The cyclic Deligne conjecture for spaces, chain complexes and Hopf algebras¹

Clemens Berger

University of Nice 28 April, 2009

Luminy CIRM

¹joint work with Michael Batanin (Sydney)

Hochschild cochains

 $C^{\bullet}(A;A)$

Gerstenhaber structure

 $C^{\bullet}(A; A^*)$

Batalin-Vilkovisky structure

The dg- Deligne conjecture

Multiplicative operads

The coloured operad for multiplicative operads Condensation of coloured operads The cobar complex of a bialgebra The topological Deligne conjecture

Braid and ribbon-braid groups

Coxeter geometry of permutation groups The categorical Deligne conjecture The Drinfeld double of a Hopf algebra

Hochschild cochains

Definition

For a (unital associative) K-algebra A and A-bimodule M, the $Hochschild\ cochain\ complex\ of\ A$ with coefficients in M is given by

$$C^n(A; M) = \operatorname{Hom}_K(A^{\otimes n}, M), \quad n \geq 0,$$

where for $f \in C^n(A; M)$,

$$(\partial_{i}f)(a_{1},\ldots,a_{n+1}) = \begin{cases} a_{1}f(a_{2},\ldots,a_{n}) & i = 0; \\ f(a_{1},\ldots,a_{i}a_{i+1},\ldots,a_{n}) & i = 1,\ldots,n; \\ f(a_{1},\ldots,a_{n})a_{n+1} & i = n+1. \end{cases}$$

$$(s_{i}f)(a_{1},\ldots,a_{n-1}) = f(a_{1},\ldots,a_{i},1_{A},a_{i+1},\ldots,a_{n-1}).$$

The Hochschild cohomology $HH^{\bullet}(A; M)$ is the cohomology of the cochain complex of the cosimplicial K-module $C^{\bullet}(A; M)$.

Cup and brace operations on $C^{\bullet}(A; A)$

There is a *cup product*

$$- \cup -: C^m(A; A) \otimes_K C^n(A; A) \to C^{m+n}(A; A)$$
$$(f \cup g)(a_1, \dots, a_{m+n}) = f(a_1, \dots, a_m)g(a_{m+1}, \dots, a_{m+n})$$

and a brace operation

$$-\{-\}: C^m(A;A) \otimes_K C^n(A;A) \to C^{m+n-1}(A;A)$$

where $f\{g\}(a_1,\ldots,a_{m+n-1})$ is defined by

$$\sum_{1 \leq i \leq m} (-1)^{(i-1)(n-1)} f(a_1, \ldots, a_{i-1}, g(a_i, \ldots, a_{i+n-1}), a_{i+n}, \ldots, a_{m+n-1}).$$

The bracket $\{f,g\} = f\{g\} - (-1)^{(|f|-1)(|g|-1)}g\{f\}$ induces a Lie bracket of degree -1 on $HH^{\bullet}(A;A)$.

Gerstenhaber structure

Definition

A Gerstenhaber K-algebra $(H, \cup, \{-, -\})$ is a graded-commutative K-algebra with Lie bracket of degree -1 such that

$${f,g \cup h} = {f,g} \cup h + (-1)^{|g|(|f|-1)}g \cup {f,h}.$$

Proposition (Gerstenhaber '63)

For any algebra A, the Hochschild cohomology $HH^{\bullet}(A;A)$ is a Gerstenhaber algebra.

Theorem (F. Cohen '72)

For any field K, the homology $H_{\bullet}(D_2; K)$ of the little disks operad is the operad for Gerstenhaber K-algebras.

Corollary

For any based space (X,*), the homology $H_{\bullet}(\Omega^2X;K)$ is a Gerstenhaber K-algebra.

Connes' coboundary on $C^{\bullet}(A; A^*)$

For $A^* = \operatorname{Hom}_K(A, K)$, the adjunction

$$\operatorname{Hom}_{K}(A^{\otimes n}, A^{*}) \cong \operatorname{Hom}_{K}(A^{\otimes n+1}, K)$$

induces a cyclic operator τ_n on $C^n(A; A^*)$ of order n+1. These cyclic operators are compatible with the simplicial operators:

$$\tau_{n+1}\partial_i = \partial_{i-1}\tau_n \quad i > 0, \quad \tau_{n-1}s_i = s_{i-1}\tau_n \quad i > 0.$$

It results a covariant functor on Connes' cyclic category

$$\Delta C \to \operatorname{Mod}_{\mathcal{K}} : [n] \mapsto C^n(A; A^*).$$

In particular, $C^{\bullet}(A; A^*)$ is a mixed complex

$$C^0(A; A^*) \leftrightarrows C^1(A, A^*) \leftrightarrows C^2(A; A^*) \leftrightarrows \cdots$$

and $HH^{\bullet}(A; A^*)$ has a differential Δ of degree -1:

$$\Delta^n: HH^n(A, A^*) \to HH^{n-1}(A; A^*).$$

Definition

A Batalin-Vilkovisky algebra is a Gerstenhaber algebra $(H,\cup,\{-,-\})$ with a differential Δ of degree -1 such that

$$(-1)^{|f|}\{f,g\} = \Delta(f \cup g) - (\Delta f \cup g) - (-1)^{|f|}(f \cup \Delta g).$$

A symmetric K-algebra A is a K-algebra equipped with an isomorphism of A-bimodules $A \cong A^*$, i.e. a symmetric exact pairing $<-,->: A \otimes_K A \to K$ such that <ab,c>=<a,bc>.

Proposition (Menichi '04)

For any symmetric algebra A, the Hochschild cohomology $HH^{\bullet}(A, A)$ is a Batalin-Vilkovisky algebra.

Theorem (Getzler '94)

For any field K, the homology $H_{\bullet}(fD_2, K)$ of the framed little disks operad is the operad for Batalin-Vilkovisky K-algebras.

Theorem (MS '02, KS '02, Vo '02, Ta '04, BF '04)

The Hochschild cochain complex of an algebra A admits a $C_{\bullet}(D_2)$ -action inducing the Gerstenhaber structure on $HH^{\bullet}(A;A)$.

Theorem (KS '06, TZ '06, Ka '07, BB '09)

The Hochschild cochain complex of a symmetric algebra A admits a $C_{\bullet}(fD_2)$ -action inducing the BV-structure on $HH^{\bullet}(A;A)$.

Proposition (Gerstenhaber-Voronov '95, Menichi '04)

The Hochschild cochain complex of A is isomorphic to the deformation complex of the endomorphism operad End_A of A. If A is symmetric, then End_A is multiplicative cyclic.

Proof.

$$C^n(A;A) = \operatorname{Hom}(A^{\otimes n},A) = \operatorname{End}_A(n) \ni \mu_n$$
. For $f \in \operatorname{End}_A(n)$, $\partial_0 f = \mu_2 \circ_1 f$, $\partial_n f = \mu_2 \circ_0 f$, $\partial_i f = f \circ_i \mu_2$ if $0 < i < n$. If A is symmetric then End_A is cyclic and $\tau_n(\mu_n) = \mu_n$.

Multiplicative operads

Definition

A multiplicative (cyclic) operad is a non-symmetric (cyclic) operad \mathcal{O} equipped with a map of (cyclic) operads $\mathcal{A}ss \to \mathcal{O}$. A muliplicative (cyclic) operad \mathcal{O} has an underlying cosimplicial (cocyclic) object \mathcal{O}^{\bullet} . In a closed monoidal category \mathcal{E} equipped with $\delta: \Delta \to \mathcal{E}$, the deformation complex of \mathcal{O} is $\mathrm{Hom}_{\Delta}(\delta^{\bullet}, \mathcal{O}^{\bullet})$.

Example

For
$$\mathcal{E}=\mathrm{Ch}(\mathbb{Z})$$
 and $\delta_{\mathbb{Z}}:\Delta\to\mathrm{Ch}(\mathbb{Z}):[n]\mapsto \mathcal{N}_*(\Delta[n];\mathbb{Z})$ we get
$$C^\bullet(A;A)=\underline{\mathrm{Hom}}_\Delta(\delta_{\mathbb{Z}}^\bullet,\mathrm{End}_A^\bullet).$$

Theorem (Kaufmann '07, BB '09)

For any multiplicative chain operad \mathcal{O} , the deformation complex of \mathcal{O} admits a $C_{\bullet}(D_2)$ -action. If \mathcal{O} is multiplicative cyclic, this action extends to a $C_{\bullet}(fD_2)$ -action.

The coloured operad for multiplicative operads

Let $\mathcal{L}_2(n_1, \ldots, n_k; n)$ be the set of iso-classes of planar rooted trees with n leaves and a bipartite vertex-set such that:

- 1. one part of the vertex-set is in bijection with $\{1, \ldots, k\}$;
- 2. the vertex with label i has arity n_i ;
- 3. each edge has at least one labelled extremity;
- 4. unlabelled vertices have arity $\neq 1$.

Let
$$C_{[n]}=\mathbb{Z}/(n+1)\mathbb{Z}$$
 and put

$$\mathcal{L}_2^{cyc}(n_1,\ldots,n_k;n)=\mathcal{L}_2(n_1,\ldots,n_k;n)\times C_{[n_1]}\times\cdots\times C_{[n_k]}.$$

 \mathcal{L}_2 and \mathcal{L}_2^{cyc} are \mathbb{N} -coloured operads for an evident substitution of trees into trees; in \mathcal{L}_2^{cyc} , the cyclic permutations distinguish for each labelled vertex one of its incident edges, the neutral element stands for the edge closest to the root of the tree.

Lemma

 \mathcal{L}_2 -algebras are multiplicative operads; \mathcal{L}_2^{cyc} -algebras are multiplicative cyclic operads. The category of unary operations of \mathcal{L}_2 (resp. \mathcal{L}_2^{cyc}) is Δ (resp. ΔC).

Condensation of coloured operads

Unary operations of a coloured operad act covariantly on inputs and contravariantly on the output; therefore:

$$\mathcal{L}_2(-,\cdots,-;-):\Delta^{\mathrm{op}}\times\cdots\times\Delta^{\mathrm{op}}\times\Delta\to\mathrm{Sets}.$$

Given $\delta_{\mathbb{Z}}: \Delta \to \mathrm{Ch}(\mathbb{Z})$ we can *realize* multisimplicially, and *totalize* the resulting cosimplicial chain complex. This yields

$$\xi(\mathcal{L}_2, \delta_{\mathbb{Z}})(k) := \underline{\operatorname{Hom}}_{\Delta}(\delta^{\bullet}, |\mathcal{L}_2(\overbrace{-, \cdots, -}^k; \bullet)|_{\delta_{\mathbb{Z}}^{\otimes k}}), \quad k \geq 0.$$

Proposition (Day-Street '03, McClure-Smith '04, BB '09)

 $\xi(\mathcal{L}_2, \delta_{\mathbb{Z}})$ (resp. $\xi(\mathcal{L}_2^{cyc}, \delta_{\mathbb{Z}}^{cyc})$) is a chain operad acting on the deformation complex of any multiplicative (cyclic) operad.

Theorem (BB '09)

As chain operads we have $\xi(\mathcal{L}_2, \delta_{\mathbb{Z}}) \sim C_{\bullet}(D_2)$ and $\xi(\mathcal{L}_2^{cyc}, \delta_{\mathbb{Z}}^{cyc}) \sim C_{\bullet}(fD_2)$.

The cobar complex of a bialgebra

Theorem (cf. Gerstenhaber-Schack '92, Menichi '04)

The cobar complex ΩA of a bialgebra (resp. involutive Hopf algebra) A has an action by $\xi(\mathcal{L}_2, \delta_{\mathbb{Z}})$ (resp. $\xi(\mathcal{L}_2^{cyc}, \delta_{\mathbb{Z}}^{cyc})$). Its homology $H_{\bullet}(\Omega A; \mathbb{Z})$ is a Gerstenhaber (resp. BV-) algebra.

Proof.

The bialgebra A is a comonoid in the monoidal category of A-modules. Therefore: $(\Omega A)_n = A^{\otimes n} \cong \operatorname{Hom}_A(A, A^{\otimes n})$. This \mathbb{Z} -linear operad is multiplicative via the diagonal of A. If A has an involutive antipode then the operad is multiplicative cyclic.

Remark

- (a) $\Omega C_{\bullet}(\Omega X; \mathbb{Z}) \sim C_{\bullet}(\Omega^2 X; \mathbb{Z})$ (Adams). The $\xi(\mathcal{L}_2, \delta_{\mathbb{Z}})$ -action on $\Omega C_{\bullet}(\Omega X; \mathbb{Z})$ corresponds to the $C_{\bullet}(D_2)$ -action on $C_{\bullet}(\Omega^2 X; \mathbb{Z})$.
- (b) If A is involutive, the $\xi(\mathcal{L}_2^{cyc}, \delta_{\mathbb{Z}}^{cyc})$ -action induces a cocyclic structure on ΩA yielding $HC^{\bullet}(A)$ of Connes-Moscovici '99.
- (c) $\xi(\mathcal{L}_2, \delta_{\mathbb{Z}})$ contains the second filtration stage of the *surjection* operad of MS '03, BF '04 as a suboperad. Cyclic extension?

The topological Deligne conjecture

There is a cosimplicial resp. cocyclic space

$$\delta_{top}:\Delta \to \operatorname{Top}:[n]\mapsto \Delta^n \text{ resp. } \delta^{cyc}_{top}:\Delta C \to \operatorname{Top}:[n]\mapsto \Delta^n \times S^1.$$

Theorem (McClure-Smith '04, Salvatore '09, BB '09)

The operad $\xi(\mathcal{L}_2, \delta_{top})$ is weakly equivalent to D_2 and acts on the deformation complex of multiplicative operads in spaces. The operad $\xi(\mathcal{L}_2^{cyc}, \delta_{top}^{cyc})$ is weakly equivalent to fD_2 and acts on the deformation complex of multiplicative cyclic operads in spaces.

Remark (cf. Markl '99, Salvatore-Wahl '03, Salvatore '09)

$$fD_2(k) \cong D_2(k) \times (S^1)^k$$
, $\xi(\mathcal{L}_2^{cyc}, \delta_{top}^{cyc})(k) \cong \xi(\mathcal{L}_2, \delta_{top})(k) \times (S^1)^k$.
For $n = 1$:

$$fD(1) \cong D(1) \rtimes S^1$$
, $\underline{\operatorname{Hom}}_{\Delta C}(\delta_{top}^{cyc}, \delta_{top}^{cyc}) \cong \underline{\operatorname{Hom}}_{\Delta}(\delta_{top}, \delta_{top}) \boxtimes S^1$.

Proposition (Sinha '06)

The simplicial 2-sphere $S^2 = \Delta[2]/\partial \Delta[2]$ is an \mathcal{L}_2 -coalgebra in finite pointed sets. For a based space (X,*), $\Omega^2 X$ is the deformation complex of the multiplicative operad $(X,*)^{(S^2,*)}$.

Braid and ribbon-braid groups

 \mathfrak{S}_k denotes the *permutation group* on k letters. \mathfrak{S}_k^{\pm} denotes the *signed permutation group* on k letters.

$$\mathfrak{S}_k^{\pm} = \mathfrak{S}_k \wr \mathfrak{S}_2 = \mathfrak{S}_k \ltimes (\mathfrak{S}_2)^k$$
 acts on $fD_2(k) = D_2(k) \times (S^1)^k$.

Definition (Braid and ribbon-braid groups on k strands)

$$B_k = \pi_1(D_2(k)/\mathfrak{S}_k)$$
 $RB_k = \pi_1(fD_2(k)/\mathfrak{S}_k^{\pm})$
 $PB_k = \pi_1(D_2(k))$ $PRB_k = \pi_1(fD_2(k))$

Proposition (Asphericity of $D_2(k)$ and $fD_2(k)$)

$$D_2(k)/\mathfrak{S}_k = K(B_k, 1) \quad fD_2(k)/\mathfrak{S}_k^{\pm} = K(RB_k, 1) D_2(k) = K(PB_k, 1) \quad fD_2(k) = K(PRB_k, 1)$$

Corollary

The coverings $D_2(k) \to D_2(k)/\mathfrak{S}_k$ and $fD_2(k) \to fD_2(k)/\mathfrak{S}_k^{\pm}$ are classified by the short exact sequences $1 \to PB_k \to B_k \to \mathfrak{S}_k \to 1$ and $1 \to PRB_k \to RB_k \to \mathfrak{S}_k^{\pm} \to 1$.

Problem

Describe the operad structure of D_2 (resp. fD_2) in terms of the pure braid (resp. ribbon-braid) groups.

Coxeter geometry of permutation groups

The braid group B_k is an $Artin\ group$ with presentation $< s_1, \ldots, s_{k-1} \mid s_i s_j = s_j s_i$ if |i-j| > 1 and $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} > 1$. The pure $Artin\ group\ PB_k = Ker(B_k \to \mathfrak{S}_k) \cong \pi_1(\mathbb{C}^k - \mathcal{A}_{\mathfrak{S}_k})$ where $\mathcal{A}_{\mathfrak{S}_k}$ is the complexified $braid\ arrangement$.

The Salvetti complex $Sal_{\mathfrak{S}_k}$ is a partially ordered set of the same equivariant homotopy type as $\mathbb{C}^k - \mathcal{A}_{\mathfrak{S}_k}$.

$$Sal_-: (Coxeter\ groups) \rightarrow (posets)$$

is a functor commuting with finite products. Thus, $(PB_k)_{k\geq 0}$ is a categorical operad. Similarly, $(PRB_k)_{k\geq 0}$ is a categorical operad.

Proposition

 $D_2 \sim K(PB,1)$ and $fD_2 \sim K(PRB,1)$ as operads. Moreover, PB-algebras are braided strict monoidal categories; PRB-algebras are ribbon-braided (i.e. balanced) strict monoidal categories.

Corollary (B '98, Salvatore-Wahl '03)

The nerve of a braided (resp. ribbon-braided) strict monoidal category is E_2 (resp. framed E_2).

The categorical Deligne conjecture

Consider the cosimplicial category

$$\delta_{\mathrm{Cat}}: \Delta \to \mathrm{Cat}: [n] \mapsto [n][n]^{-1}$$

Proposition

There are weak equivalences of categorical operads

$$PB \xrightarrow{\sim} \xi(\mathcal{L}_2, \delta_{\mathrm{Cat}}) \quad \text{and} \quad PRB \xrightarrow{\sim} \xi(\mathcal{L}_2^{\mathit{cyc}}, \delta_{\mathrm{Cat}}^{\mathit{cyc}}).$$

Definition

A central element of a monoidal category $\mathcal E$ is a pair (A, c_A) where $c_{A,-}:A\otimes -\cong -\otimes A$ and $c_{A,B\otimes C}=(1_B\otimes c_{A,C})\circ (c_{A,B}\otimes 1_C)$. The center $\mathcal Z\mathcal E$ is the category of central elements.

Proposition

For $\mathcal{E} = \operatorname{Mod}_H$, $\mathcal{ZE} \simeq \operatorname{Mod}_{DH}$ where DH is the Drinfeld double of the Hopf algebra H.

The Drinfeld double of a Hopf algebra

Proposition (Street '04)

$$\mathcal{ZE} = \underline{\mathrm{Hom}}_{\Delta}(\delta_{\mathrm{Cat}}, \mathrm{End}_{\mathcal{E}})$$

Corollary

The center of a monoidal category is braided monoidal; in particular, the Drinfeld double of a Hopf algebra is "braided".

Definition

An involutive category is a closed monoidal category \mathcal{E} such that the duality functor $(-)^* = \underline{\mathrm{Hom}}(-,I)$ is self-adjoint. A Hopf algebra H is called quasi-involutive if Mod_H is involutive.

Proposition

The category \mathcal{E}_f of symmetric duality objects of an involutive category \mathcal{E} has a multiplicative cyclic endomorphism-operad $\operatorname{End}_{\mathcal{E}_f}$.

Corollary

The center of \mathcal{E}_f is ribbon-braided; in particular, the Drinfeld double of a quasi-involutive Hopf algebra is "ribbon-braided".

