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Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition

A group G is n-nilpotent if commutators of length n + 1 vanish:

[x1, [x2, [x3, . . . , [xn, xn+1] · · · ]]] = eG ∀x1, . . . , xn+1 ∈ G .

Definition

A central group extension is a surjective group homomorphism
f : G � H with kernel K [f ] contained in the center of G .

Lemma

A group G is n-nilpotent iff it is an n-fold central extension of the

trivial group, i.e. G
fn
� Gn−1

fn−1

� · · ·G2
f2
� G1

f1
� ? with fi central.

Problem

In which categories is there a notion of central extension ?
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Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition (Janelidze-Màrki-Tholen ’01)

A category is called semi-abelian if it is

σ-pointed (i.e. with null-object and binary sums);

exact (Barr ’71);

protomodular (Bourn ’91).

Proposition (Bourn ’96)

A pointed category with pullbacks is protomodular iff section
and kernel of every split epi f : X � Y strongly generate X ;

A σ-pointed category with pullbacks is protomodular iff for
every split epi f : X � Y with section sf : Y � X the
morphism <sf , if >: Y + K [f ]→ X is a strong epimorphism;

Any protomodular category is a Mal’cev category [CKP ’93],
i.e. reflexive relations are equivalence relations.
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Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition

A variety VT is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere ’63)

Each variety VT is determined by an algebraic theory ΘT where{
Ob ΘT = N;

ΘT (m, n) = AlgT (FT ({1, . . . ,m}),FT ({1, . . . , n})).

Theorem (Mal’cev)

The variety VT is a Mal’cev category iff ∃p ∈ ΘT (1, 3) such that

p∗(x , y , y) = x and p∗(x , x , y) = y for any T -algebra.

Example (Mal’cev operation for groups)

p(x , y , z) = xy−1z



Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition

A variety VT is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere ’63)

Each variety VT is determined by an algebraic theory ΘT where{
Ob ΘT = N;

ΘT (m, n) = AlgT (FT ({1, . . . ,m}),FT ({1, . . . , n})).

Theorem (Mal’cev)

The variety VT is a Mal’cev category iff ∃p ∈ ΘT (1, 3) such that

p∗(x , y , y) = x and p∗(x , x , y) = y for any T -algebra.

Example (Mal’cev operation for groups)

p(x , y , z) = xy−1z



Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition

A variety VT is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere ’63)

Each variety VT is determined by an algebraic theory ΘT where{
Ob ΘT = N;

ΘT (m, n) = AlgT (FT ({1, . . . ,m}),FT ({1, . . . , n})).

Theorem (Mal’cev)

The variety VT is a Mal’cev category iff ∃p ∈ ΘT (1, 3) such that

p∗(x , y , y) = x and p∗(x , x , y) = y for any T -algebra.

Example (Mal’cev operation for groups)

p(x , y , z) = xy−1z



Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition

A variety VT is the cat. of algebras for a finitary monad T on sets.

Theorem (Lawvere ’63)

Each variety VT is determined by an algebraic theory ΘT where{
Ob ΘT = N;

ΘT (m, n) = AlgT (FT ({1, . . . ,m}),FT ({1, . . . , n})).

Theorem (Mal’cev)

The variety VT is a Mal’cev category iff ∃p ∈ ΘT (1, 3) such that

p∗(x , y , y) = x and p∗(x , x , y) = y for any T -algebra.

Example (Mal’cev operation for groups)

p(x , y , z) = xy−1z



Algebraic and homotopical nilpotency

Central extensions and affine extensions

Basic hypothesis (on the ambient category E)

(E, ?E) is a σ-pointed exact Mal’cev category

e.g. any semi-abelian category or any pointed Mal’cev variety.

Lemma

Exact Mal’cev categories have reflexive coequalizers;
σ-pointed exact Mal’cev categories have all finite colimits.

Examples (of semi-abelian categories)

Groups, Lie algebras, cocommutative Hopf algebras over a field of
characteristic zero, loops, ...
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Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition (Centrality)

A subobject N of X is central iff the inclusion of N into X
commutes with the identity of X (in the sense of Huq).
An equivalence relation R on X is central iff R commutes with the
indiscrete equivalence relation on X (in the sense of Smith).

N × N ′ oo
(αX ,1N′ )

OO

(1N ,αN′ )

##

N ′

��

R ×X R ′ oo
(s0,1R′ )

OO

(1R ,s
′
0)

$$

R ′

t′1
��

N // X R
t0

// X

Proposition (Gran-Van der Linden ’08)

In a pointed protomodular category with pullbacks, a regular
epimorphism f : X � Y has a central kernel K [f ] if and only if
the kernel pair R[f ]⇒ X is a central equivalence relation.
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Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition (Nilpotency)

Central extension = regular epi with central kernel pair;

An n-nilpotent object is an n-fold central extension of ?E;

Niln(E) is the subcategory spanned by the n-nilpotent objects;

A category is n-nilpotent iff all its objects are n-nilpotent.

Remark

The abstract notion of n-nilpotent object yields for groups (Lie
algebras) the classical notion of n-nilpotent group (Lie algebra).

Proposition

E 1-nilpotent ⇐⇒ E abelian.
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Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition

A reflective subcategory D of E is a Birkhoff subcategory iff D is
closed under taking subobjects and quotients in E.

Lemma

This is the case iff for each regular epi f : X � Y the reflection
I : E→ D induces a cocartesian naturality square of reg. epi’s

X

f ����

ηX // // I (X )

I (f )����
Y ηY

// // I (Y )

Proposition

The subcategory Niln(E) is a reflective Birkhoff subcategory of E.
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Algebraic and homotopical nilpotency

Central extensions and affine extensions

Lemma

The first Birkhoff reflection I 1 : E→ Nil1(E) is abelianization and
Nil1(E) is the full subcategory of abelian group objects of E.

Lemma

The relative Birkhoff reflections I n,n+1 : Niln+1(E)→ Niln(E)
defined by Niln(Niln+1(E)) = Niln(E) are central reflections.

X

xxxx
η1
X����

η2
X����

ηnX
�� ��

ηn+1
X
'' ''

? oooo I 1(X ) oooo I 2(X ) oooo I n(X ) oooo I n+1(X ) oooo

Theorem

The unit of a central reflection is pointwise an affine extension.
Any morphism inverted by a central reflection is affine.
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Algebraic and homotopical nilpotency

Central extensions and affine extensions

Definition (Fibration of “points”, Bourn ’96)

Let PtX (E) be the category of split epis of E with codomain X .
Each f : X → Y induces an adjunction f! : PtX (E)� PtY (E) : f ∗.
A morphism f is affine iff (f!, f

∗) is an adjoint equivalence.

Example (split epimorphisms in groups)

A split epimorphism f : G � X in groups

exhibits G as a semi-direct product X nφ K [f ];

determines (and is determined by) a group homomorphism
φ : X → Aut(K [f ]), i.e. an internal X -representation.

Corollary (Gray ’12)

For E =(groups) or E =(Lie algebras), pointed base-change
f ∗ : PtE(Y )→ PtE(X ) has a left adjoint f! and a right adjoint f∗.
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Central extensions and affine extensions

Proposition

Pointed base-change along regular epi’s is fully faithful.

Proposition

A regular epi f : X � Y is an affine extension iff for all objects Z
either of the following two squares is cartesian

X + Z

πZ
X ����

f +Z // // Y + Z

πZ
Y ����

X + Z

θX ,Z
����

f +Z // // Y + Z

θY ,Z
����

X
f

// // Y X × Z
f×Z
// // Y × Z

Corollary (for semi-abelian categories)

f : X � Y affine ⇐⇒ f � Z : X � Z ∼= Y � Z invertible ∀Z
X � Z = K [θX ,Z ] = co-smash product (Carboni-Janelidze ’03).
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Algebraic and homotopical nilpotency

Algebraic nilpotency and cross-effects

Theorem

E is n-nilpotent iff for all X ,Y the map θX ,Y : X + Y → X × Y
exhibits X + Y as an (n − 1)-fold central extension of X × Y .

Proof.

X � X

����

// // X + X

δ2
X ����

θX ,X// // X × X

����
[X ,X ] // // X

η1
X // // I 1(X )

θX ,X (n− 1)-fold central ext. =⇒ η1
X (n− 1)-fold central ext.

Corollary

E 2-nilpotent iff θX ,Y central extension iff θX ,Y affine extension.
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Algebraic nilpotency and cross-effects

Definition (Goodwillie-cubes ΞX1,...,Xn for n = 2, 3)

X1 + X2
- X1

ΞX1,X2

X2

?
- ?E

?

X1 + X2
- X1

X1 + X2 + X3
-

-

X1 + X3

-

ΞX1,X2,X3 X2

?
- ?E

?

X2 + X3

?
-

-

X3

?
-
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Algebraic and homotopical nilpotency

Algebraic nilpotency and cross-effects

Definition (cubical cross-effects)

PX1,...,Xn = lim←−[0,1]n\{(0,...,0)} Ξ̌ (limit of the punctured cube);

comparison map θX1,...,Xn : X1 + · · ·+ Xn → PX1,...,Xn ;

crn(X1, . . . ,Xn) = K [θX1,...,Xn ] =“total kernel” of ΞX1,...,Xn ;

The identity functor of E is said to be of degree ≤ n if
ΞX1,...,Xn+1 is cartesian, i.e. θX1,...,Xn+1 invertible.

Example (linear identity functors)

θX1,X2 : X1 + X2 → X1 × X2, i.e. cr2(X1,X2) = X1 � X2

2nd cross-effect=co-smash product

E has linear identity functor iff E is a linear category !

Proposition (for semi-abelian categories)

crn(X1, . . . ,Xn) = K [π1]∩ · · · ∩K [πn] (Hartl-Van der Linden ’13)
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Algebraic and homotopical nilpotency

Algebraic nilpotency and cross-effects

Proposition

If E has an identity functor of degree ≤ n then E is n-nilpotent.

Theorem

E has a quadratic identity functor iff E is 2-nilpotent and moreover
one of the following two conditions is satisfied for all X ,Y ,Z :

(X × Y ) + Z ∼= (X + Z )×Z (Y + Z ) (alg. codistributivity)

(X × Z ) +Z (Y × Z ) ∼= (X + Y )× Z (alg. distributivity)

Corollary

If E is algebraically distributive then Nil2(E) has a quadratic
identity functor. In particular, iterated Huq=Higgins commutator:
[X , [X ,X ]] = [X ,X ,X ] (cf. Cigoli-Gray-Van der Linden ’14).
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Algebraic nilpotency and cross-effects

Definition (n-additivity)

crn+1(X , . . . ,X )

����

// // X + · · ·+ X

δn+1
X ����

θX ,...,X // // PX ,...,X

vv
����

[X , . . . ,X ] // // X // // X/[X , . . . ,X ]

X is n-additive iff δn+1
X factors through θX ,...,X . For semi-abelian

E, this amounts to vanishing Higgins commutator of length n + 1.

Proposition (cf. Hartl-Van der Linden ’13)

Every n-additive object is n-nilpotent.

Theorem

The identity functor is of degree ≤ n iff all objects are n-additive.
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Definition (Algebraic distributivity/coherence/extensivity of E)

(a) alg distributive: f ∗ : PtE(?)→ PtE(Z ) binary-sum-preserving;

(b) alg coherent: f ∗ : PtE(Z ′)→ PtE(Z ) coherent (CGV ’14);

(c) alg extensive: f ∗ : PtE(Z ′)→ PtE(Z ) binary-sum-preserving.

Lemma

(c) =⇒ (b) =⇒ (a)

Definition (θ-linearity)

F : E→ E′ is θ-linear iff F (θX ,Y ) invertible ∀X ,Y .

Example

Abelianization E→ Nil1(E) is θ-linear.
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Algebraic nilpotency and cross-effects

Proposition

If E is alg extensive and has multi-θ-linear n-th cross-effect
then E has an identity functor of degree ≤ n.

Proposition

Any alg extensive n-nilpotent E has multi-θ-linear n-th cross-effect.

Theorem

If E is alg extensive then Niln(E) has an identity of degree ≤ n.
Each n-nilpotent object is n-additive (iterated Huq=Higgins).

Examples

This is the case for the category of groups, resp. Lie algebras.
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Algebraic and homotopical nilpotency

Homotopical nilpotency and cocategory

Definition (Quillen model category)

A Quillen model structure on a bicomplete E consists of three
composable classes of morphisms cofE,weE,fibE such that

weE fulfills 2-out-of-3;

(cofE ∩ weE, fibE) is a weak factorization system;

(cofE,weE ∩ fibE) is a weak factorization system.

Theorem (Quillen ’66)

(E, cofE,weE,fibE) ∃Ho(E) = E/weE within the same universe.

Definition (Quillen adjunction/equivalence)

A Quillen adjunction F : E� E′ : G is an adjunction such that
F preserves cofibrations and G preserves fibrations.
A Quillen equivalence is a Quillen adjunction such that the derived
adjunction LF : Ho(E)� Ho(E′) : RG is an equivalence.
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Algebraic and homotopical nilpotency

Homotopical nilpotency and cocategory

Problem (Homotopy invariance)

Which constructions of E carry over to Ho(E) ?

Example (pullback vs homotopy pullback)

X ′ ×Z ′ Y ′ - Y ′

X ×Z Y -

δ -

Y
β
-

X ′
?

f ′- Z ′

g ′

?

X
?

f -

α -

Z

g

?
γ
-

Even if α, β, γ are we’s, δ is NOT a we in general. Yet, if moreover
f , g , f ′, g ′ are fibrations between fibrant objects, then δ is a we !
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Algebraic and homotopical nilpotency

Homotopical nilpotency and cocategory

Theorem (Quillen ’66)

The adjunction |−| : sSets� Top : Sing is a Quillen
equivalence: the simplicial fibrations are the Kan fibrations;

There is a canonical model structure on sVT whenever
UT : sVT → sSets takes values in fibrant simplicial sets.

Theorem (Carboni-Kelly-Pedicchio ’93)

A variety VT of T -algebras is a Mal’cev variety if and only if
UT : sVT → sSets takes values in fibrant simplicial sets.

Corollary

For each pointed Mal’cev variety VT ∃model structure on sVT sth

we’s are the maps inducing a quasi-iso on Moore complexes;

every regular epi is a fibration;

trivial fibrations are the regular epi’s with h-trivial kernel.
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Homotopical nilpotency and cocategory

Proposition

For cofibrant objects X1, . . . ,Xn in sVT the n-th “algebraic”
cross-effect crn(X1, . . . ,Xn) is homotopy-invariant.

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in sVT .

nilT1 (X ) = n iff n is the least integer for which
ηnX : X � I n(X ) is a trivial fibration;

nilT2 (X ) = n iff n is the least integer for which δn+1
X factors up

to homotopy through θX ,...,X : X + · · ·+ X � PX ,...,X ;

nilT3 (X ) = n iff n is the least integer for which X is value of
an n-excisive approximation of the identity of sVT .

Proposition

For cofibrant X in sVT one has nilT1 (X ) ≤ nilT2 (X ) ≤ nilT3 (X )
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X factors up

to homotopy through θX ,...,X : X + · · ·+ X � PX ,...,X ;

nilT3 (X ) = n iff n is the least integer for which X is value of
an n-excisive approximation of the identity of sVT .

Proposition

For cofibrant X in sVT one has nilT1 (X ) ≤ nilT2 (X ) ≤ nilT3 (X )
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Definition (n-excisive functors, Goodwillie ’92 and ’03)

A homotopy functor is n-excisive if it takes cofibration
(n + 1)-cubes to h-cartesian (n + 1)-cubes.
Enough to check the following cofibration cubes (n = 3):

CX - CX ∪X CX

X -

-

CX

-

CX ∪X CX
?

- CX ∪X CX ∪X CX
?

CX
?

-

-

CX ∪X CX
?

-

Proposition

F 1-excisive if and only if F ' ΩF Σ;

1-excisive endofunctors takes values in “infinite loop spaces”.
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Lemma

For n-excisive endofunctors F and cofibrant objects X1, . . . ,Xn+1,
the image-cube F (ΞX1,...,Xn+1) is homotopy-cartesian, i.e. F is
homotopically of degree ≤ n.

Theorem (special case VT = (groups), Kan ’56, Quillen ’66)

The free-forgetful adjunction U : sGr � sSets∗ : F breaks into two
adjunctions

sGr
W // sSetsred
G

oo
Ω // sSets∗
Σ
oo

the first of which is a Quillen equivalence.

Remark

Simplicial groups model loop spaces/loop maps, resp. based
connected spaces and based maps. The free simpl. group gen. by
a pointed simpl. set X is a model of ΩΣ|X |, cf. James.
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Corollary (Berstein-Ganea ’61, Hovey ’93, Biedermann-Dwyer ’10)

For a reduced simplical set X one has

nilGr1 (GX ) = nilBerstein−Ganea(Ω|X |);

nilGr2 (GX ) = cocatHovey (|X |);

nilGr3 (GX ) = nilBiedermann−Dwyer (Ω|X |).

Corollary (Eldred ’13, Costoya-Scherer-Viruel ’15)

For any based connected space X one has

nilBG (ΩX ) ≤ cocatHov (X ) ≤ nilBD(ΩX )

Remark (Lusternik-Schnirelmann ’34, Whitehead ’56)

catLS(X ) ≤ n ⇐⇒ ∃ open cover X ⊂ U1 ∪ · · · ∪ Un+1 sth.
Ui ↪→ X null-homotopic ∀ i ⇐⇒ the diagonal X → X n+1 can be
deformed into the fat wedge QX ,...,X = {x ∈ X n+1 | ∃ i : xi = ?}.
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