X+\cdots+X \rightarrow P_{X, \ldots, X}$;
- $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity of $s V_{T}$

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X) \leq \operatorname{nil}_{2}^{T}(X) \leq \operatorname{nil}_{3}^{T}(X)$

Proposition

For cofibrant objects X_{1}, \ldots, X_{n} in $s V_{T}$ the n-th "algebraic" cross-effect $c r_{n}\left(X_{1}, \ldots, X_{n}\right)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which $\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
- $\operatorname{nil}_{2}^{T}(X)=n$ iff n is the least integer for which δ_{X}^{n+1} factors up to homotopy through $\theta_{X, \ldots, X}: X+\cdots+X \rightarrow P_{X, \ldots, X}$;
- $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity of $s V_{T}$

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X)$ \square

Proposition

For cofibrant objects X_{1}, \ldots, X_{n} in $s V_{T}$ the n-th "algebraic" cross-effect $c r_{n}\left(X_{1}, \ldots, X_{n}\right)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which $\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
- $\operatorname{nil}_{2}^{T}(X)=n$ iff n is the least integer for which δ_{X}^{n+1} factors up to homotopy through $\theta_{X, \ldots, X}: X+\cdots+X \rightarrow P_{X, \ldots, X}$;
- $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity of $s V_{T}$.

Proposition

For cofibrant X in $s V_{T}$ one has nill ${ }_{1}^{T}(X)$

Proposition

For cofibrant objects X_{1}, \ldots, X_{n} in $s V_{T}$ the n-th "algebraic" cross-effect $c r_{n}\left(X_{1}, \ldots, X_{n}\right)$ is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in $s V_{T}$.

- $\operatorname{nil}_{1}^{T}(X)=n$ iff n is the least integer for which $\eta_{X}^{n}: X \rightarrow I^{n}(X)$ is a trivial fibration;
- nil ${ }_{2}^{T}(X)=n$ iff n is the least integer for which δ_{X}^{n+1} factors up to homotopy through $\theta_{X, \ldots, X}: X+\cdots+X \rightarrow P_{X, \ldots, X}$;
- $\operatorname{nil}_{3}^{T}(X)=n$ iff n is the least integer for which X is value of an n-excisive approximation of the identity of $s V_{T}$.

Proposition

For cofibrant X in $s V_{T}$ one has $\operatorname{nil}_{1}^{T}(X) \leq \operatorname{nil}_{2}^{T}(X) \leq \operatorname{nil}_{3}^{T}(X)$

Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration $(n+1)$-cubes to h-cartesian $(n+1)$-cubes.
Enough to check the following cofibration cubes $(n=3)$:

Proposition

Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration ($n+1$)-cubes to h-cartesian $(n+1)$-cubes.
Enough to check the following cofibration cubes ($n=3$):

[^3]
Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration $(n+1)$-cubes to h-cartesian $(n+1)$-cubes.
Enough to check the following cofibration cubes ($n=3$):

Proposition

- F 1-excisive if and only if $F \simeq \Omega F \sum$;
- 1-excisive endofunctors takes values in "infinite loop spaces"

Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration $(n+1)$-cubes to h-cartesian $(n+1)$-cubes.
Enough to check the following cofibration cubes ($n=3$):

Proposition

- F 1-excisive if and only if $F \simeq \Omega F \Sigma$;
- 1-excisive endofunctors takes values in "infinite loop spaces"

Definition (n-excisive functors, Goodwillie '92 and '03)

A homotopy functor is n-excisive if it takes cofibration $(n+1)$-cubes to h-cartesian $(n+1)$-cubes.
Enough to check the following cofibration cubes ($n=3$):

Proposition

- F 1-excisive if and only if $F \simeq \Omega F \Sigma$;
- 1-excisive endofunctors takes values in "infinite loop spaces".

Lemma

For n-excisive endofunctors F and cofibrant objects X_{1}, \ldots, X_{n+1}, the image-cube $F\left(\Xi_{\left.x_{1}, \ldots, x_{n+1}\right)}\right)$ is homotopy-cartesian, i.e. F is homotopically of degree $\leq n$.

```
Theorem (special case V 
The free-forgetful adjunction U:sGr\leftrightarrowssSets* : F breaks into two
adjunctions
```


Remark

Simplicial groups model loop spaces/loop maps, resp. based connected spaces and based maps. The free simpl. group gen. by a pointed simpl. set X is a model of $\Omega \Sigma|X|$, cf. James.

Lemma

For n-excisive endofunctors F and cofibrant objects X_{1}, \ldots, X_{n+1}, the image-cube $F\left(\Xi_{x_{1}, \ldots, x_{n+1}}\right)$ is homotopy-cartesian, i.e. F is homotopically of degree $\leq n$.

Theorem (special case $V_{T}=$ (groups), Kan '56, Quillen '66)

The free-forgetful adjunction $U: s G r \leftrightarrows s S^{\prime}$ ets $_{*}: F$ breaks into two adjunctions

the first of which is a Quillen equivalence.

> Remark
> Simplicial groups model loop spaces/loop maps, resp. based connected spaces and based maps. The free simpl. group gen. by a pointed simpl. set X is a model of $\Omega \Sigma|X|$, cf. James

Lemma

For n-excisive endofunctors F and cofibrant objects X_{1}, \ldots, X_{n+1}, the image-cube $F\left(\Xi_{x_{1}, \ldots, X_{n+1}}\right)$ is homotopy-cartesian, i.e. F is homotopically of degree $\leq n$.

Theorem (special case $V_{T}=$ (groups), Kan '56, Quillen '66)

The free-forgetful adjunction $U: s G r \leftrightarrows s S^{\prime} \operatorname{ets}_{*}: F$ breaks into two adjunctions

$$
s G r \underset{G}{\stackrel{W}{\rightleftarrows}} s \operatorname{Sets}_{r e d} \underset{\Sigma}{\stackrel{\Omega}{\rightleftarrows}} s \operatorname{Sets}_{*}
$$

the first of which is a Quillen equivalence.

Lemma

For n-excisive endofunctors F and cofibrant objects X_{1}, \ldots, X_{n+1}, the image-cube $F\left(\Xi_{x_{1}, \ldots, x_{n+1}}\right)$ is homotopy-cartesian, i.e. F is homotopically of degree $\leq n$.

Theorem (special case $V_{T}=$ (groups), Kan '56, Quillen '66)

The free-forgetful adjunction $U: s G r \leftrightarrows s \operatorname{Sets}_{*}: F$ breaks into two adjunctions

$$
s G r \underset{G}{\stackrel{W}{\rightleftarrows}} s \operatorname{Sets}_{r e d} \underset{\Sigma}{\stackrel{\Omega}{\rightleftarrows}} s \operatorname{Sets}_{*}
$$

the first of which is a Quillen equivalence.

Remark

Simplicial groups model loop spaces/loop maps, resp. based connected spaces and based maps. The free simpl. group gen. by a pointed simpl. set X is a model of $\Omega \Sigma|X|$, cf. James.

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

```
- nil \(_{1}^{G r}(G X)=\) nil \(_{\text {Berstein-Ganea }}(\Omega|X|)\);
- \(\operatorname{nil}_{2}^{G r}(G X)=\operatorname{cocat}_{\text {Hovey }}(|X|)\);
- \(\operatorname{nil}^{G r}(G X)=\) nilBiedermann-Dwyer \((\Omega|X|)\)
```


Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=$ nil $_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (Edred '13, Costoya-Scherer-Virue '15)

For any based connected space X one has

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{\operatorname{Gr}}(G X)=$ nil $_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

\square

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=\operatorname{nil}_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

\square

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=\operatorname{nil}_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$
\operatorname{nil}_{B G}(\Omega X) \leq \operatorname{cocat}_{H o v}(X) \leq \operatorname{nil}_{B D}(\Omega X)
$$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=\operatorname{nil}_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$
\operatorname{nil}_{B G}(\Omega X) \leq \operatorname{cocat}_{H o v}(X) \leq \operatorname{nil}_{B D}(\Omega X)
$$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

$\operatorname{cat}_{L S}(X) \leq n \Longleftrightarrow \exists$ open cover $X \subset U_{1} \cup \ldots \cup U_{n+1}$ sth.

deformed into the fat wedge $Q_{x} \ldots x=\left\{x \in X^{n+1} \mid \exists i: x_{i}=\star\right\}$.

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=\operatorname{nil}_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$
\operatorname{nil}_{B G}(\Omega X) \leq \operatorname{cocat}_{H o v}(X) \leq \operatorname{nil}_{B D}(\Omega X)
$$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

$\operatorname{cat}_{L S}(X) \leq n \Longleftrightarrow \exists$ open cover $X \subset U_{1} \cup \cdots \cup U_{n+1}$ sth.
$U_{i} \hookrightarrow X$ null-homotopic $\forall i$

Corollary (Berstein-Ganea '61, Hovey '93, Biedermann-Dwyer '10)

For a reduced simplical set X one has

- $\operatorname{nil}_{1}^{G r}(G X)=\operatorname{nil}_{\text {Berstein-Ganea }}(\Omega|X|)$;
- $\operatorname{nil}_{2}^{G r}(G X)=$ cocat $_{\text {Hovey }}(|X|)$;
- $\operatorname{nil}_{3}^{G r}(G X)=\operatorname{nil}_{\text {Biedermann-Dwyer }}(\Omega|X|)$.

Corollary (Eldred '13, Costoya-Scherer-Viruel '15)

For any based connected space X one has

$$
\operatorname{nil}_{B G}(\Omega X) \leq \operatorname{cocat}_{H o v}(X) \leq \operatorname{nil}_{B D}(\Omega X)
$$

Remark (Lusternik-Schnirelmann '34, Whitehead '56)

$\operatorname{cat}_{L S}(X) \leq n \Longleftrightarrow \exists$ open cover $X \subset U_{1} \cup \cdots \cup U_{n+1}$ sth.
$U_{i} \hookrightarrow X$ null-homotopic $\forall i \Longleftrightarrow$ the diagonal $X \rightarrow X^{n+1}$ can be deformed into the fat wedge $Q_{X, \ldots, X}=\left\{x \in X^{n+1} \mid \exists i: x_{i}=\star\right\}$.

[^0]: Theorem
 The unit of a central reflection is pointwise an affine extension Any morphism inverted by a central reflection is affine.

[^1]: Theorem
 The unit of a central reflection is pointwise an affine extension Any morphism inverted by a central reflection is affine.

[^2]: Theorem
 The unit of a central reflection is pointwise an affine extension Any morphism inverted by a central reflection is affine.

[^3]: Proposition

