The cyclic Deligne conjecture for spaces, chain complexes and Hopf algebras ${ }^{1}$

Clemens Berger
University of Nice
28 April, 2009
Luminy CIRM

${ }^{1}$ joint work with Michael Batanin (Sydney)

Hochschild cochains
$C \cdot(A ; A)$
Gerstenhaber structure
$C^{\bullet}\left(A ; A^{*}\right)$
Batalin-Vilkovisky structure
The dg- Deligne conjecture
Multiplicative operads
The coloured operad for multiplicative operads
Condensation of coloured operads
The cobar complex of a bialgebra
The topological Deligne conjecture
Braid and ribbon-braid groups
Coxeter geometry of permutation groups
The categorical Deligne conjecture
The Drinfeld double of a Hopf algebra

Hochschild cochains

Definition

For a (unital associative) K-algebra A and A-bimodule M, the Hochschild cochain complex of A with coefficients in M is given by

$$
C^{n}(A ; M)=\operatorname{Hom}_{K}\left(A^{\otimes n}, M\right), \quad n \geq 0
$$

where for $f \in C^{n}(A ; M)$,

$$
\begin{aligned}
\left(\partial_{i} f\right)\left(a_{1}, \ldots, a_{n+1}\right) & = \begin{cases}a_{1} f\left(a_{2}, \ldots, a_{n}\right) & i=0 ; \\
f\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}\right) & i=1, \ldots, n ; \\
f\left(a_{1}, \ldots, a_{n}\right) a_{n+1} & i=n+1\end{cases} \\
\left(s_{i} f\right)\left(a_{1}, \ldots, a_{n-1}\right) & =f\left(a_{1}, \ldots, a_{i}, 1_{A}, a_{i+1}, \ldots, a_{n-1}\right) .
\end{aligned}
$$

The Hochschild cohomology $\mathrm{HH}^{\bullet}(A ; M)$ is the cohomology of the cochain complex of the cosimplicial K-module $C^{\bullet}(A ; M)$.

Cup and brace operations on $C^{\bullet}(A ; A)$

There is a cup product

$$
\begin{gathered}
-\cup-: C^{m}(A ; A) \otimes_{K} C^{n}(A ; A) \rightarrow C^{m+n}(A ; A) \\
(f \cup g)\left(a_{1}, \ldots, a_{m+n}\right)=f\left(a_{1}, \ldots, a_{m}\right) g\left(a_{m+1}, \ldots, a_{m+n}\right)
\end{gathered}
$$

and a brace operation

$$
-\{-\}: C^{m}(A ; A) \otimes_{K} C^{n}(A ; A) \rightarrow C^{m+n-1}(A ; A)
$$

where $f\{g\}\left(a_{1}, \ldots, a_{m+n-1}\right)$ is defined by
$\sum_{1 \leq i \leq m}(-1)^{(i-1)(n-1)} f\left(a_{1}, \ldots, a_{i-1}, g\left(a_{i}, \ldots, a_{i+n-1}\right), a_{i+n}, \ldots, a_{m+n-1}\right)$.
The bracket $\{f, g\}=f\{g\}-(-1)^{(|f|-1)(|g|-1)} g\{f\}$ induces a Lie bracket of degree -1 on $H H^{\bullet}(A ; A)$.

Gerstenhaber structure

Definition

A Gerstenhaber K-algebra $(H, \cup,\{-,-\})$ is a graded-commutative K-algebra with Lie bracket of degree -1 such that

$$
\{f, g \cup h\}=\{f, g\} \cup h+(-1)^{|g|(|f|-1)} g \cup\{f, h\} .
$$

Proposition (Gerstenhaber '63)

For any algebra A, the Hochschild cohomology $H^{\bullet}(A ; A)$ is a Gerstenhaber algebra.

Theorem (F. Cohen '72)

For any field K, the homology $H_{\bullet}\left(D_{2} ; K\right)$ of the little disks operad is the operad for Gerstenhaber K-algebras.

Corollary

For any based space $(X, *)$, the homology $H_{\bullet}\left(\Omega^{2} X ; K\right)$ is a Gerstenhaber K-algebra.

Connes' coboundary on $C^{\bullet}\left(A ; A^{*}\right)$

For $A^{*}=\operatorname{Hom}_{K}(A, K)$, the adjunction

$$
\operatorname{Hom}_{K}\left(A^{\otimes n}, A^{*}\right) \cong \operatorname{Hom}_{K}\left(A^{\otimes n+1}, K\right)
$$

induces a cyclic operator τ_{n} on $C^{n}\left(A ; A^{*}\right)$ of order $n+1$. These cyclic operators are compatible with the simplicial operators:

$$
\tau_{n+1} \partial_{i}=\partial_{i-1} \tau_{n} \quad i>0, \quad \tau_{n-1} s_{i}=s_{i-1} \tau_{n} \quad i>0
$$

It results a covariant functor on Connes' cyclic category

$$
\Delta C \rightarrow \operatorname{Mod}_{K}:[n] \mapsto C^{n}\left(A ; A^{*}\right)
$$

In particular, $C^{\bullet}\left(A ; A^{*}\right)$ is a mixed complex

$$
C^{0}\left(A ; A^{*}\right) \leftrightarrows C^{1}\left(A, A^{*}\right) \leftrightarrows C^{2}\left(A ; A^{*}\right) \leftrightarrows \cdots
$$

and $H H^{\bullet}\left(A ; A^{*}\right)$ has a differential Δ of degree -1 :

$$
\Delta^{n}: H H^{n}\left(A, A^{*}\right) \rightarrow H H^{n-1}\left(A ; A^{*}\right)
$$

Batalin-Vilkovisky structure

Definition

A Batalin-Vilkovisky algebra is a Gerstenhaber algebra $(H, \cup,\{-,-\})$ with a differential Δ of degree -1 such that

$$
(-1)^{|f|}\{f, g\}=\Delta(f \cup g)-(\Delta f \cup g)-(-1)^{|f|}(f \cup \Delta g)
$$

A symmetric K-algebra A is a K-algebra equipped with an isomorphism of A-bimodules $A \cong A^{*}$, i.e. a symmetric exact pairing $<-,->: A \otimes_{K} A \rightarrow K$ such that $\langle a b, c\rangle=\langle a, b c\rangle$.

Proposition (Menichi '04)

For any symmetric algebra A, the Hochschild cohomology $H H^{\bullet}(A, A)$ is a Batalin-Vilkovisky algebra.

Theorem (Getzler '94)
For any field K, the homology $H_{\bullet}\left(f D_{2}, K\right)$ of the framed little disks operad is the operad for Batalin-Vilkovisky K-algebras.

Theorem (MS '02, KS '02, Vo '02, Ta '04, BF '04)

The Hochschild cochain complex of an algebra A admits a $C_{\bullet}\left(D_{2}\right)$-action inducing the Gerstenhaber structure on $H^{\bullet}(A ; A)$.

Theorem (KS '06, TZ '06, Ka '07, BB '09)
The Hochschild cochain complex of a symmetric algebra A admits a $C_{\bullet}\left(f D_{2}\right)$-action inducing the $B V$-structure on $H H^{\bullet}(A ; A)$.

Proposition (Gerstenhaber-Voronov '95, Menichi '04)
The Hochschild cochain complex of A is isomorphic to the deformation complex of the endomorphism operad End_{A} of A. If A is symmetric, then End_{A} is multiplicative cyclic.

Proof.
$C^{n}(A ; A)=\operatorname{Hom}\left(A^{\otimes n}, A\right)=\operatorname{End}_{A}(n) \ni \mu_{n}$. For $f \in \operatorname{End}_{A}(n)$, $\partial_{0} f=\mu_{2} \circ_{1} f, \partial_{n} f=\mu_{2} \circ_{0} f, \partial_{i} f=f \circ_{i} \mu_{2}$ if $0<i<n$.
If A is symmetric then End_{A} is cyclic and $\tau_{n}\left(\mu_{n}\right)=\mu_{n}$.

Multiplicative operads

Definition

A multiplicative (cyclic) operad is a non-symmetric (cyclic) operad
\mathcal{O} equipped with a map of (cyclic) operads $\mathcal{A s s} \rightarrow \mathcal{O}$.
A muliplicative (cyclic) operad \mathcal{O} has an underlying cosimplicial (cocyclic) object \mathcal{O}^{\bullet}. In a closed monoidal category \mathcal{E} equipped with $\delta: \Delta \rightarrow \mathcal{E}$, the deformation complex of \mathcal{O} is $\operatorname{Hom}_{\Delta}\left(\delta^{\bullet}, \mathcal{O}^{\bullet}\right)$.

Example
For $\mathcal{E}=\operatorname{Ch}(\mathbb{Z})$ and $\delta_{\mathbb{Z}}: \Delta \rightarrow \operatorname{Ch}(\mathbb{Z}):[n] \mapsto N_{*}(\Delta[n] ; \mathbb{Z})$ we get

$$
C^{\bullet}(A ; A)=\underline{\operatorname{Hom}}_{\Delta}\left(\delta_{\mathbb{Z}}^{\bullet}, \operatorname{End}_{A}^{\bullet}\right)
$$

Theorem (Kaufmann '07, BB '09)

For any multiplicative chain operad \mathcal{O}, the deformation complex of \mathcal{O} admits a $C_{\bullet}\left(D_{2}\right)$-action. If \mathcal{O} is multiplicative cyclic, this action extends to a $C_{\bullet}\left(f D_{2}\right)$-action.

The coloured operad for multiplicative operads

Let $\mathcal{L}_{2}\left(n_{1}, \ldots, n_{k} ; n\right)$ be the set of iso-classes of planar rooted trees with n leaves and a bipartite vertex-set such that:

1. one part of the vertex-set is in bijection with $\{1, \ldots, k\}$;
2. the vertex with label i has arity n_{i};
3. each edge has at least one labelled extremity;
4. unlabelled vertices have arity $\neq 1$.

Let $C_{[n]}=\mathbb{Z} /(n+1) \mathbb{Z}$ and put

$$
\mathcal{L}_{2}^{c y c}\left(n_{1}, \ldots, n_{k} ; n\right)=\mathcal{L}_{2}\left(n_{1}, \ldots, n_{k} ; n\right) \times \mathcal{C}_{\left[n_{1}\right]} \times \cdots \times C_{\left[n_{k}\right]} .
$$

\mathcal{L}_{2} and $\mathcal{L}_{2}^{c y c}$ are \mathbb{N}-coloured operads for an evident substitution of trees into trees; in $\mathcal{L}_{2}^{\text {cyc }}$, the cyclic permutations distinguish for each labelled vertex one of its incident edges, the neutral element stands for the edge closest to the root of the tree.

Lemma

\mathcal{L}_{2}-algebras are multiplicative operads; $\mathcal{L}_{2}^{\text {cyc }}$-algebras are multiplicative cyclic operads. The category of unary operations of $\mathcal{L}_{2}\left(\right.$ resp. $\left.\mathcal{L}_{2}^{\text {cyc }}\right)$ is $\Delta($ resp. $\Delta C)$.

Condensation of coloured operads

Unary operations of a coloured operad act covariantly on inputs and contravariantly on the output; therefore:

$$
\mathcal{L}_{2}(-, \cdots,-;-): \Delta^{\mathrm{op}} \times \cdots \times \Delta^{\mathrm{op}} \times \Delta \rightarrow \text { Sets. }
$$

Given $\delta_{\mathbb{Z}}: \Delta \rightarrow \mathrm{Ch}(\mathbb{Z})$ we can realize multisimplicially, and totalize the resulting cosimplicial chain complex. This yields

$$
\xi\left(\mathcal{L}_{2}, \delta_{\mathbb{Z}}\right)(k):=\underline{\operatorname{Hom}}_{\Delta}(\delta^{\bullet},|\mathcal{L}_{2}(\overbrace{-, \cdots,-}^{k} ; \bullet)|_{\delta_{\mathbb{Z}}}^{\otimes k}), \quad k \geq 0 .
$$

Proposition (Day-Street '03, McClure-Smith '04, BB '09) $\xi\left(\mathcal{L}_{2}, \delta_{\mathbb{Z}}\right)$ (resp. $\left.\xi\left(\mathcal{L}_{2}^{\text {cyc }}, \delta_{\mathbb{Z}}^{\text {cyc }}\right)\right)$ is a chain operad acting on the deformation complex of any multiplicative (cyclic) operad.

Theorem (BB '09)

As chain operads we have $\xi\left(\mathcal{L}_{2}, \delta_{\mathbb{Z}}\right) \sim C_{\bullet}\left(D_{2}\right)$ and $\xi\left(\mathcal{L}_{2}^{c y c}, \delta_{\mathbb{Z}}^{c y c}\right) \sim C_{\bullet}\left(f D_{2}\right)$.

Theorem (cf. Gerstenhaber-Schack '92, Menichi '04)

The cobar complex ΩA of a bialgebra (resp. involutive Hopf algebra) A has an action by $\xi\left(\mathcal{L}_{2}, \delta_{\mathbb{Z}}\right)$ (resp. $\xi\left(\mathcal{L}_{2}^{\text {cyc }}, \delta_{\mathbb{Z}}^{\text {cyc }}\right)$). Its homology $H_{\bullet}(\Omega A ; \mathbb{Z})$ is a Gerstenhaber (resp. BV-) algebra.

Proof.

The bialgebra A is a comonoid in the monoidal category of A-modules. Therefore: $(\Omega A)_{n}=A^{\otimes n} \cong \operatorname{Hom}_{A}\left(A, A^{\otimes n}\right)$. This \mathbb{Z}-linear operad is multiplicative via the diagonal of A. If A has an involutive antipode then the operad is multiplicative cyclic.

Remark

(a) $\Omega C_{\bullet}(\Omega X ; \mathbb{Z}) \sim C_{\bullet}\left(\Omega^{2} X ; \mathbb{Z}\right)$ (Adams). The $\xi\left(\mathcal{L}_{2}, \delta_{\mathbb{Z}}\right)$-action on $\Omega C_{\bullet}(\Omega X ; \mathbb{Z})$ corresponds to the $C_{\bullet}\left(D_{2}\right)$-action on $C_{\bullet}\left(\Omega^{2} X ; \mathbb{Z}\right)$. (b) If A is involutive, the $\xi\left(\mathcal{L}_{2}^{\text {cyc }}, \delta_{\mathbb{Z}}^{\text {cyc }}\right)$-action induces a cocyclic structure on ΩA yielding $H C^{\bullet}(A)$ of Connes-Moscovici '99.
(c) $\xi\left(\mathcal{L}_{2}, \delta_{\mathbb{Z}}\right)$ contains the second filtration stage of the surjection operad of MS '03, BF '04 as a suboperad. Cyclic extension?

The topological Deligne conjecture

There is a cosimplicial resp. cocyclic space
$\delta_{\text {top }}: \Delta \rightarrow$ Top : $[n] \mapsto \Delta^{n}$ resp. $\delta_{\text {top }}^{c y c}: \Delta C \rightarrow$ Top : $[n] \mapsto \Delta^{n} \times S^{1}$.
Theorem (McClure-Smith '04, Salvatore '09, BB '09)
The operad $\xi\left(\mathcal{L}_{2}, \delta_{\text {top }}\right)$ is weakly equivalent to D_{2} and acts on the deformation complex of multiplicative operads in spaces.
The operad $\xi\left(\mathcal{L}_{2}^{\text {cyc }}, \delta_{\text {top }}^{\text {cyc }}\right)$ is weakly equivalent to $f D_{2}$ and acts on the deformation complex of multiplicative cyclic operads in spaces.

Remark (cf. Markl '99, Salvatore-Wahl '03, Salvatore '09) $f D_{2}(k) \cong D_{2}(k) \times\left(S^{1}\right)^{k}, \xi\left(\mathcal{L}_{2}^{c y c}, \delta_{\text {top }}^{c y c}\right)(k) \cong \xi\left(\mathcal{L}_{2}, \delta_{\text {top }}\right)(k) \times\left(S^{1}\right)^{k}$. For $n=1$:
$f D(1) \cong D(1) \rtimes S^{1}, \underline{\operatorname{Hom}}_{\Delta C}\left(\delta_{\text {top }}^{c y c}, \delta_{\text {top }}^{c y c}\right) \cong \underline{\operatorname{Hom}}_{\Delta}\left(\delta_{\text {top }}, \delta_{\text {top }}\right) \boxtimes S^{1}$.
Proposition (Sinha '06)
The simplicial 2-sphere $S^{2}=\Delta[2] / \partial \Delta[2]$ is an \mathcal{L}_{2}-coalgebra in finite pointed sets. For a based space $(X, *), \Omega^{2} X$ is the deformation complex of the multiplicative operad $(X, *))^{\left(S^{2}, *\right)}$.

Braid and ribbon-braid groups

\mathfrak{S}_{k} denotes the permutation group on k letters. $\mathfrak{S}_{k}^{ \pm}$denotes the signed permutation group on k letters.
$\mathfrak{S}_{k}^{ \pm}=\mathfrak{S}_{k} \imath \mathfrak{S}_{2}=\mathfrak{S}_{k} \ltimes\left(\mathfrak{S}_{2}\right)^{k}$ acts on $f D_{2}(k)=D_{2}(k) \times\left(S^{1}\right)^{k}$.
Definition (Braid and ribbon-braid groups on k strands)

$$
\begin{aligned}
B_{k} & =\pi_{1}\left(D_{2}(k) / \mathfrak{S}_{k}\right) & R B_{k} & =\pi_{1}\left(f D_{2}(k) / \mathfrak{S}_{k}^{ \pm}\right) \\
P B_{k} & =\pi_{1}\left(D_{2}(k)\right) & P R B_{k} & =\pi_{1}\left(f D_{2}(k)\right)
\end{aligned}
$$

Proposition (Asphericity of $D_{2}(k)$ and $f D_{2}(k)$)

$$
\begin{aligned}
D_{2}(k) / \mathfrak{S}_{k} & =K\left(B_{k}, 1\right) & f D_{2}(k) / \mathfrak{S}_{k}^{ \pm} & =K\left(R B_{k}, 1\right) \\
D_{2}(k) & =K\left(P B_{k}, 1\right) & f D_{2}(k) & =K\left(P R B_{k}, 1\right)
\end{aligned}
$$

Corollary
The coverings $D_{2}(k) \rightarrow D_{2}(k) / \mathfrak{S}_{k}$ and $f D_{2}(k) \rightarrow f D_{2}(k) / \mathfrak{S}_{k}^{ \pm}$are classified by the short exact sequences $1 \rightarrow P B_{k} \rightarrow B_{k} \rightarrow \mathfrak{S}_{k} \rightarrow 1$ and $1 \rightarrow P R B_{k} \rightarrow R B_{k} \rightarrow \mathfrak{S}_{k}^{ \pm} \rightarrow 1$.
Problem
Describe the operad structure of D_{2} (resp. $f D_{2}$) in terms of the pure braid (resp. ribbon-braid) groups.

Coxeter geometry of permutation groups

The braid group B_{k} is an Artin group with presentation
$<s_{1}, \ldots, s_{k-1} \mid s_{i} s_{j}=s_{j} s_{i}$ if $|i-j|>1$ and $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}>$.
The pure Artin group $P B_{k}=\operatorname{Ker}\left(B_{k} \rightarrow \mathfrak{S}_{k}\right) \cong \pi_{1}\left(\mathbb{C}^{k}-\mathcal{A}_{\mathfrak{S}_{k}}\right)$ where $\mathcal{A}_{\mathfrak{S}_{k}}$ is the complexified braid arrangement.

The Salvetti complex $\mathrm{Sa}_{\mathfrak{S}_{k}}$ is a partially ordered set of the same equivariant homotopy type as $\mathbb{C}^{k}-\mathcal{A}_{\mathfrak{S}_{k}}$.

$$
\text { Sal_ : (Coxeter groups }) \rightarrow(\text { posets })
$$

is a functor commuting with finite products. Thus, $\left(P B_{k}\right)_{k \geq 0}$ is a categorical operad. Similarly, $\left(P R B_{k}\right)_{k \geq 0}$ is a categorical operad.

Proposition

$D_{2} \sim K(P B, 1)$ and $f D_{2} \sim K(P R B, 1)$ as operads. Moreover, $P B$-algebras are braided strict monoidal categories; $P R B$-algebras are ribbon-braided (i.e. balanced) strict monoidal categories.

Corollary (B '98, Salvatore-Wahl '03)

The nerve of a braided (resp. ribbon-braided) strict monoidal category is E_{2} (resp. framed E_{2}).

The categorical Deligne conjecture

Consider the cosimplicial category

$$
\delta_{\text {Cat }}: \Delta \rightarrow \text { Cat }:[n] \mapsto[n][n]^{-1}
$$

Proposition

There are weak equivalences of categorical operads

$$
P B \xrightarrow{\sim} \xi\left(\mathcal{L}_{2}, \delta_{\mathrm{Cat}}\right) \quad \text { and } \quad P R B \xrightarrow{\sim} \xi\left(\mathcal{L}_{2}^{c y c}, \delta_{\mathrm{Cat}}^{c y c}\right) .
$$

Definition

A central element of a monoidal category \mathcal{E} is a pair $\left(A, c_{A}\right)$ where $c_{A,-}: A \otimes-\cong-\otimes A$ and $c_{A, B \otimes C}=\left(1_{B} \otimes c_{A, C}\right) \circ\left(c_{A, B} \otimes 1_{C}\right)$.
The center $\mathcal{Z E}$ is the category of central elements.
Proposition
For $\mathcal{E}=\operatorname{Mod}_{H}, \mathcal{Z E} \simeq \operatorname{Mod}_{D H}$ where $D H$ is the Drinfeld double of the Hopf algebra H.

Proposition (Street '04)
$\mathcal{Z E}=\underline{\operatorname{Hom}}_{\Delta}\left(\delta_{\mathrm{Cat}}\right.$, End $\left._{\mathcal{E}}\right)$
Corollary
The center of a monoidal category is braided monoidal; in particular, the Drinfeld double of a Hopf algebra is "braided".

Definition

An involutive category is a closed monoidal category \mathcal{E} such that the duality functor $(-)^{*}=\underline{\operatorname{Hom}}(-, I)$ is self-adjoint. A Hopf algebra H is called quasi-involutive if Mod_{H} is involutive.

Proposition

The category \mathcal{E}_{f} of symmetric duality objects of an involutive category \mathcal{E} has a multiplicative cyclic endomorphism-operad End \mathcal{E}_{f}.
Corollary
The center of \mathcal{E}_{f} is ribbon-braided; in particular, the Drinfeld double of a quasi-involutive Hopf algebra is "ribbon-braided".

