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The nerve theorem and Grothendieck’s hypothesis on homotopy types

Monadic squares

A monadic square is a commutative diagram of functors

E ′1
G ′

- E ′2

=

E1

U1
?

G
- E2

U2
?

such that

(i) U1,U2 are monadic functors with left adjoints F1,F2;

(ii) the induced 2-cell φ = ε2G
′F1 ◦ F2Gη1 (the “mate”)

E ′1
G ′

- E ′2
φ⇐

E1

F1
6

G
- E2

F2
6

is invertible.
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Monadic squares

Let (T1, µ1, η1), (T2, µ2, η2) be monads on E1, E2 respectively.

A (strong) monad morphism (G , ψ) : (E1,T1) → (E2,T2) is a
functor G : E1 → E2 together with an (invertible) 2-cell
ψ : T2G ⇒ GT1 such that Gη1 = ψ ◦ η2G and
ψ ◦ µ2G = Gµ1 ◦ GψT1 ◦ T2ψG .

A strong monad morphism (G , ψ) induces a monadic square

AlgT1

G ′
- AlgT2

=

E1

U1
?

G
- E2

U2
?

with G ′(X , ξ : T1X → X ) = (GX ,Gξ ◦ ψ : T2GX → GX )

Conversely, a monadic square induces a strong monad morphism
from which it derives up to canonical equivalence.
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Monadic squares

Proposition

In any monadic square like above, if G is faithful (resp. fully
faithful resp. an equivalence) then so is G ′.

Proposition

For a fully faithful functor G , the essential image factorisation of G
decomposes the monadic square into two monadic squares

E ′1
∼
- Im(G )×E2 E ′2 ⊂

ff
- E ′2

E1

U1
? ∼

- Im(G )
?

⊂
ff

- E2

U2
?

In particular, the essential image of G ′ is given by restriction of the
monadic functor U2 to the essential image of G .
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Nerves and theories

A category with arities (E ,Θ0) is a category E equipped with a
small dense subcategory i0 : Θ0 ↪→ E , i.e. the induced nerve
functor ν0 : E → Θ̂0 : X 7→ E(i0(−),X ) is fully faithful.

For each object X of E the functor ξX : i0/X → Θ0 ↪→ E induces a

colimit cocone colimi0/X ξX
∼=−→ X .

A monad with arities on (E ,Θ0) is a monad T such that the
composite functor ν0 ◦ T preserves the Θ0-colimit cones.

The theory ΘT induced by a monad with arities T is obtained by

factoring Θ0
i0→ E FT→ AlgT into a bijective-on-objects functor

j : Θ0 → ΘT followed by a fully faithful functor ΘT → AlgT .

ΘT is called homogeneous if ΘT admits a generic/free
factorisation system ΘT = (ΘT ,gen,Θ0).
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Nerves and theories

Example (algebraic theories and symmetric operads)

Consider sets with arities T0 the subcategory of finite sets.

A monad T has arities T0 iff T preserves filtered colimits;

ΘT is (the dual of) Lawvere’s algebraic theory for T -algebras;

ΘT is homogeneous iff T is induced by a symmetric operad.

Theorem (B. ’02, Leinster ’04, Weber ’07, Mellies ’10)

For a monad with arities T on (E ,Θ0), the theory ΘT is dense in
AlgT . The essential image of νT : AlgT → Θ̂T is spanned by
those X : Θop

T → Sets whose restriction j∗X belongs to Im(ν0).

Remark

If E = Ĉ and Θ0 contains the representables, the essential image
of ν0 : Ĉ → Θ̂0 is spanned by sheaves on Θ0. The essential image
of νT : AlgT → Θ̂T is then given by a restricted sheaf condition.
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Nerves and theories

Proof of the nerve theorem.

Since T is a monad with arities on (E ,Θ0) the square

AlgT

νT- Θ̂T

E

UT
? ν0- Θ̂0

j∗
?

is pseudomonadic and ν0 is fully faithful.

A theory on (E ,Θ0) is a bijective-on-objects faithful functor
j : Θ0 → ΘT such that j∗j! preserves the essential image of ν0.

Theorem (B. ’02, Mellies ’10)

There is a canonical one-to-one correspondence between monads
with arities on (E ,Θ0) and theories on (E ,Θ0).
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Higher categories and wreath products

Each finite level tree S defines a globular set S∗ with
ht(S) = dim(S∗) (Batanin’s star-construction ’98).

The category of arities Θ0 is the full subcategory of Ĝ spanned by
the S∗ where S runs through the set of finite level trees.

The Grothendieck topology on Θ0 induced by the nerve
ν0 : Ĝ → Θ̂0 has the caracteristic property that a presheaf X on Θ0

is a sheaf if and only if X transforms the canonical colimit cones

colimσ∈el(S∗)σ
∼=−→ S∗

into limit cones.

A theory ΘA on (Ĝ,Θ0) is called globular. The presheaves X such
that j∗X is a sheaf are called ΘA-models. According to the nerve
theorem they correspond to A-algebras for a monad A on Ĝ.
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Higher categories and wreath products

AlgA

∼
- ModΘA

⊂ - Θ̂A

Ĝ

UA
? ∼

- Sh(Θ0)
?

⊂ - Θ̂0

j∗
?

A globular theory ΘA is called homogeneous if there is a
factorisation system ΘA = (ΘA,gen,Θ0) such that each generic
operator φ : S → T satisfies ht(S) ≥ ht(T ).

Theorem (Makkai-Zawadowski ’01, B. ’02)

There is a canonical one-to-one correspondence between
homogeneous globular theories and globular operads;

The terminal such theory is the theory of strict ω-categories;
it is the dual of Joyal’s category of finite combinatorial disks.
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Ĝ

UA
? ∼

- Sh(Θ0)
?

⊂ - Θ̂0

j∗
?

A globular theory ΘA is called homogeneous if there is a
factorisation system ΘA = (ΘA,gen,Θ0) such that each generic
operator φ : S → T satisfies ht(S) ≥ ht(T ).

Theorem (Makkai-Zawadowski ’01, B. ’02)

There is a canonical one-to-one correspondence between
homogeneous globular theories and globular operads;

The terminal such theory is the theory of strict ω-categories;
it is the dual of Joyal’s category of finite combinatorial disks.



The nerve theorem and Grothendieck’s hypothesis on homotopy types

Higher categories and wreath products

AlgA

∼
- ModΘA

⊂ - Θ̂A

Ĝ
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Corollary

There is a canonical one-to-one correspondence between
homogeneous n-globular theories and globular n-operads;

The terminal such theory is the theory of strict n-categories; it
is the dual of Joyal’s category of finite combinatorial n-disks.

Example (n=1, Segal condition)

The terminal graphical theory is the simplex category ∆.

Cat
∼
- Mod∆

⊂ - ∆̂

Ĝ1

U
? ∼

- Sh(∆0)
?

⊂ - ∆̂0

j∗
?

∆0 = {distance-preserving operators},
∆gen = {endpoint-preserving operators}.
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Ĝ1

U
? ∼

- Sh(∆0)
?

⊂ - ∆̂0

j∗
?

∆0 = {distance-preserving operators},
∆gen = {endpoint-preserving operators}.



The nerve theorem and Grothendieck’s hypothesis on homotopy types

Higher categories and wreath products

Corollary

There is a canonical one-to-one correspondence between
homogeneous n-globular theories and globular n-operads;

The terminal such theory is the theory of strict n-categories; it
is the dual of Joyal’s category of finite combinatorial n-disks.

Example (n=1, Segal condition)

The terminal graphical theory is the simplex category ∆.

Cat
∼
- Mod∆

⊂ - ∆̂

Ĝ1
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Higher categories and wreath products

The terminal n-globular theory Θn is dense in nCat for each n ≥ 1.

Θn
⊂ - nCat

Θn+1

?

∩

⊂- n + 1Cat
?

∩

The wreath product ∆ o A is the category

with objects ([m], a1, . . . , am) ∈ ∆×Am,m ≥ 0;

with morphisms

(φ;φ1, . . . , φm) : ([m], a1, . . . , am) → ([n], b1, . . . , bn)

φ : [m] → [n] in ∆
φi : A[ai ] → A[bφ(i)+1]× · · · × A[bφ(i+1)] in Â.
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Higher categories and wreath products

Proposition (B. ’07, Steiner ’07, Oury ’10)

Θn+1 = ∆ oΘn (n ≥ 1)

This identification is compatible with the theory structures.

Remark (Batanin’s category of quasi-bijections ’10)

If A is augmented over Segal’s category Γ then so is ∆ o A.

There is thus a canonical functor γn : Θn → Γ for each n ≥ 1.

Batanin’s category Qn of quasi-bijections is (dual to) the
subcategory of Θn spanned by pruned n-level trees and
containing those operators of Θn whose image under γn is
invertible.
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Grothendieck’s hypothesis and Θn-spaces

Each topological space X is (weakly) homotopy equivalent to the
inverse limit of its Postnikov tower

· · · −→ X≤n+1 −→ X≤n −→ · · ·

In principle this allows to reconstruct the homotopy type of X
through cohomological invariants, called Postnikov invariants of X .

The fundamental groupoid Π1(X ) captures the homotopy type of
the Postnikov section X≤1, but it is known that for n ≥ 3 there
cannot exist a strict fundamental n-groupoid capturing the
homotopy type of X≤n for all X .

Grothendieck (in Pursuing Stacks ’83) conjectured that there
exists a general notion of weak fundamental n-groupoid Πn(X )
capturing the homotopy type of X≤n.
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Grothendieck’s hypothesis and Θn-spaces

Strict n-categories are Θn-sets fulfilling a restricted sheaf condition.

“Weak” n-categories are Θn-spaces which are fibrant for a Quillen
model structure on Θn-spaces, introduced by Rezk ’10.

These fibrant Θn-spaces (the Rezk n-categories) are essentially
those Θn-spaces X for which j∗X is a homotopy sheaf on Θn,0.

Rezk proves Grothendieck’s hypothesis for his n-groupoids.

There are discrete versions Rezk’s n-categories:

Segal n-categories, i.e. fibrant objects for a suitable model
structure on Θn-spaces which are discrete on Θn−1;

Joyal n-categories, i.e. fibrant objects for a suitable model
structure on Θn-sets.

These discretesized model structures have been shown to exist only
for n = 1, cf. Joyal-Tierney ’07 !!
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