Clemens Berger

University of Nice

CT2010 Genova, June 20-26, 2010

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

3 Higher categories and wreath products

4 Grothendieck's hypothesis and Θ_n -spaces

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

A monadic square is a commutative diagram of functors

such that

(i) U₁, U₂ are monadic functors with left adjoints F₁, F₂;
(ii) the induced 2-cell φ = ε₂G'F₁ ο F₂Gη₁ (the "mate")

is invertible.

Monadic squares

A monadic square is a commutative diagram of functors

such that

(i) U₁, U₂ are monadic functors with left adjoints F₁, F₂;
(ii) the induced 2-cell φ = ε₂G'F₁ ο F₂Gη₁ (the "mate")

is invertible.

A monadic square is a commutative diagram of functors

such that

(i) U_1, U_2 are monadic functors with left adjoints F_1, F_2 ; (ii) the induced 2-cell $\phi = \epsilon_2 G' F_1 \circ F_2 G \eta_1$ (the "mate")

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is invertible.

Let $(T_1, \mu_1, \eta_1), (T_2, \mu_2, \eta_2)$ be monads on $\mathcal{E}_1, \mathcal{E}_2$ respectively.

A (strong) monad morphism $(G, \psi) : (\mathcal{E}_1, T_1) \to (\mathcal{E}_2, T_2)$ is a functor $G : \mathcal{E}_1 \to \mathcal{E}_2$ together with an (invertible) 2-cell $\psi : T_2G \Rightarrow GT_1$ such that $G\eta_1 = \psi \circ \eta_2 G$ and $\psi \circ \mu_2 G = G\mu_1 \circ G\psi T_1 \circ T_2\psi G$.

A strong monad morphism (G,ψ) induces a monadic square

with $G'(X,\xi:T_1X\to X)=(GX,G\xi\circ\psi:T_2GX\to GX)$

Conversely, a monadic square induces a strong monad morphism from which it derives up to canonical equivalence.

Let $(T_1, \mu_1, \eta_1), (T_2, \mu_2, \eta_2)$ be monads on $\mathcal{E}_1, \mathcal{E}_2$ respectively. A *(strong) monad morphism* $(G, \psi) : (\mathcal{E}_1, T_1) \rightarrow (\mathcal{E}_2, T_2)$ is a functor $G : \mathcal{E}_1 \rightarrow \mathcal{E}_2$ together with an (invertible) 2-cell $\psi : T_2G \Rightarrow GT_1$ such that $G\eta_1 = \psi \circ \eta_2G$ and $\psi \circ \mu_2G = G\mu_1 \circ G\psi T_1 \circ T_2\psi G$.

A strong monad morphism (G,ψ) induces a monadic square

with $G'(X,\xi:T_1X\to X)=(GX,G\xi\circ\psi:T_2GX\to GX)$

Conversely, a monadic square induces a strong monad morphism from which it derives up to canonical equivalence.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $(T_1, \mu_1, \eta_1), (T_2, \mu_2, \eta_2)$ be monads on $\mathcal{E}_1, \mathcal{E}_2$ respectively. A *(strong) monad morphism* $(G, \psi) : (\mathcal{E}_1, T_1) \rightarrow (\mathcal{E}_2, T_2)$ is a functor $G : \mathcal{E}_1 \rightarrow \mathcal{E}_2$ together with an (invertible) 2-cell $\psi : T_2G \Rightarrow GT_1$ such that $G\eta_1 = \psi \circ \eta_2G$ and $\psi \circ \mu_2G = G\mu_1 \circ G\psi T_1 \circ T_2\psi G$.

A strong monad morphism (G, ψ) induces a monadic square

$$\begin{array}{ccc} \operatorname{Alg}_{\tau_1} & \xrightarrow{G'} & \operatorname{Alg}_{\tau_2} \\ U_1 \\ \downarrow & = & \downarrow U_2 \\ \mathcal{E}_1 & \xrightarrow{G} & \mathcal{E}_2 \end{array}$$

with $G'(X, \xi : T_1X \to X) = (GX, G\xi \circ \psi : T_2GX \to GX)$

Conversely, a monadic square induces a strong monad morphism from which it derives up to canonical equivalence.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $(T_1, \mu_1, \eta_1), (T_2, \mu_2, \eta_2)$ be monads on $\mathcal{E}_1, \mathcal{E}_2$ respectively. A *(strong) monad morphism* $(G, \psi) : (\mathcal{E}_1, T_1) \rightarrow (\mathcal{E}_2, T_2)$ is a functor $G : \mathcal{E}_1 \rightarrow \mathcal{E}_2$ together with an (invertible) 2-cell $\psi : T_2G \Rightarrow GT_1$ such that $G\eta_1 = \psi \circ \eta_2G$ and $\psi \circ \mu_2G = G\mu_1 \circ G\psi T_1 \circ T_2\psi G$.

A strong monad morphism (G, ψ) induces a monadic square

$$\begin{array}{ccc} \operatorname{Alg}_{\tau_1} & \xrightarrow{G'} & \operatorname{Alg}_{\tau_2} \\ U_1 \\ \downarrow & = & \downarrow U_2 \\ \mathcal{E}_1 & \xrightarrow{G} & \mathcal{E}_2 \end{array}$$

with $G'(X, \xi : T_1X \to X) = (GX, G\xi \circ \psi : T_2GX \to GX)$

Conversely, a monadic square induces a strong monad morphism from which it derives up to canonical equivalence.

Proposition

In any monadic square like above, if G is faithful (resp. fully faithful resp. an equivalence) then so is G'.

Proposition

For a fully faithful functor G, the essential image factorisation of G decomposes the monadic square into two monadic squares

$$\begin{array}{ccc} \mathcal{E}'_{1} \stackrel{\sim}{\longrightarrow} \mathit{Im}(G) \times_{\mathcal{E}_{2}} \mathcal{E}'_{2} \stackrel{ff}{\longleftrightarrow} \mathcal{E}'_{2} \\ \mathcal{U}_{1} \downarrow & \downarrow & \downarrow \mathcal{U}_{2} \\ \mathcal{E}_{1} \stackrel{\sim}{\longrightarrow} \mathit{Im}(G) \stackrel{ff}{\longleftrightarrow} \mathcal{E}_{2} \end{array}$$

In particular, the essential image of G' is given by restriction of the monadic functor U_2 to the essential image of G.

Proposition

In any monadic square like above, if G is faithful (resp. fully faithful resp. an equivalence) then so is G'.

Proposition

For a fully faithful functor G, the essential image factorisation of G decomposes the monadic square into two monadic squares

$$\begin{array}{ccc} \mathcal{E}_{1}^{\prime} \stackrel{\sim}{\longrightarrow} \mathit{Im}(G) \times_{\mathcal{E}_{2}} \mathcal{E}_{2}^{\prime} \stackrel{ff}{\longrightarrow} \mathcal{E}_{2}^{\prime} \\ \mathcal{U}_{1} \middle| & & \downarrow \\ \mathcal{U}_{1} \middle| & & \downarrow \\ \mathcal{U}_{1} & & \downarrow \\ \mathcal{E}_{1} \stackrel{\sim}{\longrightarrow} \mathit{Im}(G) \stackrel{ff}{\longleftarrow} \mathcal{E}_{2} \end{array}$$

In particular, the essential image of G' is given by restriction of the monadic functor U_2 to the essential image of G.

A category with arities (\mathcal{E}, Θ_0) is a category \mathcal{E} equipped with a small dense subcategory $i_0 : \Theta_0 \hookrightarrow \mathcal{E}$, i.e. the induced *nerve* functor $\nu_0 : \mathcal{E} \to \widehat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)$ is fully faithful.

For each object X of \mathcal{E} the functor $\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}$ induces a colimit cocone $\operatorname{colim}_{i_0/X} \xi_X \xrightarrow{\cong} X$.

A monad with arities on (\mathcal{E}, Θ_0) is a monad T such that the composite functor $\nu_0 \circ T$ preserves the Θ_0 -colimit cones.

The *theory* Θ_T induced by a monad with arities T is obtained by factoring $\Theta_0 \xrightarrow{i_0} \mathcal{E} \xrightarrow{F_T} \operatorname{Alg}_T$ into a bijective-on-objects functor $j: \Theta_0 \to \Theta_T$ followed by a fully faithful functor $\Theta_T \to \operatorname{Alg}_T$.

A category with arities (\mathcal{E}, Θ_0) is a category \mathcal{E} equipped with a small dense subcategory $i_0 : \Theta_0 \hookrightarrow \mathcal{E}$, i.e. the induced *nerve* functor $\nu_0 : \mathcal{E} \to \widehat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)$ is fully faithful.

For each object X of \mathcal{E} the functor $\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}$ induces a colimit cocone $\operatorname{colim}_{i_0/X} \xi_X \xrightarrow{\cong} X$.

A monad with arities on (\mathcal{E}, Θ_0) is a monad T such that the composite functor $\nu_0 \circ T$ preserves the Θ_0 -colimit cones.

The *theory* Θ_T induced by a monad with arities T is obtained by factoring $\Theta_0 \xrightarrow{i_0} \mathcal{E} \xrightarrow{F_T} \operatorname{Alg}_T$ into a bijective-on-objects functor $j : \Theta_0 \to \Theta_T$ followed by a fully faithful functor $\Theta_T \to \operatorname{Alg}_T$.

A category with arities (\mathcal{E}, Θ_0) is a category \mathcal{E} equipped with a small dense subcategory $i_0 : \Theta_0 \hookrightarrow \mathcal{E}$, i.e. the induced *nerve* functor $\nu_0 : \mathcal{E} \to \widehat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)$ is fully faithful.

For each object X of \mathcal{E} the functor $\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}$ induces a colimit cocone $\operatorname{colim}_{i_0/X} \xi_X \xrightarrow{\cong} X$.

A monad with arities on (\mathcal{E}, Θ_0) is a monad T such that the composite functor $\nu_0 \circ T$ preserves the Θ_0 -colimit cones.

The *theory* Θ_T induced by a monad with arities T is obtained by factoring $\Theta_0 \xrightarrow{i_0} \mathcal{E} \xrightarrow{F_T} \operatorname{Alg}_T$ into a bijective-on-objects functor $j: \Theta_0 \to \Theta_T$ followed by a fully faithful functor $\Theta_T \to \operatorname{Alg}_T$.

A category with arities (\mathcal{E}, Θ_0) is a category \mathcal{E} equipped with a small dense subcategory $i_0 : \Theta_0 \hookrightarrow \mathcal{E}$, i.e. the induced *nerve* functor $\nu_0 : \mathcal{E} \to \widehat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)$ is fully faithful.

For each object X of \mathcal{E} the functor $\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}$ induces a colimit cocone $\operatorname{colim}_{i_0/X} \xi_X \xrightarrow{\cong} X$.

A monad with arities on (\mathcal{E}, Θ_0) is a monad T such that the composite functor $\nu_0 \circ T$ preserves the Θ_0 -colimit cones.

The *theory* Θ_T induced by a monad with arities T is obtained by factoring $\Theta_0 \xrightarrow{i_0} \mathcal{E} \xrightarrow{F_T} \operatorname{Alg}_T$ into a bijective-on-objects functor $j: \Theta_0 \to \Theta_T$ followed by a fully faithful functor $\Theta_T \to \operatorname{Alg}_T$.

A category with arities (\mathcal{E}, Θ_0) is a category \mathcal{E} equipped with a small dense subcategory $i_0 : \Theta_0 \hookrightarrow \mathcal{E}$, i.e. the induced *nerve* functor $\nu_0 : \mathcal{E} \to \widehat{\Theta}_0 : X \mapsto \mathcal{E}(i_0(-), X)$ is fully faithful.

For each object X of \mathcal{E} the functor $\xi_X : i_0/X \to \Theta_0 \hookrightarrow \mathcal{E}$ induces a colimit cocone $\operatorname{colim}_{i_0/X} \xi_X \xrightarrow{\cong} X$.

A monad with arities on (\mathcal{E}, Θ_0) is a monad T such that the composite functor $\nu_0 \circ T$ preserves the Θ_0 -colimit cones.

The *theory* Θ_T induced by a monad with arities T is obtained by factoring $\Theta_0 \xrightarrow{i_0} \mathcal{E} \xrightarrow{F_T} \operatorname{Alg}_T$ into a bijective-on-objects functor $j: \Theta_0 \to \Theta_T$ followed by a fully faithful functor $\Theta_T \to \operatorname{Alg}_T$.

Consider sets with arities \mathcal{T}_0 the subcategory of finite sets.

- A monad T has arities T_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere's algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. '02, Leinster '04, Weber '07, Mellies '10)

For a monad with arities \mathcal{T} on (\mathcal{E}, Θ_0) , the theory $\Theta_{\mathcal{T}}$ is dense in $\operatorname{Alg}_{\mathcal{T}}$. The essential image of $\nu_{\mathcal{T}} : \operatorname{Alg}_{\mathcal{T}} \to \widehat{\Theta}_{\mathcal{T}}$ is spanned by those $X : \Theta_{\mathcal{T}}^{\operatorname{op}} \to \operatorname{Sets}$ whose restriction j^*X belongs to $\operatorname{Im}(\nu_0)$.

Remark

Consider sets with arities \mathcal{T}_0 the subcategory of finite sets.

- A monad T has arities \mathcal{T}_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere's algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. '02, Leinster '04, Weber '07, Mellies '10)

For a monad with arities \mathcal{T} on (\mathcal{E}, Θ_0) , the theory $\Theta_{\mathcal{T}}$ is dense in $\operatorname{Alg}_{\mathcal{T}}$. The essential image of $\nu_{\mathcal{T}} : \operatorname{Alg}_{\mathcal{T}} \to \widehat{\Theta}_{\mathcal{T}}$ is spanned by those $X : \Theta_{\mathcal{T}}^{\operatorname{op}} \to \operatorname{Sets}$ whose restriction j^*X belongs to $\operatorname{Im}(\nu_0)$.

Remark

Consider sets with arities \mathcal{T}_0 the subcategory of finite sets.

- A monad T has arities \mathcal{T}_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere's algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. '02, Leinster '04, Weber '07, Mellies '10)

For a monad with arities \mathcal{T} on (\mathcal{E}, Θ_0) , the theory $\Theta_{\mathcal{T}}$ is dense in $\operatorname{Alg}_{\mathcal{T}}$. The essential image of $\nu_{\mathcal{T}} : \operatorname{Alg}_{\mathcal{T}} \to \widehat{\Theta}_{\mathcal{T}}$ is spanned by those $X : \Theta_{\mathcal{T}}^{\operatorname{op}} \to \operatorname{Sets}$ whose restriction j^*X belongs to $\operatorname{Im}(\nu_0)$.

Remark

Consider sets with arities \mathcal{T}_0 the subcategory of finite sets.

- A monad T has arities \mathcal{T}_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere's algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. '02, Leinster '04, Weber '07, Mellies '10)

For a monad with arities \mathcal{T} on (\mathcal{E}, Θ_0) , the theory $\Theta_{\mathcal{T}}$ is dense in $\operatorname{Alg}_{\mathcal{T}}$. The essential image of $\nu_{\mathcal{T}} : \operatorname{Alg}_{\mathcal{T}} \to \widehat{\Theta}_{\mathcal{T}}$ is spanned by those $X : \Theta_{\mathcal{T}}^{\operatorname{op}} \to \operatorname{Sets}$ whose restriction j^*X belongs to $\operatorname{Im}(\nu_0)$.

Remark

Consider sets with arities \mathcal{T}_0 the subcategory of finite sets.

- A monad T has arities \mathcal{T}_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere's algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. '02, Leinster '04, Weber '07, Mellies '10)

For a monad with arities T on (\mathcal{E}, Θ_0) , the theory Θ_T is dense in Alg_T . The essential image of $\nu_T : \operatorname{Alg}_T \to \widehat{\Theta}_T$ is spanned by those $X : \Theta_T^{\operatorname{op}} \to \operatorname{Sets}$ whose restriction j^*X belongs to $\operatorname{Im}(\nu_0)$.

Remark

Consider sets with arities \mathcal{T}_0 the subcategory of finite sets.

- A monad T has arities \mathcal{T}_0 iff T preserves filtered colimits;
- Θ_T is (the dual of) Lawvere's algebraic theory for T-algebras;
- Θ_T is homogeneous iff T is induced by a symmetric operad.

Theorem (B. '02, Leinster '04, Weber '07, Mellies '10)

For a monad with arities T on (\mathcal{E}, Θ_0) , the theory Θ_T is dense in Alg_T . The essential image of $\nu_T : \operatorname{Alg}_T \to \widehat{\Theta}_T$ is spanned by those $X : \Theta_T^{\operatorname{op}} \to \operatorname{Sets}$ whose restriction j^*X belongs to $\operatorname{Im}(\nu_0)$.

Remark

Proof of the nerve theorem.

Since T is a monad with arities on (\mathcal{E}, Θ_0) the square

is *pseudo*monadic and ν_0 is fully faithful.

A theory on (\mathcal{E}, Θ_0) is a bijective-on-objects faithful functor $j : \Theta_0 \to \Theta_T$ such that $j^* j_!$ preserves the essential image of ν_0 .

Theorem (B. '02, Mellies '10)

There is a canonical one-to-one correspondence between monads with arities on (\mathcal{E}, Θ_0) and theories on (\mathcal{E}, Θ_0) .

Proof of the nerve theorem.

Since T is a monad with arities on (\mathcal{E}, Θ_0) the square

is *pseudo*monadic and ν_0 is fully faithful.

A theory on (\mathcal{E}, Θ_0) is a bijective-on-objects faithful functor $j: \Theta_0 \to \Theta_T$ such that $j^* j_!$ preserves the essential image of ν_0 .

Theorem (B. '02, Mellies '10)

There is a canonical one-to-one correspondence between monads with arities on (\mathcal{E}, Θ_0) and theories on (\mathcal{E}, Θ_0) .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of the nerve theorem.

Since T is a monad with arities on (\mathcal{E}, Θ_0) the square

is *pseudo*monadic and ν_0 is fully faithful.

A theory on (\mathcal{E}, Θ_0) is a bijective-on-objects faithful functor $j: \Theta_0 \to \Theta_T$ such that $j^* j_!$ preserves the essential image of ν_0 .

Theorem (B. '02, Mellies '10)

There is a canonical one-to-one correspondence between monads with arities on (\mathcal{E}, Θ_0) and theories on (\mathcal{E}, Θ_0) .

The category of arities Θ_0 is the full subcategory of $\widehat{\mathbb{G}}$ spanned by the S_* where S runs through the set of finite level trees.

The Grothendieck topology on Θ_0 induced by the nerve $\nu_0 : \widehat{\mathbb{G}} \to \widehat{\Theta}_0$ has the caracteristic property that a presheaf X on Θ_0 is a sheaf if and only if X transforms the canonical colimit cones

$$\operatorname{colim}_{\sigma \in el(S_*)} \sigma \xrightarrow{\cong} S_*$$

into limit cones.

A theory Θ_A on $(\widehat{\mathbb{G}}, \Theta_0)$ is called *globular*. The presheaves X such that j^*X is a sheaf are called Θ_A -models. According to the nerve theorem they correspond to <u>A</u>-algebras for a monad <u>A</u> on $\widehat{\mathbb{G}}$.

The category of arities Θ_0 is the full subcategory of $\widehat{\mathbb{G}}$ spanned by the S_* where S runs through the set of finite level trees.

The Grothendieck topology on Θ_0 induced by the nerve $\nu_0 : \widehat{\mathbb{G}} \to \widehat{\Theta}_0$ has the caracteristic property that a presheaf X on Θ_0 is a sheaf if and only if X transforms the canonical colimit cones

$$\operatorname{colim}_{\sigma \in el(S_*)} \sigma \xrightarrow{\cong} S_*$$

into limit cones.

A theory Θ_A on (\mathbb{G}, Θ_0) is called *globular*. The presheaves X such that j^*X is a sheaf are called Θ_A -models. According to the nerve theorem they correspond to <u>A</u>-algebras for a monad <u>A</u> on $\widehat{\mathbb{G}}$.

The category of arities Θ_0 is the full subcategory of $\widehat{\mathbb{G}}$ spanned by the S_* where S runs through the set of finite level trees.

The Grothendieck topology on Θ_0 induced by the nerve $\nu_0 : \widehat{\mathbb{G}} \to \widehat{\Theta}_0$ has the caracteristic property that a presheaf X on Θ_0 is a sheaf if and only if X transforms the canonical colimit cones

$$\operatorname{colim}_{\sigma \in el(S_*)} \sigma \xrightarrow{\cong} S_*$$

into limit cones.

A theory Θ_A on (\mathbb{G}, Θ_0) is called *globular*. The presheaves X such that j^*X is a sheaf are called Θ_A -models. According to the nerve theorem they correspond to <u>A</u>-algebras for a monad <u>A</u> on $\widehat{\mathbb{G}}$.

The category of arities Θ_0 is the full subcategory of $\widehat{\mathbb{G}}$ spanned by the S_* where S runs through the set of finite level trees.

The Grothendieck topology on Θ_0 induced by the nerve $\nu_0 : \widehat{\mathbb{G}} \to \widehat{\Theta}_0$ has the caracteristic property that a presheaf X on Θ_0 is a sheaf if and only if X transforms the canonical colimit cones

$$\operatorname{colim}_{\sigma \in el(S_*)} \sigma \xrightarrow{\cong} S_*$$

into limit cones.

A theory Θ_A on $(\widehat{\mathbb{G}}, \Theta_0)$ is called *globular*. The presheaves X such that j^*X is a sheaf are called Θ_A -models. According to the nerve theorem they correspond to <u>A</u>-algebras for a monad <u>A</u> on $\widehat{\mathbb{G}}$.

Higher categories and wreath products

A globular theory Θ_A is called *homogeneous* if there is a factorisation system $\Theta_A = (\Theta_{A,gen}, \Theta_0)$ such that each generic operator $\phi : S \to T$ satisfies $ht(S) \ge ht(T)$.

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ω-categories; it is the dual of Joyal's category of finite combinatorial disks.

Higher categories and wreath products

A globular theory Θ_A is called *homogeneous* if there is a factorisation system $\Theta_A = (\Theta_{A,gen}, \Theta_0)$ such that each *generic* operator $\phi : S \to T$ satisfies $ht(S) \ge ht(T)$.

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ω-categories; it is the dual of Joyal's category of finite combinatorial disks.

Higher categories and wreath products

A globular theory Θ_A is called *homogeneous* if there is a factorisation system $\Theta_A = (\Theta_{A,gen}, \Theta_0)$ such that each *generic* operator $\phi : S \to T$ satisfies $ht(S) \ge ht(T)$.

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ω-categories; it is the dual of Joyal's category of finite combinatorial disks.

Higher categories and wreath products

A globular theory Θ_A is called *homogeneous* if there is a factorisation system $\Theta_A = (\Theta_{A,gen}, \Theta_0)$ such that each *generic* operator $\phi : S \to T$ satisfies $ht(S) \ge ht(T)$.

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ω-categories; it is the dual of Joyal's category of finite combinatorial disks.

Higher categories and wreath products

A globular theory Θ_A is called *homogeneous* if there is a factorisation system $\Theta_A = (\Theta_{A,gen}, \Theta_0)$ such that each generic operator $\phi : S \to T$ satisfies $ht(S) \ge ht(T)$.

- There is a canonical one-to-one correspondence between homogeneous globular theories and globular operads;
- The terminal such theory is the theory of strict ω-categories; it is the dual of Joyal's category of finite combinatorial disks.

 There is a canonical one-to-one correspondence between homogeneous n-globular theories and globular n-operads;

• The terminal such theory is the theory of strict *n*-categories; it is the dual of Joyal's category of finite combinatorial *n*-disks.

Example (n=1, Segal condition)

The terminal graphical theory is the simplex category Δ

 $\Delta_0 = \{ \text{distance-preserving operators} \}, \\ \Delta_{gen} = \{ \text{endpoint-preserving operators} \}$

- There is a canonical one-to-one correspondence between homogeneous n-globular theories and globular n-operads;
- The terminal such theory is the theory of strict *n*-categories; it is the dual of Joyal's category of finite combinatorial *n*-disks.

Example (n=1, Segal condition)

The terminal graphical theory is the simplex category Δ .

 $\Delta_0 = \{ \text{distance-preserving operators} \}, \\ \Delta_{gen} = \{ \text{endpoint-preserving operators} \}$

- There is a canonical one-to-one correspondence between homogeneous n-globular theories and globular n-operads;
- The terminal such theory is the theory of strict *n*-categories; it is the dual of Joyal's category of finite combinatorial *n*-disks.

Example (n=1, Segal condition)

The terminal graphical theory is the simplex category Δ .

 $\Delta_0 = \{ \text{distance-preserving operators} \}, \\ \Delta_{gen} = \{ \text{endpoint-preserving operators} \}$

- There is a canonical one-to-one correspondence between homogeneous n-globular theories and globular n-operads;
- The terminal such theory is the theory of strict *n*-categories; it is the dual of Joyal's category of finite combinatorial *n*-disks.

Example (n=1, Segal condition)

The terminal graphical theory is the simplex category Δ .

$$\begin{array}{ccc} \operatorname{Cat} & \xrightarrow{\sim} & \operatorname{Mod}_{\Delta} & \hookrightarrow & \widehat{\Delta} \\ \\ U & & & & & \\ U & & & & \\ & & & & \\ \widehat{\mathbb{G}}_1 & \xrightarrow{\sim} & \operatorname{Sh}(\Delta_0) & \hookrightarrow & \widehat{\Delta}_0 \end{array}$$

$$\begin{split} \Delta_0 &= \{ \text{distance-preserving operators} \}, \\ \Delta_{\textit{gen}} &= \{ \text{endpoint-preserving operators} \}. \end{split}$$

The wreath product $\Delta \wr \mathcal{A}$ is the category

- with objects $([m], a_1, \ldots, a_m) \in \Delta imes \mathcal{A}^m, m \geq 0;$
- with morphisms

 $(\phi;\phi_1,\ldots,\phi_m):([m],a_1,\ldots,a_m)\to([n],b_1,\ldots,b_n)$

 $\begin{aligned} \phi &: [m] \to [n] \text{ in } \Delta \\ \phi_i &: \mathcal{A}[a_i] \to \mathcal{A}[b_{\phi(i)+1}] \times \dots \times \mathcal{A}[b_{\phi(i+1)}] \text{ in } \widehat{\mathcal{A}}. \end{aligned}$

The *wreath product* $\Delta \wr A$ is the category

- with objects $([m], a_1, \ldots, a_m) \in \Delta imes \mathcal{A}^m, m \geq 0;$
- with morphisms

 $(\phi; \phi_1, \ldots, \phi_m) : ([m], a_1, \ldots, a_m) \rightarrow ([n], b_1, \ldots, b_n)$

$$\begin{split} \phi:[m] \to [n] \text{ in } \Delta \\ \phi_i: \mathcal{A}[a_i] \to \mathcal{A}[b_{\phi(i)+1}] \times \cdots \times \mathcal{A}[b_{\phi(i+1)}] \text{ in } \widehat{\mathcal{A}} \end{split}$$

The wreath product $\Delta \wr A$ is the category

- with objects $([m], a_1, \ldots, a_m) \in \Delta \times \mathcal{A}^m, m \ge 0;$
- with morphisms

$$(\phi; \phi_1, \ldots, \phi_m) : ([m], a_1, \ldots, a_m) \rightarrow ([n], b_1, \ldots, b_n)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\phi: [m] \to [n] \text{ in } \Delta$$

$$\phi_i: \mathcal{A}[a_i] \to \mathcal{A}[b_{\phi(i)+1}] \times \cdots \times \mathcal{A}[b_{\phi(i+1)}] \text{ in } \widehat{\mathcal{A}}.$$

The wreath product $\Delta \wr \mathcal{A}$ is the category

• with objects $([m], a_1, \ldots, a_m) \in \Delta \times \mathcal{A}^m, m \ge 0;$

with morphisms

$$(\phi; \phi_1, \ldots, \phi_m) : ([m], a_1, \ldots, a_m) \rightarrow ([n], b_1, \ldots, b_n)$$

 $\begin{aligned} \phi &: [m] \to [n] \text{ in } \Delta \\ \phi_i &: \mathcal{A}[a_i] \to \mathcal{A}[b_{\phi(i)+1}] \times \cdots \times \mathcal{A}[b_{\phi(i+1)}] \text{ in } \widehat{\mathcal{A}}. \end{aligned}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

The wreath product $\Delta \wr A$ is the category

- with objects $([m], a_1, \ldots, a_m) \in \Delta imes \mathcal{A}^m, m \geq 0;$
- with morphisms

$$(\phi; \phi_1, \ldots, \phi_m) : ([m], a_1, \ldots, a_m) \rightarrow ([n], b_1, \ldots, b_n)$$

$$\phi: [m] \to [n] \text{ in } \Delta$$

$$\phi_i: \mathcal{A}[a_i] \to \mathcal{A}[b_{\phi(i)+1}] \times \cdots \times \mathcal{A}[b_{\phi(i+1)}] \text{ in } \widehat{\mathcal{A}}_i$$

$$\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \ge 1)$$

This identification is compatible with the theory structures.

- If \mathcal{A} is augmented over Segal's category Γ then so is $\Delta \wr \mathcal{A}$.
- There is thus a canonical functor $\gamma_n : \Theta_n \to \Gamma$ for each $n \ge 1$.
- Batanin's category Q_n of quasi-bijections is (dual to) the subcategory of Θ_n spanned by *pruned n-level trees* and containing those operators of Θ_n whose image under γ_n is invertible.

$$\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \ge 1)$$

This identification is compatible with the theory structures.

- If \mathcal{A} is augmented over Segal's category Γ then so is $\Delta \wr \mathcal{A}$.
- There is thus a canonical functor $\gamma_n : \Theta_n \to \Gamma$ for each $n \ge 1$.
- Batanin's category Q_n of quasi-bijections is (dual to) the subcategory of Θ_n spanned by *pruned n-level trees* and containing those operators of Θ_n whose image under γ_n is invertible.

$$\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \ge 1)$$

This identification is compatible with the theory structures.

- If \mathcal{A} is augmented over Segal's category Γ then so is $\Delta \wr \mathcal{A}$.
- There is thus a canonical functor $\gamma_n : \Theta_n \to \Gamma$ for each $n \ge 1$.
- Batanin's category Q_n of quasi-bijections is (dual to) the subcategory of Θ_n spanned by *pruned n-level trees* and containing those operators of Θ_n whose image under γ_n is invertible.

$$\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \ge 1)$$

This identification is compatible with the theory structures.

Remark (Batanin's category of quasi-bijections '10)

- If \mathcal{A} is augmented over Segal's category Γ then so is $\Delta \wr \mathcal{A}$.
- There is thus a canonical functor $\gamma_n : \Theta_n \to \Gamma$ for each $n \ge 1$.

 Batanin's category Q_n of quasi-bijections is (dual to) the subcategory of Θ_n spanned by *pruned n-level trees* and containing those operators of Θ_n whose image under γ_n is invertible.

$$\Theta_{n+1} = \Delta \wr \Theta_n \quad (n \ge 1)$$

This identification is compatible with the theory structures.

- If \mathcal{A} is augmented over Segal's category Γ then so is $\Delta \wr \mathcal{A}$.
- There is thus a canonical functor $\gamma_n : \Theta_n \to \Gamma$ for each $n \ge 1$.
- Batanin's category Q_n of quasi-bijections is (dual to) the subcategory of Θ_n spanned by *pruned n-level trees* and containing those operators of Θ_n whose image under γ_n is invertible.

Each topological space X is (weakly) homotopy equivalent to the inverse limit of its Postnikov tower

$$\cdots \longrightarrow X_{\leq n+1} \longrightarrow X_{\leq n} \longrightarrow \cdots$$

In principle this allows to reconstruct the homotopy type of X through cohomological invariants, called *Postnikov invariants* of X.

The fundamental groupoid $\Pi_1(X)$ captures the homotopy type of the Postnikov section $X_{\leq 1}$, but it is known that for $n \geq 3$ there cannot exist a strict fundamental *n*-groupoid capturing the homotopy type of $X_{\leq n}$ for all X.

Grothendieck (in Pursuing Stacks '83) conjectured that there exists a general notion of *weak* fundamental *n*-groupoid $\prod_n(X)$ capturing the homotopy type of $X_{\leq n}$.

Each topological space X is (weakly) homotopy equivalent to the inverse limit of its Postnikov tower

$$\cdots \longrightarrow X_{\leq n+1} \longrightarrow X_{\leq n} \longrightarrow \cdots$$

In principle this allows to reconstruct the homotopy type of X through cohomological invariants, called *Postnikov invariants* of X.

The fundamental groupoid $\Pi_1(X)$ captures the homotopy type of the Postnikov section $X_{\leq 1}$, but it is known that for $n \geq 3$ there cannot exist a strict fundamental *n*-groupoid capturing the homotopy type of $X_{\leq n}$ for all X.

Grothendieck (in Pursuing Stacks '83) conjectured that there exists a general notion of *weak* fundamental *n*-groupoid $\prod_n(X)$ capturing the homotopy type of $X_{\leq n}$.

Each topological space X is (weakly) homotopy equivalent to the inverse limit of its Postnikov tower

$$\cdots \longrightarrow X_{\leq n+1} \longrightarrow X_{\leq n} \longrightarrow \cdots$$

In principle this allows to reconstruct the homotopy type of X through cohomological invariants, called *Postnikov invariants* of X.

The fundamental groupoid $\Pi_1(X)$ captures the homotopy type of the Postnikov section $X_{\leq 1}$, but it is known that for $n \geq 3$ there cannot exist a strict fundamental *n*-groupoid capturing the homotopy type of $X_{\leq n}$ for all X.

Grothendieck (in Pursuing Stacks '83) conjectured that there exists a general notion of *weak* fundamental *n*-groupoid $\prod_n(X)$ capturing the homotopy type of $X_{\leq n}$.

"Weak" *n*-categories are Θ_n -spaces which are *fibrant* for a Quillen model structure on Θ_n -spaces, introduced by Rezk '10.

These fibrant Θ_n -spaces (the Rezk *n*-categories) are essentially those Θ_n -spaces X for which j^*X is a *homotopy sheaf* on $\Theta_{n,0}$.

Rezk proves Grothendieck's hypothesis for his *n*-groupoids.

There are discrete versions Rezk's n-categories:

- Segal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

Strict *n*-categories are Θ_n -sets fulfilling a restricted sheaf condition. "Weak" *n*-categories are Θ_n -spaces which are *fibrant* for a Quillen model structure on Θ_n -spaces, introduced by Rezk '10.

These fibrant Θ_n -spaces (the Rezk *n*-categories) are essentially those Θ_n -spaces X for which j^*X is a *homotopy sheaf* on $\Theta_{n,0}$.

Rezk proves Grothendieck's hypothesis for his *n*-groupoids.

There are discrete versions Rezk's n-categories:

- Segal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

"Weak" *n*-categories are Θ_n -spaces which are *fibrant* for a Quillen model structure on Θ_n -spaces, introduced by Rezk '10.

These fibrant Θ_n -spaces (the Rezk *n*-categories) are essentially those Θ_n -spaces X for which j^*X is a *homotopy sheaf* on $\Theta_{n,0}$.

Rezk proves Grothendieck's hypothesis for his *n*-groupoids.

There are discrete versions Rezk's *n*-categories:

- Segal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

"Weak" *n*-categories are Θ_n -spaces which are *fibrant* for a Quillen model structure on Θ_n -spaces, introduced by Rezk '10.

These fibrant Θ_n -spaces (the Rezk *n*-categories) are essentially those Θ_n -spaces X for which j^*X is a *homotopy sheaf* on $\Theta_{n,0}$.

Rezk proves Grothendieck's hypothesis for his *n*-groupoids.

There are discrete versions Rezk's *n*-categories:

- Segal n-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

"Weak" *n*-categories are Θ_n -spaces which are *fibrant* for a Quillen model structure on Θ_n -spaces, introduced by Rezk '10.

These fibrant Θ_n -spaces (the Rezk *n*-categories) are essentially those Θ_n -spaces X for which j^*X is a *homotopy sheaf* on $\Theta_{n,0}$.

Rezk proves Grothendieck's hypothesis for his *n*-groupoids.

There are discrete versions Rezk's *n*-categories:

- Segal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

"Weak" *n*-categories are Θ_n -spaces which are *fibrant* for a Quillen model structure on Θ_n -spaces, introduced by Rezk '10.

These fibrant Θ_n -spaces (the Rezk *n*-categories) are essentially those Θ_n -spaces X for which j^*X is a *homotopy sheaf* on $\Theta_{n,0}$.

Rezk proves Grothendieck's hypothesis for his n-groupoids.

There are discrete versions Rezk's *n*-categories:

- Segal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

"Weak" *n*-categories are Θ_n -spaces which are *fibrant* for a Quillen model structure on Θ_n -spaces, introduced by Rezk '10.

These fibrant Θ_n -spaces (the Rezk *n*-categories) are essentially those Θ_n -spaces X for which j^*X is a *homotopy sheaf* on $\Theta_{n,0}$.

Rezk proves Grothendieck's hypothesis for his *n*-groupoids.

There are discrete versions Rezk's *n*-categories:

- Segal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

"Weak" *n*-categories are Θ_n -spaces which are *fibrant* for a Quillen model structure on Θ_n -spaces, introduced by Rezk '10.

These fibrant Θ_n -spaces (the Rezk *n*-categories) are essentially those Θ_n -spaces X for which j^*X is a *homotopy sheaf* on $\Theta_{n,0}$.

Rezk proves Grothendieck's hypothesis for his *n*-groupoids.

There are discrete versions Rezk's *n*-categories:

- Segal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-spaces which are discrete on Θ_{n-1};
- Joyal *n*-categories, i.e. fibrant objects for a suitable model structure on Θ_n-sets.

- M. Batanin *Monoidal globular categories as natural environment for the theory of weak n-category*, Adv. Math. 136 (1998).
- M. Batanin Locally constant n-operads as higher braided operads, J. Noncommut. Geom. 4 (2010).
- C. Berger A cellular nerve for higher categories, Adv. Math. 169 (2002).
- C. Berger Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math. 213 (2007).
- A. Joyal Disks, duality and θ -categories, preprint 1997.
- A. Joyal, M. Tierney Quasi-categories vs Segal spaces, Contemp. Math. 431 (2007).
- T. Leinster *Nerves of algebras*, CT 2004.

- M. Makkai, M. Zawadowski Duality for simple ω-categories and disks, TAC 8 (2001).
- P.-A. Melliès Segal condition meets computational effects, see his homepage.
- C. Rezk A cartesian presentation of weak n-categories, GT 14 (2010).
- R. Steiner Simple omega-categories and chain complexes, HHA 9 (2007).
- D. Oury On the duality between trees and disks, arXiv:1002.2747.
- M. Weber *Familial 2-functors and parametric right adjoints*, TAC 22 (2007).