Higher complements of combinatorial sphere arrangements

Clemens Berger

University of Nice

Combinatorial Structures in Algebra and Topology Osnabrück, October 8, 2009 Nice, October 15, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

3 Higher Salvetti complexes

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $(\mathcal{H}_{\alpha})_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} \mathcal{H}_{\alpha}$ is trivial.

The complement $\mathcal{M}(\mathcal{A}) = V \setminus (\bigcup_{\alpha \in \mathcal{A}} H_{\alpha})$ decomposes into path components, called *chambers* (or *topes*): $C_{\mathcal{A}} = \pi_0(\mathcal{M}(\mathcal{A}))$.

Denote by s_{α} the orthogonal symmetry with respect to H_{α} . If $(H_{\alpha})_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a *Coxeter arrangement*. We write $\mathcal{A} = \mathcal{A}_W$ where W is the subgroup $W = \langle s_{\alpha}, \alpha \in \mathcal{A} \rangle$ of $O_n(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_W and finite Coxeter groups W. The latter are classified by their Coxeter diagrams.

A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $(H_{\alpha})_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.

The complement $\mathcal{M}(\mathcal{A}) = V \setminus (\bigcup_{\alpha \in \mathcal{A}} H_{\alpha})$ decomposes into path components, called *chambers* (or *topes*): $C_{\mathcal{A}} = \pi_0(\mathcal{M}(\mathcal{A}))$.

Denote by s_{α} the orthogonal symmetry with respect to H_{α} . If $(H_{\alpha})_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a *Coxeter arrangement*. We write $\mathcal{A} = \mathcal{A}_W$ where W is the subgroup $W = \langle s_{\alpha}, \alpha \in \mathcal{A} \rangle$ of $O_n(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_W and finite Coxeter groups W. The latter are classified by their Coxeter diagrams.

A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $(H_{\alpha})_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.

The complement $\mathcal{M}(\mathcal{A}) = V \setminus (\bigcup_{\alpha \in \mathcal{A}} H_{\alpha})$ decomposes into path components, called *chambers* (or *topes*): $C_{\mathcal{A}} = \pi_0(\mathcal{M}(\mathcal{A}))$.

Denote by s_{α} the orthogonal symmetry with respect to H_{α} . If $(H_{\alpha})_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a *Coxeter arrangement*. We write $\mathcal{A} = \mathcal{A}_W$ where W is the subgroup $W = \langle s_{\alpha}, \alpha \in \mathcal{A} \rangle$ of $O_n(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_W and finite Coxeter groups W. The latter are classified by their Coxeter diagrams.

A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $(H_{\alpha})_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.

The complement $\mathcal{M}(\mathcal{A}) = V \setminus (\bigcup_{\alpha \in \mathcal{A}} H_{\alpha})$ decomposes into path components, called *chambers* (or *topes*): $C_{\mathcal{A}} = \pi_0(\mathcal{M}(\mathcal{A}))$.

Denote by s_{α} the orthogonal symmetry with respect to H_{α} . If $(H_{\alpha})_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a *Coxeter arrangement*. We write $\mathcal{A} = \mathcal{A}_W$ where W is the subgroup $W = < s_{\alpha}, \alpha \in \mathcal{A} > \text{ of } O_n(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements A_W and finite Coxeter groups W. The latter are classified by their Coxeter diagrams.

A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $(H_{\alpha})_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.

The complement $\mathcal{M}(\mathcal{A}) = V \setminus (\bigcup_{\alpha \in \mathcal{A}} H_{\alpha})$ decomposes into path components, called *chambers* (or *topes*): $C_{\mathcal{A}} = \pi_0(\mathcal{M}(\mathcal{A}))$.

Denote by s_{α} the orthogonal symmetry with respect to H_{α} . If $(H_{\alpha})_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a *Coxeter arrangement*. We write $\mathcal{A} = \mathcal{A}_W$ where W is the subgroup $W = < s_{\alpha}, \alpha \in \mathcal{A} > \text{ of } O_n(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements A_W and finite Coxeter groups W. The latter are classified by their Coxeter diagrams.

The Coxeter group W acts simply transitively on C_{A_W} .

Definition

The *k*-th complement of a hyperplane arrangement A is

$$\mathcal{M}_k(\mathcal{A}) = V^k \setminus \bigcup_{\alpha \in \mathcal{A}} (H_\alpha)^k.$$

Example

 $V = \mathbb{R}^n$, $\mathcal{A} = (H_{ij})_{1 \le i < j \le n}$ where $H_{ij} = \{x \in \mathbb{R}^n | x_i = x_j\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_n}$ for the symmetric group \mathfrak{S}_n . The center is $\mathbb{R}.(1,\ldots,1)$. The higher complements are configuration spaces: $\mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n}) = F(\mathbb{R}^k, n) = \{(x_1,\ldots,x_n) \in \mathbb{R}^{kn} | x_i \neq x_j\}$.

Proposition (Brieskorn '71)

 $\pi_1(\mathcal{M}_2(\mathcal{A}_W)) = Ker(\mathcal{A}_W \to W)$ (the pure Artin group of W).

Theorem (Deligne '72)

Definition

The *k*-th complement of a hyperplane arrangement A is

$$\mathcal{M}_k(\mathcal{A}) = V^k \setminus \bigcup_{\alpha \in \mathcal{A}} (H_\alpha)^k.$$

Example

 $V = \mathbb{R}^n$, $\mathcal{A} = (H_{ij})_{1 \le i < j \le n}$ where $H_{ij} = \{x \in \mathbb{R}^n | x_i = x_j\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_n}$ for the symmetric group \mathfrak{S}_n . The center is $\mathbb{R}.(1,\ldots,1)$. The higher complements are configuration spaces: $\mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n}) = F(\mathbb{R}^k, n) = \{(x_1,\ldots,x_n) \in \mathbb{R}^{kn} | x_i \neq x_j\}$.

Proposition (Brieskorn '71)

 $\pi_1(\mathcal{M}_2(\mathcal{A}_W)) = Ker(\mathcal{A}_W \to W)$ (the pure Artin group of W).

Theorem (Deligne '72)

Definition

The *k*-th complement of a hyperplane arrangement A is

$$\mathcal{M}_k(\mathcal{A}) = V^k \setminus \bigcup_{\alpha \in \mathcal{A}} (H_\alpha)^k.$$

Example

 $V = \mathbb{R}^n$, $\mathcal{A} = (H_{ij})_{1 \le i < j \le n}$ where $H_{ij} = \{x \in \mathbb{R}^n | x_i = x_j\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_n}$ for the symmetric group \mathfrak{S}_n . The center is $\mathbb{R}.(1,\ldots,1)$. The higher complements are configuration spaces: $\mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n}) = F(\mathbb{R}^k, n) = \{(x_1,\ldots,x_n) \in \mathbb{R}^{kn} | x_i \neq x_j\}$.

Proposition (Brieskorn '71)

 $\pi_1(\mathcal{M}_2(\mathcal{A}_W)) = Ker(\mathcal{A}_W \to W)$ (the pure Artin group of W).

Theorem (Deligne '72)

Definition

The *k*-th complement of a hyperplane arrangement A is

$$\mathcal{M}_k(\mathcal{A}) = V^k \setminus \bigcup_{\alpha \in \mathcal{A}} (H_\alpha)^k.$$

Example

 $V = \mathbb{R}^n$, $\mathcal{A} = (H_{ij})_{1 \le i < j \le n}$ where $H_{ij} = \{x \in \mathbb{R}^n | x_i = x_j\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_n}$ for the symmetric group \mathfrak{S}_n . The center is $\mathbb{R}.(1,\ldots,1)$. The higher complements are configuration spaces: $\mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n}) = F(\mathbb{R}^k, n) = \{(x_1,\ldots,x_n) \in \mathbb{R}^{kn} | x_i \neq x_j\}$.

Proposition (Brieskorn '71)

 $\pi_1(\mathcal{M}_2(\mathcal{A}_W)) = Ker(\mathcal{A}_W \to W)$ (the pure Artin group of W).

Theorem (Deligne '72)

Purpose of the talk

Define a *finite cell complex* $\mathcal{S}_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_k(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct $S_{A_{G}}^{(k)}$ for any k;
- Salvetti '87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A} .

Theorem (Randell '02, Dimca-Papadima '03, S-S '07)

The complement of a complex hyperplane arrangement admits a minimal CW-structure. The minimal CW-structure of $\mathcal{M}_2(\mathcal{A})$ derives from $\mathcal{S}^{(2)}_{\mathcal{A}}$ through combinatorial Morse theory.

Remark (Gel'fand-Rybnikov '90)

The complex $\mathcal{S}_{\mathcal{A}}^{(2)}$ only depends on the *oriented matroid* $\mathcal{F}_{\mathcal{A}}$ of $\mathcal{A}.$

(日本) (四本) (日本) (日本)

Purpose of the talk

Define a *finite cell complex* $\mathcal{S}_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_k(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct $\mathcal{S}_{\mathcal{A}_{\mathfrak{S}_{n}}}^{(k)}$ for any k;
- Salvetti '87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A} .

Theorem (Randell '02, Dimca-Papadima '03, S-S '07)

The complement of a complex hyperplane arrangement admits a minimal CW-structure. The minimal CW-structure of $\mathcal{M}_2(\mathcal{A})$ derives from $\mathcal{S}^{(2)}_{\mathcal{A}}$ through combinatorial Morse theory.

Remark (Gel'fand-Rybnikov '90)

The complex $\mathcal{S}^{(2)}_{\mathcal{A}}$ only depends on the *oriented matroid* $\mathcal{F}_{\mathcal{A}}$ of $\mathcal{A}.$

Purpose of the talk

Define a *finite cell complex* $S_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_k(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct $\mathcal{S}_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}$ for any k;
- Salvetti '87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A} .

Theorem (Randell '02, Dimca-Papadima '03, S-S '07)

The complement of a complex hyperplane arrangement admits a minimal CW-structure. The minimal CW-structure of $\mathcal{M}_2(\mathcal{A})$ derives from $\mathcal{S}^{(2)}_{\mathcal{A}}$ through combinatorial Morse theory.

Remark (Gel'fand-Rybni<u>kov</u> '90)

The complex $\mathcal{S}_{\mathcal{A}}^{(2)}$ only depends on the *oriented matroid* $\mathcal{F}_{\mathcal{A}}$ of $\mathcal{A}.$

Purpose of the talk

Define a *finite cell complex* $\mathcal{S}_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_k(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct $S_{A_{\Theta_{\alpha}}}^{(k)}$ for any k;
- Salvetti '87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A} .

Theorem (Randell '02, Dimca-Papadima '03, S-S '07)

The complement of a complex hyperplane arrangement admits a minimal CW-structure. The minimal CW-structure of $\mathcal{M}_2(\mathcal{A})$ derives from $\mathcal{S}^{(2)}_{\mathcal{A}}$ through combinatorial Morse theory.

Remark (Gel'fand-Rybnikov '90)

The complex $\mathcal{S}^{(2)}_{\mathcal{A}}$ only depends on the *oriented matroid* $\mathcal{F}_{\mathcal{A}}$ of $\mathcal{A}.$

Purpose of the talk

Define a *finite cell complex* $\mathcal{S}_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_k(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct $S_{A_{\Theta_{\alpha}}}^{(k)}$ for any k;
- Salvetti '87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A} .

Theorem (Randell '02, Dimca-Papadima '03, S-S '07)

The complement of a complex hyperplane arrangement admits a minimal CW-structure. The minimal CW-structure of $\mathcal{M}_2(\mathcal{A})$ derives from $\mathcal{S}^{(2)}_{\mathcal{A}}$ through combinatorial Morse theory.

Remark (Gel'fand-Rybnikov '90)

The complex $\mathcal{S}_{\mathcal{A}}^{(2)}$ only depends on the *oriented matroid* $\mathcal{F}_{\mathcal{A}}$ of \mathcal{A} .

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces H_{α}^{\pm} such that $H_{\alpha}^{+} \cap H_{\alpha}^{-} = H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-} = V$. Then each point $x \in V$ defines a sign vector $sgn_{x} \in \{0,\pm\}^{\mathcal{A}}$ by

$$sgn_{x}(lpha) = \begin{cases} 0 & \text{ if } x \in H_{lpha}; \\ \pm & \text{ if } x \in H_{lpha}^{\pm} ackslash H_{lpha}. \end{cases}$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0,\pm\}^{\mathcal{A}}$ is the set of all such sign vectors $sgn_x, x \in V$, equipped with the partial order induced from the product order on $\{0,\pm\}^{\mathcal{A}}$ where 0 < + and 0 < -.

Each $P \in \mathcal{F}_{\mathcal{A}}$ defines a *facet* $c_P = \{x \in V | sgn_x = P\}$. The facets are convex subsets of V, open in their closure. By definition,

 $\overline{c}_P \subseteq \overline{c}_Q$ in V iff $P \leq Q$ in \mathcal{F}_A .

The unit-sphere S_V gets a *CW-structure* with cell poset $\mathcal{F}_A \setminus \{0\}$.

・ロト ・西ト ・ヨト ・ヨト ・ りゃぐ

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces H_{α}^{\pm} such that $H_{\alpha}^{+} \cap H_{\alpha}^{-} = H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-} = V$. Then each point $x \in V$ defines a sign vector $sgn_{x} \in \{0,\pm\}^{\mathcal{A}}$ by

$$sgn_x(lpha) = \begin{cases} 0 & \text{ if } x \in H_lpha; \\ \pm & \text{ if } x \in H_lpha^\pm ackslash H_lpha. \end{cases}$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0,\pm\}^{\mathcal{A}}$ is the set of all such sign vectors $sgn_x, x \in V$, equipped with the partial order induced from the product order on $\{0,\pm\}^{\mathcal{A}}$ where 0 < + and 0 < -.

Each $P \in \mathcal{F}_{\mathcal{A}}$ defines a *facet* $c_P = \{x \in V | sgn_x = P\}$. The facets are convex subsets of V, open in their closure. By definition,

 $\overline{c}_P \subseteq \overline{c}_Q$ in V iff $P \leq Q$ in \mathcal{F}_A .

The unit-sphere S_V gets a *CW-structure* with cell poset $\mathcal{F}_A \setminus \{0\}$.

・ロト ・西ト ・ヨト ・ヨト ・ りゃぐ

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces H_{α}^{\pm} such that $H_{\alpha}^{+} \cap H_{\alpha}^{-} = H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-} = V$. Then each point $x \in V$ defines a sign vector $sgn_{x} \in \{0,\pm\}^{\mathcal{A}}$ by

$$\mathit{sgn}_x(lpha) = egin{cases} 0 & ext{if } x \in H_lpha; \ \pm & ext{if } x \in H_lpha^\pm ackslash H_lpha. \end{cases}$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0,\pm\}^{\mathcal{A}}$ is the set of all such sign vectors sgn_x , $x \in V$, equipped with the partial order induced from the product order on $\{0,\pm\}^{\mathcal{A}}$ where 0 < + and 0 < -.

Each $P \in \mathcal{F}_{\mathcal{A}}$ defines a *facet* $c_P = \{x \in V | sgn_x = P\}$. The facets are convex subsets of V, open in their closure. By definition,

 $\overline{c}_P \subseteq \overline{c}_Q$ in V iff $P \leq Q$ in \mathcal{F}_A .

The unit-sphere S_V gets a CW-structure with cell poset $\mathcal{F}_{\mathcal{A}} \setminus \{0\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces H_{α}^{\pm} such that $H_{\alpha}^{+} \cap H_{\alpha}^{-} = H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-} = V$. Then each point $x \in V$ defines a sign vector $sgn_{x} \in \{0,\pm\}^{\mathcal{A}}$ by

$$sgn_x(lpha) = egin{cases} 0 & ext{if } x \in H_lpha; \ \pm & ext{if } x \in H_lpha^\pm ackslash H_lpha. \end{cases}$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0,\pm\}^{\mathcal{A}}$ is the set of all such sign vectors sgn_x , $x \in V$, equipped with the partial order induced from the product order on $\{0,\pm\}^{\mathcal{A}}$ where 0 < + and 0 < -.

Each $P \in \mathcal{F}_A$ defines a facet $c_P = \{x \in V | sgn_x = P\}$. The facets are convex subsets of V, open in their closure. By definition,

$$\overline{c}_P \subseteq \overline{c}_Q$$
 in V iff $P \leq Q$ in \mathcal{F}_A .

The unit-sphere S_V gets a CW-structure with cell poset $\mathcal{F}_{\mathcal{A}} \setminus \{0\}$.

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces H_{α}^{\pm} such that $H_{\alpha}^{+} \cap H_{\alpha}^{-} = H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-} = V$. Then each point $x \in V$ defines a sign vector $sgn_{x} \in \{0,\pm\}^{\mathcal{A}}$ by

$$sgn_x(lpha) = egin{cases} 0 & ext{if } x \in H_lpha; \ \pm & ext{if } x \in H_lpha^\pm ackslash H_lpha. \end{cases}$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0,\pm\}^{\mathcal{A}}$ is the set of all such sign vectors sgn_x , $x \in V$, equipped with the partial order induced from the product order on $\{0,\pm\}^{\mathcal{A}}$ where 0 < + and 0 < -.

Each $P \in \mathcal{F}_A$ defines a facet $c_P = \{x \in V | sgn_x = P\}$. The facets are convex subsets of V, open in their closure. By definition,

$$\overline{c}_P \subseteq \overline{c}_Q$$
 in V iff $P \leq Q$ in \mathcal{F}_A .

The unit-sphere S_V gets a *CW*-structure with cell poset $\mathcal{F}_A \setminus \{0\}$.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $PQ \in \{0, \pm\}^{\mathcal{A}}$ by

$$(PQ)(\alpha) = \begin{cases} P(\alpha) & \text{if } P(\alpha) \neq 0; \\ Q(\alpha) & \text{if } P(\alpha) = 0. \end{cases}$$

The subset $\mathcal{F}_{\mathcal{A}} \subset \{0,\pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an *oriented matroid*:

 $0 \in \mathcal{F}_{\mathcal{A}};$

$$P \in \mathcal{F}_{\mathcal{A}} \text{ implies } -P \in \mathcal{F}_{\mathcal{A}};$$

- Any α ∈ A which separates P, Q ∈ F_A supports an R ∈ F_A sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $PQ \in \{0, \pm\}^{\mathcal{A}}$ by

$$(PQ)(\alpha) = \begin{cases} P(\alpha) & \text{if } P(\alpha) \neq 0; \\ Q(\alpha) & \text{if } P(\alpha) = 0. \end{cases}$$

The subset $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an *oriented matroid*:

- $0 \in \mathcal{F}_{\mathcal{A}};$
- $P \in \mathcal{F}_{\mathcal{A}} \text{ implies } -P \in \mathcal{F}_{\mathcal{A}};$
- $P, Q \in \mathcal{F}_{\mathcal{A}}$ implies $PQ \in \mathcal{F}_{\mathcal{A}}$;
- Any α ∈ A which separates P, Q ∈ F_A supports an R ∈ F_A sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $PQ \in \{0, \pm\}^{\mathcal{A}}$ by

$$(PQ)(\alpha) = \begin{cases} P(\alpha) & \text{if } P(\alpha) \neq 0; \\ Q(\alpha) & \text{if } P(\alpha) = 0. \end{cases}$$

The subset $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an *oriented matroid*:

$$0 \in \mathcal{F}_{\mathcal{A}};$$

$$P \in \mathcal{F}_{\mathcal{A}} \text{ implies } -P \in \mathcal{F}_{\mathcal{A}};$$

Any α ∈ A which separates P, Q ∈ F_A supports an R ∈ F_A sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $PQ \in \{0, \pm\}^{\mathcal{A}}$ by

$$(PQ)(\alpha) = \begin{cases} P(\alpha) & \text{if } P(\alpha) \neq 0; \\ Q(\alpha) & \text{if } P(\alpha) = 0. \end{cases}$$

The subset $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an *oriented matroid*:

 $0 \in \mathcal{F}_{\mathcal{A}};$

Any α ∈ A which separates P, Q ∈ F_A supports an R ∈ F_A sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $PQ \in \{0, \pm\}^{\mathcal{A}}$ by

$$(PQ)(\alpha) = \begin{cases} P(\alpha) & \text{if } P(\alpha) \neq 0; \\ Q(\alpha) & \text{if } P(\alpha) = 0. \end{cases}$$

The subset $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an *oriented matroid*:

 $0 \in \mathcal{F}_{\mathcal{A}};$

Any α ∈ A which separates P, Q ∈ F_A supports an R ∈ F_A sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $PQ \in \{0, \pm\}^{\mathcal{A}}$ by

$$(PQ)(\alpha) = \begin{cases} P(\alpha) & \text{if } P(\alpha) \neq 0; \\ Q(\alpha) & \text{if } P(\alpha) = 0. \end{cases}$$

The subset $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an *oriented matroid*:

1)
$$0 \in \mathcal{F}_{\mathcal{A}};$$

Any α ∈ A which separates P, Q ∈ F_A supports an R ∈ F_A sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

 α separates P, Q if $P(\alpha)Q(\alpha) = -1$, and supports R if $R(\alpha) = 0$.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $PQ \in \{0, \pm\}^{\mathcal{A}}$ by

$$(PQ)(\alpha) = \begin{cases} P(\alpha) & \text{if } P(\alpha) \neq 0; \\ Q(\alpha) & \text{if } P(\alpha) = 0. \end{cases}$$

The subset $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an *oriented matroid*:

1)
$$0 \in \mathcal{F}_{\mathcal{A}};$$

$$\ \ \, {\it O} \ \ \, {\it P} \in {\cal F}_{\cal A} \ \, {\it implies} \ \ - {\it P} \in {\cal F}_{\cal A};$$

Any α ∈ A which separates P, Q ∈ F_A supports an R ∈ F_A sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

A sphere arrangement in V is a collection $(S_{\alpha})_{\alpha \in \mathcal{A}}$ of centrally symmetric subspheres of codimension one of S_V such that

- **(**) The closures S_{α}^{\pm} of the two components of $S_V \setminus S_{\alpha}$ are balls;
- 2 any intersection of the S^{\pm}_{α} is either a ball, a sphere or empty.

A sphere arrangement $(S_{\alpha})_{\alpha \in \mathcal{A}}$ defines an oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ with respect to $(\mathbb{R}.S_{\alpha})_{\alpha \in \mathcal{A}}$.

Theorem (Folkman-Lawrence '78, Edmonds-Mandel '78)

Any simple oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0,\pm\}^{\mathcal{A}}$ is the oriented matroid of an essentially unique sphere arrangement in $V = \mathbb{R}^{\operatorname{rk}(\mathcal{F}_{\mathcal{A}})}$.

Definition

The k-th complement of a sphere arrangement $(S_lpha)_{lpha\in\mathcal{A}}$ in V is

$$\mathcal{M}_k(\mathcal{A}) = V^k \setminus \bigcup_{\alpha \in \mathcal{A}} (\mathbb{R}.S_\alpha)^k \simeq \underbrace{S_V * \cdots * S_V}_k \setminus \bigcup_{\alpha \in \mathcal{A}} \underbrace{S_\alpha * \cdots * S_\alpha}_k.$$

A sphere arrangement in V is a collection $(S_{\alpha})_{\alpha \in \mathcal{A}}$ of centrally symmetric subspheres of codimension one of S_V such that

- **(**) The closures S_{α}^{\pm} of the two components of $S_V \setminus S_{\alpha}$ are balls;
- 2 any intersection of the S^{\pm}_{α} is either a ball, a sphere or empty.

A sphere arrangement $(S_{\alpha})_{\alpha \in \mathcal{A}}$ defines an oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ with respect to $(\mathbb{R}.S_{\alpha})_{\alpha \in \mathcal{A}}$.

Theorem (Folkman-Lawrence '78, Edmonds-Mandel '78)

Any simple oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0,\pm\}^{\mathcal{A}}$ is the oriented matroid of an essentially unique sphere arrangement in $V = \mathbb{R}^{\operatorname{rk}(\mathcal{F}_{\mathcal{A}})}$.

Definition

The k-th complement of a sphere arrangement $(S_{lpha})_{lpha\in\mathcal{A}}$ in V is

$$\mathcal{M}_k(\mathcal{A}) = V^k \setminus \bigcup_{\alpha \in \mathcal{A}} (\mathbb{R}.S_\alpha)^k \simeq \underbrace{S_V * \cdots * S_V}_k \setminus \bigcup_{\alpha \in \mathcal{A}} \underbrace{S_\alpha * \cdots * S_\alpha}_k.$$

A sphere arrangement in V is a collection $(S_{\alpha})_{\alpha \in \mathcal{A}}$ of centrally symmetric subspheres of codimension one of S_V such that

- **(**) The closures S_{α}^{\pm} of the two components of $S_V \setminus S_{\alpha}$ are balls;
- 2 any intersection of the S^{\pm}_{α} is either a ball, a sphere or empty.

A sphere arrangement $(S_{\alpha})_{\alpha \in \mathcal{A}}$ defines an oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ with respect to $(\mathbb{R}.S_{\alpha})_{\alpha \in \mathcal{A}}$.

Theorem (Folkman-Lawrence '78, Edmonds-Mandel '78)

Any simple oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ is the oriented matroid of an essentially unique sphere arrangement in $V = \mathbb{R}^{\operatorname{rk}(\mathcal{F}_{\mathcal{A}})}$.

Definition

The k-th complement of a sphere arrangement $(S_{\alpha})_{\alpha\in\mathcal{A}}$ in V is

$$\mathcal{M}_k(\mathcal{A}) = V^k \setminus \bigcup_{\alpha \in \mathcal{A}} (\mathbb{R}.S_\alpha)^k \simeq \underbrace{S_V * \cdots * S_V}_k \setminus \bigcup_{\alpha \in \mathcal{A}} \underbrace{S_\alpha * \cdots * S_\alpha}_k.$$

A sphere arrangement in V is a collection $(S_{\alpha})_{\alpha \in \mathcal{A}}$ of centrally symmetric subspheres of codimension one of S_V such that

- **(**) The closures S_{α}^{\pm} of the two components of $S_V \setminus S_{\alpha}$ are balls;
- 2 any intersection of the S^{\pm}_{α} is either a ball, a sphere or empty.

A sphere arrangement $(S_{\alpha})_{\alpha \in \mathcal{A}}$ defines an oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ with respect to $(\mathbb{R}.S_{\alpha})_{\alpha \in \mathcal{A}}$.

Theorem (Folkman-Lawrence '78, Edmonds-Mandel '78)

Any simple oriented matroid $\mathcal{F}_{\mathcal{A}} \subset \{0, \pm\}^{\mathcal{A}}$ is the oriented matroid of an essentially unique sphere arrangement in $V = \mathbb{R}^{\operatorname{rk}(\mathcal{F}_{\mathcal{A}})}$.

Definition

The k-th complement of a sphere arrangement $(S_{\alpha})_{\alpha \in \mathcal{A}}$ in V is

$$\mathcal{M}_k(\mathcal{A}) = V^k \setminus \bigcup_{\alpha \in \mathcal{A}} (\mathbb{R}.S_\alpha)^k \simeq \underbrace{S_V * \cdots * S_V}_k \setminus \bigcup_{\alpha \in \mathcal{A}} \underbrace{S_\alpha * \cdots * S_\alpha}_k.$$

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V.

The chamber system C_A is the *discrete* subposet of \mathcal{F}_A consisting of the *maximal* facets. In particular, $|C_A| \simeq \mathcal{M}(A)$.

 $\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}} = \mathcal{F}_{\mathcal{A} \oplus \mathcal{A}} \text{ where } \mathcal{A} \oplus \mathcal{A} = (\mathcal{A} \times V) \cup (V \times \mathcal{A}) \text{ in } V \times V.$

Definition (Orlik '91)

$$\mathcal{C}_{\mathcal{A}}^{(2)} := \{(P,Q) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{F}_{\mathcal{A}} \, | \, PQ \in \mathcal{C}_{\mathcal{A}} \}^{\mathrm{op}}$$

$$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$$
 iff $\exists \alpha \in \mathcal{A} : P(\alpha) = Q(\alpha) = 0.$

For subcomplexes K_1, K_2 of a simplicial complex L sth. $Vert(L) = Vert(K_1) \sqcup Vert(K_2)$, one has: $|L| \setminus |K_1| \simeq |K_2|$. Thus,

$$|\mathcal{C}_{\mathcal{A}}^{(2)}|\simeq\mathcal{M}_2(\mathcal{A})$$

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the *discrete* subposet of $\mathcal{F}_{\mathcal{A}}$ consisting of the *maximal* facets. In particular, $|\mathcal{C}_{\mathcal{A}}| \simeq \mathcal{M}(\mathcal{A})$.

 $\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}} = \mathcal{F}_{\mathcal{A} \oplus \mathcal{A}} \text{ where } \mathcal{A} \oplus \mathcal{A} = (\mathcal{A} \times V) \cup (V \times \mathcal{A}) \text{ in } V \times V.$

Definition (Orlik '91)

$$\mathcal{C}_{\mathcal{A}}^{(2)} := \{(P,Q) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{F}_{\mathcal{A}} \, | \, PQ \in \mathcal{C}_{\mathcal{A}} \}^{\mathrm{op}}$$

$$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$$
 iff $\exists \alpha \in \mathcal{A} : P(\alpha) = Q(\alpha) = 0.$

For subcomplexes K_1, K_2 of a simplicial complex L sth. $Vert(L) = Vert(K_1) \sqcup Vert(K_2)$, one has: $|L| \setminus |K_1| \simeq |K_2|$. Thus,

$$|\mathcal{C}_{\mathcal{A}}^{(2)}|\simeq\mathcal{M}_2(\mathcal{A})$$

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the *discrete* subposet of $\mathcal{F}_{\mathcal{A}}$ consisting of the *maximal* facets. In particular, $|\mathcal{C}_{\mathcal{A}}| \simeq \mathcal{M}(\mathcal{A})$.

 $\mathcal{F}_{\mathcal{A}}\times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A}\oplus \mathcal{A}} \text{ where } \mathcal{A}\oplus \mathcal{A}=(\mathcal{A}\times V)\cup (V\times \mathcal{A}) \text{ in } V\times V.$

Definition (Orlik '91)

$$\mathcal{C}_{\mathcal{A}}^{(2)} := \{(P,Q) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{F}_{\mathcal{A}} \, | \, PQ \in \mathcal{C}_{\mathcal{A}} \}^{\mathrm{op}}$$

$$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$$
 iff $\exists \alpha \in \mathcal{A} : P(\alpha) = Q(\alpha) = 0.$

For subcomplexes K_1, K_2 of a simplicial complex L sth. $Vert(L) = Vert(K_1) \sqcup Vert(K_2)$, one has: $|L| \setminus |K_1| \simeq |K_2|$. Thus,

$$|\mathcal{C}_{\mathcal{A}}^{(2)}|\simeq\mathcal{M}_2(\mathcal{A})$$

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the *discrete* subposet of $\mathcal{F}_{\mathcal{A}}$ consisting of the *maximal* facets. In particular, $|\mathcal{C}_{\mathcal{A}}| \simeq \mathcal{M}(\mathcal{A})$.

 $\mathcal{F}_{\mathcal{A}}\times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A}\oplus \mathcal{A}} \text{ where } \mathcal{A}\oplus \mathcal{A}=(\mathcal{A}\times V)\cup (V\times \mathcal{A}) \text{ in } V\times V.$

Definition (Orlik '91)

$$\mathcal{C}_{\mathcal{A}}^{(2)} := \{(\mathsf{\textit{P}}, \mathsf{\textit{Q}}) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{F}_{\mathcal{A}} \, | \, \mathsf{\textit{PQ}} \in \mathcal{C}_{\mathcal{A}} \}^{\mathrm{op}}$$

$$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$$
 iff $\exists \alpha \in \mathcal{A} : P(\alpha) = Q(\alpha) = 0.$

For subcomplexes K_1, K_2 of a simplicial complex L sth. $Vert(L) = Vert(K_1) \sqcup Vert(K_2)$, one has: $|L| \setminus |K_1| \simeq |K_2|$. Thus,

$$|\mathcal{C}_{\mathcal{A}}^{(2)}|\simeq \mathcal{M}_2(\mathcal{A})$$
Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the *discrete* subposet of $\mathcal{F}_{\mathcal{A}}$ consisting of the *maximal* facets. In particular, $|\mathcal{C}_{\mathcal{A}}| \simeq \mathcal{M}(\mathcal{A})$.

 $\mathcal{F}_{\mathcal{A}}\times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A}\oplus \mathcal{A}} \text{ where } \mathcal{A}\oplus \mathcal{A}=(\mathcal{A}\times V)\cup (V\times \mathcal{A}) \text{ in } V\times V.$

Definition (Orlik '91)

$$\mathcal{C}_{\mathcal{A}}^{(2)} := \{(\mathsf{P}, \mathsf{Q}) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{F}_{\mathcal{A}} \, | \, \mathsf{P}\mathsf{Q} \in \mathcal{C}_{\mathcal{A}} \}^{\mathrm{op}}$$

$$(P,Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$$
 iff $\exists \alpha \in \mathcal{A} : P(\alpha) = Q(\alpha) = 0.$

For subcomplexes K_1, K_2 of a simplicial complex L sth. $Vert(L) = Vert(K_1) \sqcup Vert(K_2)$, one has: $|L| \setminus |K_1| \simeq |K_2|$. Thus,

Proposition (Orlik '91)

 $|\mathcal{C}_{\mathcal{A}}^{(2)}|\simeq \mathcal{M}_2(\mathcal{A})$

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the *discrete* subposet of $\mathcal{F}_{\mathcal{A}}$ consisting of the *maximal* facets. In particular, $|\mathcal{C}_{\mathcal{A}}| \simeq \mathcal{M}(\mathcal{A})$.

 $\mathcal{F}_{\mathcal{A}}\times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A}\oplus \mathcal{A}} \text{ where } \mathcal{A}\oplus \mathcal{A}=(\mathcal{A}\times V)\cup (V\times \mathcal{A}) \text{ in } V\times V.$

Definition (Orlik '91)

$$\mathcal{C}_{\mathcal{A}}^{(2)} := \{(\mathsf{P}, \mathsf{Q}) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{F}_{\mathcal{A}} \, | \, \mathsf{P}\mathsf{Q} \in \mathcal{C}_{\mathcal{A}} \}^{\mathrm{op}}$$

$$(P,Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$$
 iff $\exists \alpha \in \mathcal{A} : P(\alpha) = Q(\alpha) = 0.$

For subcomplexes K_1, K_2 of a simplicial complex L sth. $Vert(L) = Vert(K_1) \sqcup Vert(K_2)$, one has: $|L| \setminus |K_1| \simeq |K_2|$. Thus,

Proposition (Orlik '91)

$$|\mathcal{C}_{\mathcal{A}}^{(2)}|\simeq\mathcal{M}_2(\mathcal{A})$$

Definition (Salvetti '87)

$$\mathcal{S}_{\mathcal{A}}^{(2)} = \{(P, C) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{C}_{\mathcal{A}} \mid P \leq C\}\ (P, C) \geq (P', C') ext{ iff } P \leq P' ext{ and } P'C = C'.$$

Theorem (Salvetti '87, Arvola '91

$$|\mathcal{S}_{\mathcal{A}}^{(2)}| \simeq \mathcal{M}_2(\mathcal{A}).$$

Proof.

The map $(P, Q) \mapsto (P, PQ)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$. Indeed, by Quillen's Theorem A, it suffices to show that the hpty fibers $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} \mid PQ \leq C\}$ are contractible. For $\mathcal{A}_{|P|} = \{\alpha \in \mathcal{A} \mid P(\alpha) = 0\}$ we get the identification $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} \mid Q(\alpha) \leq C(\alpha), \alpha \in \mathcal{A}_{|P|}\}$. Thus, $c_{(P,C)}$ maps to the closure of a chamber in $\mathcal{F}_{\mathcal{A}/|P|}$ via $\mathcal{F}_{\mathcal{A}} \setminus \mathcal{F}_{|P|} \simeq \mathcal{F}_{\mathcal{A}/|P|}$.

Definition (Salvetti '87)

$$\mathcal{S}_{\mathcal{A}}^{(2)} = \{(P, C) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{C}_{\mathcal{A}} \mid P \leq C\} \ (P, C) \geq (P', C') ext{ iff } P \leq P' ext{ and } P'C = C'.$$

Theorem (Salvetti '87, Arvola '91)

$$|\mathcal{S}_{\mathcal{A}}^{(2)}| \simeq \mathcal{M}_2(\mathcal{A}).$$

Proof.

The map $(P, Q) \mapsto (P, PQ)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$. Indeed, by Quillen's Theorem A, it suffices to show that the hpty fibers $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} \mid PQ \leq C\}$ are contractible. For $\mathcal{A}_{|P|} = \{\alpha \in \mathcal{A} \mid P(\alpha) = 0\}$ we get the identification $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} \mid Q(\alpha) \leq C(\alpha), \alpha \in \mathcal{A}_{|P|}\}$. Thus, $c_{(P,C)}$ maps to the closure of a chamber in $\mathcal{F}_{\mathcal{A}/|P|}$ via $\mathcal{F}_{\mathcal{A}} \setminus \mathcal{F}_{|P|} \simeq \mathcal{F}_{\mathcal{A}/|P|}$.

Definition (Salvetti '87)

$$\mathcal{S}_{\mathcal{A}}^{(2)} = \{(P, C) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{C}_{\mathcal{A}} \mid P \leq C\}\ (P, C) \geq (P', C') ext{ iff } P \leq P' ext{ and } P'C = C'.$$

Theorem (Salvetti '87, Arvola '91)

$$|\mathcal{S}_{\mathcal{A}}^{(2)}| \simeq \mathcal{M}_2(\mathcal{A}).$$

Proof.

The map $(P, Q) \mapsto (P, PQ)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$. Indeed, by Quillen's Theorem A, it suffices to show that the hpty fibers $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} | PQ \leq C\}$ are contractible. For $\mathcal{A}_{|P|} = \{\alpha \in \mathcal{A} | P(\alpha) = 0\}$ we get the identification $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} | Q(\alpha) \leq C(\alpha), \alpha \in \mathcal{A}_{|P|}\}$. Thus, $c_{(P,C)}$ maps to the closure of a chamber in $\mathcal{F}_{\mathcal{A}/|P|}$ via $\mathcal{F}_{\mathcal{A}} \setminus \mathcal{F}_{|P|} \simeq \mathcal{F}_{\mathcal{A}/|P|}$.

Definition (Salvetti '87)

$$\mathcal{S}_{\mathcal{A}}^{(2)} = \{(P, C) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{C}_{\mathcal{A}} \mid P \leq C\}\ (P, C) \geq (P', C') ext{ iff } P \leq P' ext{ and } P'C = C'.$$

Theorem (Salvetti '87, Arvola '91)

$$|\mathcal{S}_{\mathcal{A}}^{(2)}| \simeq \mathcal{M}_2(\mathcal{A}).$$

Proof.

The map $(P, Q) \mapsto (P, PQ)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$. Indeed, by Quillen's Theorem A, it suffices to show that the hpty fibers $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} | PQ \leq C\}$ are contractible. For $\mathcal{A}_{|P|} = \{\alpha \in \mathcal{A} | P(\alpha) = 0\}$ we get the identification $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} | Q(\alpha) \leq C(\alpha), \alpha \in \mathcal{A}_{|P|}\}$. Thus, $c_{(P,C)}$ maps to the closure of a chamber in $\mathcal{F}_{\mathcal{A}/|P|}$ via $\mathcal{F}_{\mathcal{A}} \setminus \mathcal{F}_{|P|} \simeq \mathcal{F}_{\mathcal{A}/|P|}$.

Definition (Salvetti '87)

$$\mathcal{S}_{\mathcal{A}}^{(2)} = \{(P, C) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{C}_{\mathcal{A}} \mid P \leq C\}\ (P, C) \geq (P', C') ext{ iff } P \leq P' ext{ and } P'C = C'.$$

Theorem (Salvetti '87, Arvola '91)

$$|\mathcal{S}_{\mathcal{A}}^{(2)}| \simeq \mathcal{M}_2(\mathcal{A}).$$

Proof.

The map $(P, Q) \mapsto (P, PQ)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$. Indeed, by Quillen's Theorem A, it suffices to show that the hpty fibers $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} | PQ \leq C\}$ are contractible. For $\mathcal{A}_{|P|} = \{\alpha \in \mathcal{A} | P(\alpha) = 0\}$ we get the identification $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} | Q(\alpha) \leq C(\alpha), \alpha \in \mathcal{A}_{|P|}\}$. Thus, $c_{(P,C)}$ maps to the closure of a chamber in $\mathcal{F}_{\mathcal{A}/|P|}$ via $\mathcal{F}_{\mathcal{A}} \setminus \mathcal{F}_{|P|} \simeq \mathcal{F}_{\mathcal{A}/|P|}$.

Definition (Salvetti '87)

$$\mathcal{S}_{\mathcal{A}}^{(2)} = \{(P, C) \in \mathcal{F}_{\mathcal{A}} imes \mathcal{C}_{\mathcal{A}} \mid P \leq C\}\ (P, C) \geq (P', C') ext{ iff } P \leq P' ext{ and } P'C = C'.$$

Theorem (Salvetti '87, Arvola '91)

$$|\mathcal{S}_{\mathcal{A}}^{(2)}| \simeq \mathcal{M}_2(\mathcal{A}).$$

Proof.

The map $(P, Q) \mapsto (P, PQ)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$. Indeed, by Quillen's Theorem A, it suffices to show that the hpty fibers $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} | PQ \leq C\}$ are contractible. For $\mathcal{A}_{|P|} = \{\alpha \in \mathcal{A} | P(\alpha) = 0\}$ we get the identification $c_{(P,C)} = \{Q \in \mathcal{F}_{\mathcal{A}} | Q(\alpha) \leq C(\alpha), \alpha \in \mathcal{A}_{|P|}\}$. Thus, $c_{(P,C)}$ maps to the closure of a chamber in $\mathcal{F}_{\mathcal{A}/|P|}$ via $\mathcal{F}_{\mathcal{A}} \setminus \mathcal{F}_{|P|} \simeq \mathcal{F}_{\mathcal{A}/|P|}$.

Let $st_{(P,C)} = \{(x_1, x_2) \in V \times V | x_1 \in c_P; x_2 \in c_C \mod |P|\}$. These are *convex* subsets of $\mathcal{M}_2(\mathcal{A})$, open in their closure. They define a *stratification* of $\mathcal{M}_2(\mathcal{A})$ labelled by $\mathcal{S}^{(2)}_{\mathcal{A}}$ such that

$$\overline{st}_{(P,C)} \subseteq \overline{st}_{(P',C')}$$
 in $\mathcal{M}_2(\mathcal{A})$ iff $(P,C) \geq (P',C')$ in $\mathcal{S}_{\mathcal{A}}^{(2)}$.

Equivalently, let $V_{(P,C)} = \bigcup_{(P,C) \ge (P',C')} st_{(P',C')}$. This defines an *open* cover of $\mathcal{M}_2(\mathcal{A})$ used by Deligne '72. The $V_{(P,C)}$ are contractible and $V_{(P,C)} \subseteq V_{(P',C')}$ iff $(P,C) \le (P',C')$. Moreover, each $V_{(P,C)} \cap V_{(P',C')}$ is a union of $V_{(P'',C'')}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_2(\mathcal{A}) \simeq |\mathcal{S}_{\mathcal{A}}^{(2)}|$.

Let $st_{(P,C)} = \{(x_1, x_2) \in V \times V | x_1 \in c_P; x_2 \in c_C \mod |P|\}$. These are convex subsets of $\mathcal{M}_2(\mathcal{A})$, open in their closure. They define a stratification of $\mathcal{M}_2(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

 $\overline{st}_{(P,C)}\subseteq\overline{st}_{(P',C')}$ in $\mathcal{M}_2(\mathcal{A})$ iff $(P,C)\geq (P',C')$ in $\mathcal{S}^{(2)}_{\mathcal{A}}.$

Equivalently, let $V_{(P,C)} = \bigcup_{(P,C) \ge (P',C')} st_{(P',C')}$. This defines an *open* cover of $\mathcal{M}_2(\mathcal{A})$ used by Deligne '72. The $V_{(P,C)}$ are contractible and $V_{(P,C)} \subseteq V_{(P',C')}$ iff $(P,C) \le (P',C')$. Moreover, each $V_{(P,C)} \cap V_{(P',C')}$ is a union of $V_{(P'',C')}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_2(\mathcal{A}) \simeq |\mathcal{S}^{(2)}_{\mathcal{A}}|$.

Let $st_{(P,C)} = \{(x_1, x_2) \in V \times V | x_1 \in c_P; x_2 \in c_C \mod |P|\}$. These are *convex* subsets of $\mathcal{M}_2(\mathcal{A})$, open in their closure. They define a *stratification* of $\mathcal{M}_2(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

 $\overline{st}_{(P,C)} \subseteq \overline{st}_{(P',C')}$ in $\mathcal{M}_2(\mathcal{A})$ iff $(P,C) \ge (P',C')$ in $\mathcal{S}_{\mathcal{A}}^{(2)}$.

Equivalently, let $V_{(P,C)} = \bigcup_{(P,C) \ge (P',C')} st_{(P',C')}$. This defines an *open* cover of $\mathcal{M}_2(\mathcal{A})$ used by Deligne '72. The $V_{(P,C)}$ are contractible and $V_{(P,C)} \subseteq V_{(P',C')}$ iff $(P,C) \le (P',C')$. Moreover, each $V_{(P,C)} \cap V_{(P',C')}$ is a union of $V_{(P'',C')}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_2(\mathcal{A}) \simeq |\mathcal{S}^{(2)}_{\mathcal{A}}|$.

Let $st_{(P,C)} = \{(x_1, x_2) \in V \times V | x_1 \in c_P; x_2 \in c_C \mod |P|\}$. These are *convex* subsets of $\mathcal{M}_2(\mathcal{A})$, open in their closure. They define a *stratification* of $\mathcal{M}_2(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$\overline{st}_{(P,C)}\subseteq\overline{st}_{(P',C')}$$
 in $\mathcal{M}_2(\mathcal{A})$ iff $(P,C)\geq (P',C')$ in $\mathcal{S}^{(2)}_{\mathcal{A}}.$

Equivalently, let $V_{(P,C)} = \bigcup_{(P,C) \ge (P',C')} st_{(P',C')}$. This defines an *open* cover of $\mathcal{M}_2(\mathcal{A})$ used by Deligne '72. The $V_{(P,C)}$ are contractible and $V_{(P,C)} \subseteq V_{(P',C')}$ iff $(P,C) \le (P',C')$. Moreover, each $V_{(P,C)} \cap V_{(P',C')}$ is a union of $V_{(P'',C'')}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_2(\mathcal{A}) \simeq |\mathcal{S}^{(2)}_{\mathcal{A}}|$.

Let $st_{(P,C)} = \{(x_1, x_2) \in V \times V | x_1 \in c_P; x_2 \in c_C \mod |P|\}$. These are *convex* subsets of $\mathcal{M}_2(\mathcal{A})$, open in their closure. They define a *stratification* of $\mathcal{M}_2(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$\overline{st}_{(P,C)} \subseteq \overline{st}_{(P',C')}$$
 in $\mathcal{M}_2(\mathcal{A})$ iff $(P,C) \ge (P',C')$ in $\mathcal{S}_{\mathcal{A}}^{(2)}$.

The intersection of two closed strata is a union of closed strata. Any closed stratum is contractible. Moreover, inclusions of closed strata are closed cofibrations. This implies by a homotopy colimit argument (Reedy '73) that $\mathcal{M}_2(\mathcal{A}) \simeq |\mathcal{S}_{\mathcal{A}}^{(2)}|$.

Equivalently, let $V_{(P,C)} = \bigcup_{(P,C) \ge (P',C')} st_{(P',C')}$. This defines an open cover of $\mathcal{M}_2(\mathcal{A})$ used by Deligne '72. The $V_{(P,C)}$ are contractible and $V_{(P,C)} \subseteq V_{(P',C')}$ iff $(P,C) \le (P',C')$. Moreover, each $V_{(P,C)} \cap V_{(P',C')}$ is a union of $V_{(P'',C'')}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_2(\mathcal{A}) \simeq |\mathcal{S}_{\mathcal{A}}^{(2)}|$, and the set of th

Let $st_{(P,C)} = \{(x_1, x_2) \in V \times V | x_1 \in c_P; x_2 \in c_C \mod |P|\}$. These are *convex* subsets of $\mathcal{M}_2(\mathcal{A})$, open in their closure. They define a *stratification* of $\mathcal{M}_2(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$\overline{st}_{(P,C)} \subseteq \overline{st}_{(P',C')}$$
 in $\mathcal{M}_2(\mathcal{A})$ iff $(P,C) \geq (P',C')$ in $\mathcal{S}^{(2)}_{\mathcal{A}}$.

Equivalently, let $V_{(P,C)} = \bigcup_{(P,C) \ge (P',C')} st_{(P',C')}$. This defines an open cover of $\mathcal{M}_2(\mathcal{A})$ used by Deligne '72. The $V_{(P,C)}$ are contractible and $V_{(P,C)} \subseteq V_{(P',C')}$ iff $(P,C) \le (P',C')$. Moreover, each $V_{(P,C)} \cap V_{(P',C')}$ is a union of $V_{(P'',C')}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_2(\mathcal{A}) \simeq |\mathcal{S}^{(2)}_{\mathcal{A}}|$.

Let $st_{(P,C)} = \{(x_1, x_2) \in V \times V | x_1 \in c_P; x_2 \in c_C \mod |P|\}$. These are *convex* subsets of $\mathcal{M}_2(\mathcal{A})$, open in their closure. They define a *stratification* of $\mathcal{M}_2(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$\overline{st}_{(P,C)} \subseteq \overline{st}_{(P',C')}$$
 in $\mathcal{M}_2(\mathcal{A})$ iff $(P,C) \geq (P',C')$ in $\mathcal{S}^{(2)}_{\mathcal{A}}$.

Equivalently, let $V_{(P,C)} = \bigcup_{(P,C) \ge (P',C')} st_{(P',C')}$. This defines an open cover of $\mathcal{M}_2(\mathcal{A})$ used by Deligne '72. The $V_{(P,C)}$ are contractible and $V_{(P,C)} \subseteq V_{(P',C')}$ iff $(P,C) \le (P',C')$. Moreover, each $V_{(P,C)} \cap V_{(P',C')}$ is a union of $V_{(P'',C'')}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_2(\mathcal{A}) \simeq |\mathcal{S}_{\mathcal{A}}^{(2)}|$.

Let $st_{(P,C)} = \{(x_1, x_2) \in V \times V | x_1 \in c_P; x_2 \in c_C \mod |P|\}$. These are *convex* subsets of $\mathcal{M}_2(\mathcal{A})$, open in their closure. They define a *stratification* of $\mathcal{M}_2(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$\overline{st}_{(P,C)} \subseteq \overline{st}_{(P',C')}$$
 in $\mathcal{M}_2(\mathcal{A})$ iff $(P,C) \geq (P',C')$ in $\mathcal{S}^{(2)}_{\mathcal{A}}$.

Equivalently, let $V_{(P,C)} = \bigcup_{(P,C) \ge (P',C')} st_{(P',C')}$. This defines an open cover of $\mathcal{M}_2(\mathcal{A})$ used by Deligne '72. The $V_{(P,C)}$ are contractible and $V_{(P,C)} \subseteq V_{(P',C')}$ iff $(P,C) \le (P',C')$. Moreover, each $V_{(P,C)} \cap V_{(P',C')}$ is a union of $V_{(P'',C'')}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_2(\mathcal{A}) \simeq |\mathcal{S}_{\mathcal{A}}^{(2)}|$.

Definition

$$\begin{aligned} \mathcal{C}_{\mathcal{A}}^{(k)} &= \{ (P_1, \dots, P_k) \in (\mathcal{F}_{\mathcal{A}})^k \mid P_1 \cdots P_k \in \mathcal{C}_{\mathcal{A}} \}^{\mathrm{op}} \\ \mathcal{S}_{\mathcal{A}}^{(k)} &= \{ (P_1, \dots, P_{k-1}, C) \in (\mathcal{F}_{\mathcal{A}})^{k-1} \times \mathcal{C}_{\mathcal{A}} \mid P_1 \leq \dots \leq P_{k-1} \leq C \} \\ (P_1, \dots, P_{k-1}, C) \geq (P'_1, \dots, P'_{k-1}, C') \text{ iff } \forall i : P_i \leq P'_i \land P'_i C = C' \end{aligned}$$

Theorem

$$|\mathcal{C}_{\mathcal{A}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}) \text{ and } (P_1, \ldots, P_k) \mapsto (P_1, P_1P_2, \ldots, P_1P_2 \cdots P_k)$$

defines a homotopy equivalence of posets $\mathcal{C}_{\mathcal{A}}^{(k)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(k)}$.

Proof.

The homotopy fibers $c_{(P_1,...,P_{k-1},C)}$ are homotopy colimits over $\{Q | P_1Q \leq P_2\}$ of homotopy fibers $c_{(P_2,...,P_{k-1},C)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Definition

$$\begin{aligned} \mathcal{C}_{\mathcal{A}}^{(k)} &= \{ (P_1, \dots, P_k) \in (\mathcal{F}_{\mathcal{A}})^k \mid P_1 \cdots P_k \in \mathcal{C}_{\mathcal{A}} \}^{\mathrm{op}} \\ \mathcal{S}_{\mathcal{A}}^{(k)} &= \{ (P_1, \dots, P_{k-1}, C) \in (\mathcal{F}_{\mathcal{A}})^{k-1} \times \mathcal{C}_{\mathcal{A}} \mid P_1 \leq \dots \leq P_{k-1} \leq C \} \\ (P_1, \dots, P_{k-1}, C) \geq (P'_1, \dots, P'_{k-1}, C') \text{ iff } \forall i : P_i \leq P'_i \wedge P'_i C = C' \end{aligned}$$

Theorem

$$|\mathcal{C}_{\mathcal{A}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}) \text{ and } (P_1, \ldots, P_k) \mapsto (P_1, P_1P_2, \ldots, P_1P_2 \cdots P_k)$$

defines a homotopy equivalence of posets $\mathcal{C}_{\mathcal{A}}^{(k)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(k)}$.

Proof.

The homotopy fibers $c_{(P_1,...,P_{k-1},C)}$ are homotopy colimits over $\{Q \mid P_1Q \leq P_2\}$ of homotopy fibers $c_{(P_2,...,P_{k-1},C)}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

$$\begin{aligned} \mathcal{C}_{\mathcal{A}}^{(k)} &= \{ (P_1, \dots, P_k) \in (\mathcal{F}_{\mathcal{A}})^k \mid P_1 \cdots P_k \in \mathcal{C}_{\mathcal{A}} \}^{\mathrm{op}} \\ \mathcal{S}_{\mathcal{A}}^{(k)} &= \{ (P_1, \dots, P_{k-1}, C) \in (\mathcal{F}_{\mathcal{A}})^{k-1} \times \mathcal{C}_{\mathcal{A}} \mid P_1 \leq \dots \leq P_{k-1} \leq C \} \\ (P_1, \dots, P_{k-1}, C) \geq (P'_1, \dots, P'_{k-1}, C') \text{ iff } \forall i : P_i \leq P'_i \wedge P'_i C = C' \end{aligned}$$

Theorem

$$|\mathcal{C}_{\mathcal{A}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}) \text{ and } (P_1, \ldots, P_k) \mapsto (P_1, P_1P_2, \ldots, P_1P_2 \cdots P_k)$$

defines a homotopy equivalence of posets $\mathcal{C}_{\mathcal{A}}^{(k)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(k)}$.

Proof.

The homotopy fibers $c_{(P_1,...,P_{k-1},C)}$ are homotopy colimits over $\{Q \mid P_1Q \leq P_2\}$ of homotopy fibers $c_{(P_2,...,P_{k-1},C)}$.

Definition

For
$$C \in C_A$$
, a function $\mu : A \to \{0, 1, \dots, k-1\}$ is *C*-admissible iff $\exists (P_1, \dots, P_{k-1}, C) \in S_A^{(k)} : \mu(\alpha) = \max\{i | P_i(\alpha) = 0\}.$

Proposition

$$\begin{split} \mathcal{S}_{\mathcal{A}}^{(k)} &\cong \{ (C,\mu) \in \mathcal{C}_{\mathcal{A}} \times \{0,1,\ldots,k-1\}^{\mathcal{A}} \,|\, \mu \text{ is } C\text{-admissible} \}, \\ (C,\mu) &\leq (C',\mu') \text{ iff } \begin{cases} \mu(\alpha) \leq \mu'(\alpha) \text{ for any } \alpha \in \mathcal{A}; \\ \mu(\alpha) < \mu'(\alpha) \text{ for } \alpha \text{ separating } C, C'. \end{cases} \end{split}$$

Corollary

For simplicial arrangements, $S_{\mathcal{A}}^{(k)} \cong C_{\mathcal{A}} \times \{0, \dots, k-1\}^{\operatorname{rk}(\mathcal{F}_{\mathcal{A}})}$. For Coxeter arrangements, $S_{\mathcal{A}_{W}}^{(k)} \cong W \times \{0, \dots, k-1\}^{\operatorname{rk}(W)}$.

 $\mathcal{S}_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}$ is anti-isomorphic to Fox-Neuwirth's cell decomposition, and isomorphic to Milgram's permutohedral model for $\underline{F}(\mathbb{R}_{\geq n}^k)_{k\geq n} = \infty$

Definition

For
$$C \in C_A$$
, a function $\mu : A \to \{0, 1, \dots, k-1\}$ is *C*-admissible iff $\exists (P_1, \dots, P_{k-1}, C) \in S_A^{(k)} : \mu(\alpha) = \max\{i | P_i(\alpha) = 0\}.$

Proposition

$$\begin{split} \mathcal{S}_{\mathcal{A}}^{(k)} &\cong \{(\mathcal{C}, \mu) \in \mathcal{C}_{\mathcal{A}} \times \{0, 1, \dots, k-1\}^{\mathcal{A}} \,|\, \mu \text{ is } \mathcal{C}\text{-admissible}\}, \\ (\mathcal{C}, \mu) &\leq (\mathcal{C}', \mu') \text{ iff } \begin{cases} \mu(\alpha) \leq \mu'(\alpha) \text{ for any } \alpha \in \mathcal{A}; \\ \mu(\alpha) < \mu'(\alpha) \text{ for } \alpha \text{ separating } \mathcal{C}, \mathcal{C}'. \end{cases} \end{split}$$

Corollary

For simplicial arrangements, $S_{\mathcal{A}}^{(k)} \cong C_{\mathcal{A}} \times \{0, \dots, k-1\}^{\operatorname{rk}(\mathcal{F}_{\mathcal{A}})}$. For Coxeter arrangements, $S_{\mathcal{A}_W}^{(k)} \cong W \times \{0, \dots, k-1\}^{\operatorname{rk}(W)}$.

 $\mathcal{S}^{(k)}_{\mathcal{A}_{\mathfrak{S}_n}}$ is anti-isomorphic to Fox-Neuwirth's cell decomposition, and isomorphic to Milgram's permutohedral model for $\mathcal{F}(\mathbb{R}^k, \mathfrak{g})$.

Definition

For
$$C \in C_A$$
, a function $\mu : A \to \{0, 1, \dots, k-1\}$ is *C*-admissible iff $\exists (P_1, \dots, P_{k-1}, C) \in S_A^{(k)} : \mu(\alpha) = \max\{i | P_i(\alpha) = 0\}.$

Proposition

$$\begin{split} \mathcal{S}_{\mathcal{A}}^{(k)} &\cong \{(\mathcal{C}, \mu) \in \mathcal{C}_{\mathcal{A}} \times \{0, 1, \dots, k-1\}^{\mathcal{A}} \,|\, \mu \text{ is } \mathcal{C}\text{-admissible}\}, \\ (\mathcal{C}, \mu) &\leq (\mathcal{C}', \mu') \text{ iff } \begin{cases} \mu(\alpha) \leq \mu'(\alpha) \text{ for any } \alpha \in \mathcal{A}; \\ \mu(\alpha) < \mu'(\alpha) \text{ for } \alpha \text{ separating } \mathcal{C}, \mathcal{C}'. \end{cases} \end{split}$$

Corollary

For simplicial arrangements, $S_{\mathcal{A}}^{(k)} \cong C_{\mathcal{A}} \times \{0, \dots, k-1\}^{\operatorname{rk}(\mathcal{F}_{\mathcal{A}})}$. For *Coxeter* arrangements, $S_{\mathcal{A}_W}^{(k)} \cong W \times \{0, \dots, k-1\}^{\operatorname{rk}(W)}$.

 $\mathcal{S}_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}$ is anti-isomorphic to Fox-Neuwirth's cell decomposition, and isomorphic to Milgram's permutohedral model for $\mathcal{F}(\mathbb{R}^k, \mathfrak{p})$, \mathfrak{p} , \mathfrak{p}

Definition

For
$$C \in C_A$$
, a function $\mu : A \to \{0, 1, \dots, k-1\}$ is *C*-admissible iff $\exists (P_1, \dots, P_{k-1}, C) \in S_A^{(k)} : \mu(\alpha) = \max\{i | P_i(\alpha) = 0\}.$

Proposition

$$\begin{split} \mathcal{S}_{\mathcal{A}}^{(k)} &\cong \{(C,\mu) \in \mathcal{C}_{\mathcal{A}} \times \{0,1,\ldots,k-1\}^{\mathcal{A}} \,|\, \mu \text{ is } C\text{-admissible}\}, \\ (C,\mu) &\leq (C',\mu') \text{ iff } \begin{cases} \mu(\alpha) \leq \mu'(\alpha) \text{ for any } \alpha \in \mathcal{A}; \\ \mu(\alpha) < \mu'(\alpha) \text{ for } \alpha \text{ separating } C, C'. \end{cases} \end{split}$$

Corollary

For simplicial arrangements, $S_{\mathcal{A}}^{(k)} \cong C_{\mathcal{A}} \times \{0, \dots, k-1\}^{\operatorname{rk}(\mathcal{F}_{\mathcal{A}})}$. For *Coxeter* arrangements, $S_{\mathcal{A}_W}^{(k)} \cong W \times \{0, \dots, k-1\}^{\operatorname{rk}(W)}$.

 $S_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}$ is *anti-isomorphic* to Fox-Neuwirth's cell decomposition, and *isomorphic* to Milgram's permutohedral model for $E(\mathbb{R}^k, n)$,

For each \mathcal{A} , the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\{(C, C') \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} | \exists P \in \mathcal{F}_{\mathcal{A}} : P \prec C \text{ and } P \prec C'\}$. Since $P(\alpha) = 0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A} .

Let $S(C, C') = \{ \alpha \in \mathcal{A} \mid C(\alpha)C'(\alpha) = -1 \}$. Then:

- The edge-path of any geodesic joining C and C' in G_A is labelled by S(C, C'), in particular d(C, C') = #S(C, C');
- For any $C, C', C'' : S(C, C'') = S(C, C') \Delta S(C', C'')$.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

For each \mathcal{A} , the *adjacency graph* $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\{(C, C') \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}} : P \prec C \text{ and } P \prec C'\}$. Since $P(\alpha) = 0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A} .

Let $S(C, C') = \{ \alpha \in \mathcal{A} \mid C(\alpha)C'(\alpha) = -1 \}$. Then:

- The edge-path of any geodesic joining C and C' in G_A is labelled by S(C, C'), in particular d(C, C') = #S(C, C');
- For any $C, C', C'' : S(C, C'') = S(C, C') \Delta S(C', C'')$.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

For each \mathcal{A} , the *adjacency graph* $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\{(C, C') \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} | \exists P \in \mathcal{F}_{\mathcal{A}} : P \prec C \text{ and } P \prec C'\}$. Since $P(\alpha) = 0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A} .

Let $S(C, C') = \{ \alpha \in \mathcal{A} \mid C(\alpha)C'(\alpha) = -1 \}$. Then:

- The edge-path of any geodesic joining C and C' in G_A is labelled by S(C, C'), in particular d(C, C') = #S(C, C');
- For any $C, C', C'' : S(C, C'') = S(C, C') \Delta S(C', C'')$.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

For each \mathcal{A} , the *adjacency graph* $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\{(C, C') \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} | \exists P \in \mathcal{F}_{\mathcal{A}} : P \prec C \text{ and } P \prec C'\}$. Since $P(\alpha) = 0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A} .

Let $S(C, C') = \{ \alpha \in \mathcal{A} \mid C(\alpha)C'(\alpha) = -1 \}$. Then:

- The edge-path of any geodesic joining C and C' in G_A is labelled by S(C, C'), in particular d(C, C') = #S(C, C');
- For any $C, C', C'' : S(C, C'') = S(C, C') \Delta S(C', C'')$.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

For each \mathcal{A} , the *adjacency graph* $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\{(C, C') \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} | \exists P \in \mathcal{F}_{\mathcal{A}} : P \prec C \text{ and } P \prec C'\}$. Since $P(\alpha) = 0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A} .

Let $S(C, C') = \{ \alpha \in \mathcal{A} \mid C(\alpha)C'(\alpha) = -1 \}$. Then:

- The edge-path of any geodesic joining C and C' in G_A is labelled by S(C, C'), in particular d(C, C') = #S(C, C');
- For any $C, C', C'' : S(C, C'') = S(C, C')\Delta S(C', C'')$.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

For each \mathcal{A} , the *adjacency graph* $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\{(C, C') \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} | \exists P \in \mathcal{F}_{\mathcal{A}} : P \prec C \text{ and } P \prec C'\}$. Since $P(\alpha) = 0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A} .

Let $S(C, C') = \{ \alpha \in \mathcal{A} \mid C(\alpha)C'(\alpha) = -1 \}$. Then:

 The edge-path of any geodesic joining C and C' in G_A is labelled by S(C, C'), in particular d(C, C') = #S(C, C');

• For any
$$C, C', C'' : S(C, C'') = S(C, C')\Delta S(C', C'')$$
.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

For each \mathcal{A} , the *adjacency graph* $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\{(C, C') \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} | \exists P \in \mathcal{F}_{\mathcal{A}} : P \prec C \text{ and } P \prec C'\}$. Since $P(\alpha) = 0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A} .

Let $S(C, C') = \{ \alpha \in \mathcal{A} \mid C(\alpha)C'(\alpha) = -1 \}$. Then:

 The edge-path of any geodesic joining C and C' in G_A is labelled by S(C, C'), in particular d(C, C') = #S(C, C');

• For any
$$C, C', C'' : S(C, C'') = S(C, C') \Delta S(C', C'')$$
.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_W} = EW$ and $E_{\mathcal{A}_W}/W = BW$;
- There is a simplicial map $nerve(\mathcal{S}_{\mathcal{A}}^{(k)}) \to \mathcal{E}_{\mathcal{A}}^{(k)}$ defined by $(\mathcal{C}_0, \mu_0) \leq \cdots \leq (\mathcal{C}_d, \mu_d) \mapsto (\mathcal{C}_0, \dots, \mathcal{C}_d)$
- $E_{\mathcal{A}\oplus\mathcal{B}}\cong E_{\mathcal{A}}\times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

 $|E_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n})$. For varying *n*, the operad on the left has the homotopy type of Boardman-Vogt's *operad of little k-cubes*.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $|E_{\mathcal{A}_W}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_W)$.

• $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;

•
$$E_{\mathcal{A}_W} = EW$$
 and $E_{\mathcal{A}_W}/W = BW$;

- There is a simplicial map $nerve(\mathcal{S}_{\mathcal{A}}^{(k)}) \to E_{\mathcal{A}}^{(k)}$ defined by $(C_0, \mu_0) \leq \cdots \leq (C_d, \mu_d) \mapsto (C_0, \dots, C_d)$
- $E_{\mathcal{A}\oplus\mathcal{B}}\cong E_{\mathcal{A}}\times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

 $|E_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n})$. For varying *n*, the operad on the left has the homotopy type of Boardman-Vogt's *operad of little k-cubes*.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $|E_{\mathcal{A}_W}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_W)$.

• $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;

•
$$E_{\mathcal{A}_W} = EW$$
 and $E_{\mathcal{A}_W}/W = BW$;

- There is a simplicial map $nerve(\mathcal{S}_{\mathcal{A}}^{(k)}) \to E_{\mathcal{A}}^{(k)}$ defined by $(C_0, \mu_0) \leq \cdots \leq (C_d, \mu_d) \mapsto (C_0, \dots, C_d)$
- $E_{\mathcal{A}\oplus\mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

 $|E_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n})$. For varying *n*, the operad on the left has the homotopy type of Boardman-Vogt's *operad of little k-cubes*.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $|E_{\mathcal{A}_W}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_W)$.

• $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;

•
$$E_{\mathcal{A}_W} = EW$$
 and $E_{\mathcal{A}_W}/W = BW$;

- There is a simplicial map $nerve(\mathcal{S}_{\mathcal{A}}^{(k)}) \to \mathcal{E}_{\mathcal{A}}^{(k)}$ defined by $(\mathcal{C}_0, \mu_0) \leq \cdots \leq (\mathcal{C}_d, \mu_d) \mapsto (\mathcal{C}_0, \dots, \mathcal{C}_d)$
- $E_{\mathcal{A}\oplus\mathcal{B}}\cong E_{\mathcal{A}}\times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

 $|E_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n})$. For varying *n*, the operad on the left has the homotopy type of Boardman-Vogt's *operad of little k-cubes*.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $|E_{\mathcal{A}_W}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_W)$.

• $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;

•
$$E_{\mathcal{A}_W} = EW$$
 and $E_{\mathcal{A}_W}/W = BW$;

- There is a simplicial map $nerve(\mathcal{S}_{\mathcal{A}}^{(k)}) \to \mathcal{E}_{\mathcal{A}}^{(k)}$ defined by $(\mathcal{C}_0, \mu_0) \leq \cdots \leq (\mathcal{C}_d, \mu_d) \mapsto (\mathcal{C}_0, \dots, \mathcal{C}_d)$
- $E_{\mathcal{A}\oplus\mathcal{B}}\cong E_{\mathcal{A}}\times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

 $|E_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n})$. For varying *n*, the operad on the left has the homotopy type of Boardman-Vogt's *operad of little k-cubes*.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $|E_{\mathcal{A}_W}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_W)$.

• $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;

•
$$E_{\mathcal{A}_W} = EW$$
 and $E_{\mathcal{A}_W}/W = BW$;

- There is a simplicial map $nerve(\mathcal{S}_{\mathcal{A}}^{(k)}) \to \mathcal{E}_{\mathcal{A}}^{(k)}$ defined by $(\mathcal{C}_0, \mu_0) \leq \cdots \leq (\mathcal{C}_d, \mu_d) \mapsto (\mathcal{C}_0, \dots, \mathcal{C}_d)$
- $E_{\mathcal{A}\oplus\mathcal{B}}\cong E_{\mathcal{A}}\times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

 $|E_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n})$. For varying *n*, the operad on the left has the homotopy type of Boardman-Vogt's *operad of little k-cubes*.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $|E_{\mathcal{A}_W}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_W)$.
The adjacency graph

• $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;

•
$$E_{\mathcal{A}_W} = EW$$
 and $E_{\mathcal{A}_W}/W = BW$;

- There is a simplicial map $nerve(\mathcal{S}_{\mathcal{A}}^{(k)}) \to \mathcal{E}_{\mathcal{A}}^{(k)}$ defined by $(\mathcal{C}_0, \mu_0) \leq \cdots \leq (\mathcal{C}_d, \mu_d) \mapsto (\mathcal{C}_0, \dots, \mathcal{C}_d)$
- $E_{\mathcal{A}\oplus\mathcal{B}}\cong E_{\mathcal{A}}\times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

 $|E_{\mathcal{A}_{\mathfrak{S}_n}}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_{\mathfrak{S}_n})$. For varying *n*, the operad on the left has the homotopy type of Boardman-Vogt's *operad of little k-cubes*.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $|E_{\mathcal{A}_W}^{(k)}| \simeq \mathcal{M}_k(\mathcal{A}_W)$.

This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement.

- W. Arvola Complexified real arrangements of hyperplanes, Manuscripta Math. 71(1991), 295–306.
- C. Berger Opérades cellulaires et espaces de lacets itérés, Ann. Inst. Fourier 46(1996), 1125–1157.
- A. Björner, P.H. Edelman, G.M. Ziegler *Hyperplane arrangements with a lattice of regions*, Discr. Comp. Geom. **5**(1990), 263–288.
- E. Brieskorn Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12(1971), 57–61.
- P. Deligne Les immeubles des groupes de tresses généralisés, Invent. Math. 17(1972), 273–302.
- A. Dimca and S. Papadima Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements, Ann. of Math. 158(2003), 473–507.

- J. Edmonds and A. Mandel *Topology of oriented matroids*, Notices AMS **25**(1978), A-510.
- J. Folkman and J. Lawrence *Oriented matroids*, J. Comb. Theory, Ser. B **25**(1978), 199–236.
- R. Fox and L. Neuwirth The braid groups, Math. Scand. 10(1962), 119–126.
- I.M. Gelfand and G.L. Rybnikov Algebraic and topological invariants of oriented matroids, Sov. Math. Dokl. 40(1990), 148–152.
- T. Kashiwabara On the Homotopy Type of Configuration Complexes, Contemp. Math. **146**(1993), 159-170.
- M.C. McCord Homotopy type comparison of a space with complexes associated with its open covers, Proc. AMS 18(1967), 705–708.

R.J. Milgram - Iterated loop spaces, Ann. of Math. 84(1966), -

- P. Orlik Complements of subspace arrangements, J. Alg. Geom. 1(1992), 147–156.
- D. Quillen *Higher algebraic K-theory I*, Lecture Notes in Math.
 341, Springer Verlag (1973), 85-147.
- R. Randell Morse theory, Milnor fibers and minimality of hyperplane arrangements, Proc. AMS 130(2002), 2737–2743.
- C.L. Reedy Homotopy theories of model categories (1973), cf. http://www.math.mit.edu/~psh.
- M. Salvetti *Topology of the complement of real hyperplanes in* \mathbb{C}^n , Invent. Math. **88**(1987), 603–618.
- M. Salvetti and S. Settepanella Combinatorial Morse theory and minimality of hyperplane arrangements, Geometry and Topology 11(2007), 1733–1766.
- J.H. Smith Simplicial Group Models for ΩⁿSⁿX, Israel J. of Math. 66(1989), 330-350.