Higher complements of combinatorial sphere arrangements

Clemens Berger
University of Nice

Combinatorial Structures in Algebra and Topology
Osnabrück, October 8, 2009
Nice, October 15, 2009
(1) Hyperplane arrangements
(2) Oriented matroids
(3) Higher Salvetti complexes

4 The adjacency graph

A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.
The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\cup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers (or topes): $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$

Denote by s_{α} the orthogonal symmetry with respect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_{W} and finite Coxeter groups W. The latter are classified by their Coxeter diagrams.

The Coxeter group W acts simply transitively on $\mathcal{C}_{\mathcal{A}_{W}}$

A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.
The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers (or topes): $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$.

Denote by s_{α} the orthogonal symmetry with respect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by

Proposition (Coxeter,Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_{W} and finite Coxeter groups W. The latter are classified by their Coxeter diagrams

The Coxeter group W acts simply transitively on $\mathcal{C}_{\mathcal{A}_{W}}$

A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.
The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers (or topes): $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$.
Denote by s_{α} the orthogonal symmetry with respect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by

[^0]The Coxeter group W acts simply transitively on $\mathcal{C}_{\mathcal{A}_{W}}$

A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.
The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers (or topes): $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$.

Denote by s_{α} the orthogonal symmetry with respect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_{W} and finite Coxeter groups W. The latter are classified by their Coxeter diagrams.

[^1]A (central) hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.
The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers (or topes): $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$.

Denote by s_{α} the orthogonal symmetry with respect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_{W} and finite Coxeter groups W. The latter are classified by their Coxeter diagrams.

The Coxeter group W acts simply transitively on $\mathcal{C}_{\mathcal{A}_{W}}$.

Definition

The k-th complement of a hyperplane arrangement \mathcal{A} is

$$
\mathcal{M}_{k}(\mathcal{A})=V^{k} \backslash \bigcup_{\alpha \in \mathcal{A}}\left(H_{\alpha}\right)^{k}
$$

Example

$V=\mathbb{R}^{n}, \mathcal{A}=\left(H_{i j}\right)_{1 \leq i<j \leq n}$ where $H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_{n}}$ for the symmetric group \mathfrak{S}_{n}. The center is $\mathbb{R} .(1, \ldots, 1)$. The higher complements are configuration spaces: $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)=F\left(\mathbb{R}^{k}, n\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{k n} \mid x_{i} \neq x_{j}\right\}$

Proposition (Brieskorn '71)

$\pi_{1}\left(\mathcal{M}_{2}\left(\mathcal{A}_{W}\right)\right)=\operatorname{Ker}\left(A_{W} \rightarrow W\right)$ (the pure Artin group of W)

Theorem (Deligne '72)
For any simplicial arrangement, $\mathcal{M}_{2}(\mathcal{A})$ is aspherical

Definition

The k-th complement of a hyperplane arrangement \mathcal{A} is

$$
\mathcal{M}_{k}(\mathcal{A})=V^{k} \backslash \bigcup_{\alpha \in \mathcal{A}}\left(H_{\alpha}\right)^{k}
$$

Example

$V=\mathbb{R}^{n}, \mathcal{A}=\left(H_{i j}\right)_{1 \leq i<j \leq n}$ where $H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_{n}}$ for the symmetric group \mathfrak{S}_{n}. The center is $\mathbb{R} .(1, \ldots, 1)$. The higher complements are configuration spaces: $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)=F\left(\mathbb{R}^{k}, n\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{k n} \mid x_{i} \neq x_{j}\right\}$.

Proposition (Brieskorn '71)
 $\pi_{1}\left(\mathcal{M}_{2}\left(\mathcal{A}_{W}\right)\right)=\operatorname{Ker}\left(A_{W} \rightarrow W\right)$ (the pure Artin group of W)

Theorem (Deligne '72)

For any simplicial arrangement, $\mathcal{M}_{2}(\mathcal{A})$ is aspherical

Definition

The k-th complement of a hyperplane arrangement \mathcal{A} is

$$
\mathcal{M}_{k}(\mathcal{A})=V^{k} \backslash \bigcup_{\alpha \in \mathcal{A}}\left(H_{\alpha}\right)^{k}
$$

Example

$V=\mathbb{R}^{n}, \mathcal{A}=\left(H_{i j}\right)_{1 \leq i<j \leq n}$ where $H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_{n}}$ for the symmetric group \mathfrak{S}_{n}. The center is $\mathbb{R} .(1, \ldots, 1)$. The higher complements are configuration spaces: $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)=F\left(\mathbb{R}^{k}, n\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{k n} \mid x_{i} \neq x_{j}\right\}$.

Proposition (Brieskorn '71)

$\pi_{1}\left(\mathcal{M}_{2}\left(\mathcal{A}_{W}\right)\right)=\operatorname{Ker}\left(A_{W} \rightarrow W\right)$ (the pure Artin group of W).
Theorem (Deligne '72)
For any simplicial arrangement, $\mathcal{M}_{2}(\mathcal{A})$ is aspherical

Definition

The k-th complement of a hyperplane arrangement \mathcal{A} is

$$
\mathcal{M}_{k}(\mathcal{A})=V^{k} \backslash \bigcup_{\alpha \in \mathcal{A}}\left(H_{\alpha}\right)^{k}
$$

Example

$V=\mathbb{R}^{n}, \mathcal{A}=\left(H_{i j}\right)_{1 \leq i<j \leq n}$ where $H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_{n}}$ for the symmetric group \mathfrak{S}_{n}. The center is $\mathbb{R} .(1, \ldots, 1)$. The higher complements are configuration spaces: $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)=F\left(\mathbb{R}^{k}, n\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{k n} \mid x_{i} \neq x_{j}\right\}$.

Proposition (Brieskorn '71)

$$
\left.\pi_{1}\left(\mathcal{M}_{2}\left(\mathcal{A}_{W}\right)\right)=\operatorname{Ker}\left(A_{W} \rightarrow W\right) \text { (the pure Artin group of } W\right)
$$

Theorem (Deligne '72)

For any simplicial arrangement, $\mathcal{M}_{2}(\mathcal{A})$ is aspherical.

Purpose of the talk

Define a finite cell complex $\mathcal{S}_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.
> - Fox-Neuwirth '62 and Milgram '66 construct $\mathcal{S}_{\mathcal{A}_{\mathfrak{S}_{n}}}^{(k)}$ for any k; - Salvetti '87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A}.

Theorem (Randell '02, Dimca-Papadima '03, S-S '07)

The complement of a complex hyperplane arrangement admits a minimal CW-structure. The minimal CW-structure of $\mathcal{M}_{2}(\mathcal{A})$ derives from $\mathcal{S}_{\mathcal{A}}^{(2)}$ through combinatorial Morse theory.

Remark (Gel'fand-Rybnikov '90)

The complex $\mathcal{S}_{\mathcal{A}}^{(2)}$ only depends on the oriented matroid $\mathcal{F}_{\mathcal{A}}$ of \mathcal{A}

Purpose of the talk

Define a finite cell complex $\mathcal{S}_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct $\mathcal{S}_{\mathcal{A}_{\mathcal{S}_{n}}}^{(k)}$ for any k; - Salvetti ' 87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A}.
Theorem (Randell '02, Dimca-Papadima '03, S-S '07)
\squareminimal CW-structure. The minimal CW-structure of $\mathcal{M}_{2}(\mathcal{A})$derives from $\mathcal{S}_{\mathcal{A}}^{(2)}$ through combinatorial Morse theory.

Remark (Gel'fand-Rybnikov '90)

\square

Purpose of the talk

Define a finite cell complex $\mathcal{S}_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct $\mathcal{S}_{\mathcal{A}_{\mathcal{S}_{n}}}^{(k)}$ for any k;
- Salvetti ' 87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A}.
Theorem (Randell '02, Dimca-Papadima '03, S-S '07)
The complement of a complex hyperplane arrangement admits aminimal CW-structure. The minimal CW-structure of $\mathcal{M}_{2}(\mathcal{A})$derives from $\mathcal{S}_{\mathcal{A}}^{(2)}$ through combinatorial Morse theory.
Remark (Gel'fand-Rybnikov '90)

Purpose of the talk

Define a finite cell complex $\mathcal{S}_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct $\mathcal{S}_{\mathcal{A}_{\mathfrak{S}_{n}}}^{(k)}$ for any k;
- Salvetti '87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A}.

Theorem (Randell '02, Dimca-Papadima '03, S-S '07)

The complement of a complex hyperplane arrangement admits a minimal CW-structure. The minimal $C W$-structure of $\mathcal{M}_{2}(\mathcal{A})$ derives from $\mathcal{S}_{\mathcal{A}}^{(2)}$ through combinatorial Morse theory.

Remark (Gel'fand-Rybnikov '90)

The complex $\mathcal{S}_{\mathcal{A}}^{(2)}$ only depends on the oriented matroid $\mathcal{F}_{\mathcal{A}}$ of \mathcal{A}

Purpose of the talk

Define a finite cell complex $\mathcal{S}_{\mathcal{A}}^{(k)}$ of the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct $\mathcal{S}_{\mathcal{A}_{\mathfrak{F}_{n}}}^{(k)}$ for any k;
- Salvetti ' 87 constructs $\mathcal{S}_{\mathcal{A}}^{(2)}$ for any arrangement \mathcal{A}.

Theorem (Randell '02, Dimca-Papadima '03, S-S '07)

The complement of a complex hyperplane arrangement admits a minimal CW-structure. The minimal $C W$-structure of $\mathcal{M}_{2}(\mathcal{A})$ derives from $\mathcal{S}_{\mathcal{A}}^{(2)}$ through combinatorial Morse theory.

Remark (Gel'fand-Rybnikov '90)

The complex $\mathcal{S}_{\mathcal{A}}^{(2)}$ only depends on the oriented matroid $\mathcal{F}_{\mathcal{A}}$ of \mathcal{A}.

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn} n_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of all such sign vectors $\operatorname{sgn} n_{x}, x \in V$, equipped with the partial order induced from the product order on $\{0, \pm\}^{\mathcal{A}}$ where $0<+$ and $0<-$.
Each $P \in \mathcal{F}_{\mathcal{A}}$ defines a facet $c_{P}=\left\{x \in V \mid \operatorname{sgn} n_{x}=P\right\}$. The facets are convex subsets of V, open in their closure. By definition,

$$
\bar{c}_{P} \subseteq \bar{c}_{Q} \text { in } V \text { iff } P \leq Q \text { in } \mathcal{F}_{\mathcal{A}} .
$$

The unit-sphere S_{V} gets a $C W$-structure with cell poset $\mathcal{F}_{\mathcal{A}} \backslash\{0\}$.

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of all such sign vectors $\operatorname{sgn} n_{x}, x \in V$, equipped with the partial order induced from the product order on $\{0, \pm\}^{\mathcal{A}}$ where $0<+$ and $0<-$. Each $P \in \mathcal{F}_{\mathcal{A}}$ defines a facet $c_{P}=\left\{x \in V \mid s g n_{x}=P\right\}$. The facets are convex subsets of V, open in their closure. By definition,

The unit-sphere S_{V} gets a $C W$-structure with cell poset $\mathcal{F}_{\mathcal{A}} \backslash\{0\}$

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of all such sign vectors $\operatorname{sgn}_{x}, x \in V$, equipped with the partial order induced from the product order on $\{0, \pm\}^{\mathcal{A}}$ where $0<+$ and $0<-$.
Each $P \in \mathcal{F}_{\mathcal{A}}$ defines a facet $c_{P}=\left\{x \in V \mid \operatorname{sgn} n_{x}=P\right\}$. The facets are convex subsets of V, open in their closure. By definition,

The unit-sphere S_{V} gets a $C W$-structure with cell poset $\mathcal{F}_{\mathcal{A}} \backslash\{0\}$

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of all such sign vectors $\operatorname{sgn} n_{x}, x \in V$, equipped with the partial order induced from the product order on $\{0, \pm\}^{\mathcal{A}}$ where $0<+$ and $0<-$.
Each $P \in \mathcal{F}_{\mathcal{A}}$ defines a facet $c_{P}=\left\{x \in V \mid s g n_{x}=P\right\}$. The facets are convex subsets of V, open in their closure. By definition,

$$
\bar{c}_{P} \subseteq \bar{c}_{Q} \text { in } V \text { iff } P \leq Q \text { in } \mathcal{F}_{\mathcal{A}} .
$$

The unit-sphere S_{V} gets a $C W$-structure with cell poset $\mathcal{F}_{\mathcal{A}} \backslash\{0\}$.

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of all such sign vectors $\operatorname{sgn} n_{x}, x \in V$, equipped with the partial order induced from the product order on $\{0, \pm\}^{\mathcal{A}}$ where $0<+$ and $0<-$.
Each $P \in \mathcal{F}_{\mathcal{A}}$ defines a facet $c_{P}=\left\{x \in V \mid \operatorname{sgn} n_{x}=P\right\}$. The facets are convex subsets of V, open in their closure. By definition,

$$
\bar{c}_{P} \subseteq \bar{c}_{Q} \text { in } V \text { iff } P \leq Q \text { in } \mathcal{F}_{\mathcal{A}} .
$$

The unit-sphere S_{V} gets a $C W$-structure with cell poset $\mathcal{F}_{\mathcal{A}} \backslash\{0\}$.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $P Q \in\{0, \pm\}^{\mathcal{A}}$ by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The subset $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an oriented matroid:

(3) $P \in \mathcal{F}_{\mathcal{A}}$ implies $-P \in \mathcal{F}_{\mathcal{A}}$;

- Any $\alpha \in \mathcal{A}$ which separates $P, Q \in \mathcal{F}_{\mathcal{A}}$ supports an $R \in \mathcal{F}_{\mathcal{A}}$ sth. $R(\beta)=(P Q)(\beta)=(Q P)(\beta)$ for non separating $\beta \in \mathcal{A}$.
α separates P, Q if $P(\alpha) Q(\alpha)=-1$, and supports R if $R(\alpha)=0$.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $P Q \in\{0, \pm\}^{\mathcal{A}}$ by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 ; \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The subset $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an oriented matroid:
(3) $P \in \mathcal{F}_{\mathcal{A}}$ implies $-P \in \mathcal{F}_{\mathcal{A}}$;

sth. $R(\beta)=(P Q)(\beta)=(Q P)(\beta)$ for non separating $\beta \in \mathcal{A}$.
α separates P, Q if $P(\alpha) Q(\alpha)=-1$, and supports R if $R(\alpha)=0$.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $P Q \in\{0, \pm\}^{\mathcal{A}}$ by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The subset $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an oriented matroid:
(1) $0 \in \mathcal{F}_{\mathcal{A}}$;
(2) $P \in \mathcal{F}_{\mathcal{A}}$ implies

(- Any $\alpha \in \mathcal{A}$ which separates $P, Q \in \mathcal{F}_{\mathcal{A}}$ supports an $R \in \mathcal{F}_{\mathcal{A}}$
sth. $R(\beta)=(P Q)(\beta)=(Q P)(\beta)$ for non separating $\beta \in \mathcal{A}$.
α separates P, Q if $P(\alpha) Q(\alpha)=-1$, and supports R if $R(\alpha)=0$.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $P Q \in\{0, \pm\}^{\mathcal{A}}$ by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The subset $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an oriented matroid:
(1) $0 \in \mathcal{F}_{\mathcal{A}}$;
(2) $P \in \mathcal{F}_{\mathcal{A}}$ implies $-P \in \mathcal{F}_{\mathcal{A}}$;

sth. $R(\beta)=(P Q)(\beta)=(Q P)(\beta)$ for non separating $\beta \in \mathcal{A}$.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $P Q \in\{0, \pm\}^{\mathcal{A}}$ by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The subset $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an oriented matroid:
(1) $0 \in \mathcal{F}_{\mathcal{A}}$;
(2) $P \in \mathcal{F}_{\mathcal{A}}$ implies $-P \in \mathcal{F}_{\mathcal{A}}$;
(3) $P, Q \in \mathcal{F}_{\mathcal{A}}$ implies $P Q \in \mathcal{F}_{\mathcal{A}}$;

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $P Q \in\{0, \pm\}^{\mathcal{A}}$ by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 ; \\ Q(\alpha) & \text { if } P(\alpha)=0 .\end{cases}
$$

The subset $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an oriented matroid:
(1) $0 \in \mathcal{F}_{\mathcal{A}}$;
(2) $P \in \mathcal{F}_{\mathcal{A}}$ implies $-P \in \mathcal{F}_{\mathcal{A}}$;
(1) $P, Q \in \mathcal{F}_{\mathcal{A}}$ implies $P Q \in \mathcal{F}_{\mathcal{A}}$;

- Any $\alpha \in \mathcal{A}$ which separates $P, Q \in \mathcal{F}_{\mathcal{A}}$ supports an $R \in \mathcal{F}_{\mathcal{A}}$ sth. $R(\beta)=(P Q)(\beta)=(Q P)(\beta)$ for non separating $\beta \in \mathcal{A}$.

For $P, Q \in \mathcal{F}_{\mathcal{A}}$ we define a sign vector $P Q \in\{0, \pm\}^{\mathcal{A}}$ by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The subset $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ of sign vectors of the arrangement \mathcal{A} fulfills the following defining properties of an oriented matroid:
(1) $0 \in \mathcal{F}_{\mathcal{A}}$;
(2) $P \in \mathcal{F}_{\mathcal{A}}$ implies $-P \in \mathcal{F}_{\mathcal{A}}$;
(3) $P, Q \in \mathcal{F}_{\mathcal{A}}$ implies $P Q \in \mathcal{F}_{\mathcal{A}}$;
(9) Any $\alpha \in \mathcal{A}$ which separates $P, Q \in \mathcal{F}_{\mathcal{A}}$ supports an $R \in \mathcal{F}_{\mathcal{A}}$ sth. $R(\beta)=(P Q)(\beta)=(Q P)(\beta)$ for non separating $\beta \in \mathcal{A}$.
α separates P, Q if $P(\alpha) Q(\alpha)=-1$, and supports R if $R(\alpha)=0$.

A sphere arrangement in V is a collection $\left(S_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of centrally symmetric subspheres of codimension one of S_{V} such that
(1) The closures $S_{\alpha}^{ \pm}$of the two components of $S_{V} \backslash S_{\alpha}$ are balls;
(2) any intersection of the $S_{\alpha}^{ \pm}$is either a ball, a sphere or empty.

Definition

The k-th cornplement of a sphere arrangement $\left(S_{a}\right)_{a \in \mathcal{A}}$ in V is

A sphere arrangement in V is a collection $\left(S_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of centrally symmetric subspheres of codimension one of S_{V} such that
(1) The closures $S_{\alpha}^{ \pm}$of the two components of $S_{V} \backslash S_{\alpha}$ are balls;
(2) any intersection of the $S_{\alpha}^{ \pm}$is either a ball, a sphere or empty.

A sphere arrangement $\left(S_{\alpha}\right)_{\alpha \in \mathcal{A}}$ defines an oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ with respect to $\left(\mathbb{R} . S_{\alpha}\right)_{\alpha \in \mathcal{A}}$.

Theorem (Fokman-Lawrence '78, Edmonds-Mande '78)

Any simple oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0$,
of an essentially unique sphere arrangement in

Definition
The k-th cornplement of a sphere arrangement $\left(S_{a}\right)_{a \in \mathcal{A}}$ in V is

A sphere arrangement in V is a collection $\left(S_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of centrally symmetric subspheres of codimension one of S_{V} such that
(1) The closures $S_{\alpha}^{ \pm}$of the two components of $S_{V} \backslash S_{\alpha}$ are balls;
(2) any intersection of the $S_{\alpha}^{ \pm}$is either a ball, a sphere or empty.

A sphere arrangement $\left(S_{\alpha}\right)_{\alpha \in \mathcal{A}}$ defines an oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ with respect to $\left(\mathbb{R} . S_{\alpha}\right)_{\alpha \in \mathcal{A}}$.

Theorem (Folkman-Lawrence '78, Edmonds-Mandel '78)

Any simple oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the oriented matroid of an essentially unique sphere arrangement in $V=\mathbb{R}^{\mathrm{rk}\left(\mathcal{F}_{\mathcal{A}}\right)}$.

Definition
The k-th complement of a sphere arrangement $\left(S_{\alpha}\right)_{\alpha \in \mathcal{A}}$ in V is

A sphere arrangement in V is a collection $\left(S_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of centrally symmetric subspheres of codimension one of S_{V} such that
(1) The closures $S_{\alpha}^{ \pm}$of the two components of $S_{V} \backslash S_{\alpha}$ are balls;
(2) any intersection of the $S_{\alpha}^{ \pm}$is either a ball, a sphere or empty.

A sphere arrangement $\left(S_{\alpha}\right)_{\alpha \in \mathcal{A}}$ defines an oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ with respect to $\left(\mathbb{R} . S_{\alpha}\right)_{\alpha \in \mathcal{A}}$.

Theorem (Folkman-Lawrence '78, Edmonds-Mandel '78)

Any simple oriented matroid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the oriented matroid of an essentially unique sphere arrangement in $V=\mathbb{R}^{\mathrm{rk}\left(\mathcal{F}_{\mathcal{A}}\right)}$.

Definition

The k-th complement of a sphere arrangement $\left(S_{\alpha}\right)_{\alpha \in \mathcal{A}}$ in V is

$$
\mathcal{M}_{k}(\mathcal{A})=V^{k} \backslash \bigcup_{\alpha \in \mathcal{A}}\left(\mathbb{R} . S_{\alpha}\right)^{k} \simeq \underbrace{S_{V} * \cdots * S_{V}}_{k} \backslash \bigcup_{\alpha \in \mathcal{A}} \underbrace{S_{\alpha} * \cdots * S_{\alpha}}_{k} .
$$

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V.
The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$

Definition (Orlik '91)

For subcomplexes K_{1}, K_{2} of a simplicial complex L sth.
$\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Proposition (Orlik '91)

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.

Definition (Orlik '91)

Proposition (Orlik '91)

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.
$\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A} \oplus \mathcal{A}}$ where $\mathcal{A} \oplus \mathcal{A}=(\mathcal{A} \times V) \cup(V \times \mathcal{A})$ in $V \times V$.

Proposition (Orlik '91)

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.
$\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A} \oplus \mathcal{A}}$ where $\mathcal{A} \oplus \mathcal{A}=(\mathcal{A} \times V) \cup(V \times \mathcal{A})$ in $V \times V$.

Definition (Orlik '91)

$\mathcal{C}_{\mathcal{A}}^{(2)}:=\left\{(P, Q) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}} \mid P Q \in \mathcal{C}_{\mathcal{A}}\right\}^{\text {op }}$
$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$ iff $\exists \alpha \in \mathcal{A}: P(\alpha)=Q(\alpha)=0$.
For subcomplexes K_{1}, K_{2} of a simplicial complex L sth
$\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Proposition (Orlik 291)

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.
$\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A} \oplus \mathcal{A}}$ where $\mathcal{A} \oplus \mathcal{A}=(\mathcal{A} \times V) \cup(V \times \mathcal{A})$ in $V \times V$.

Definition (Orlik '91)

$\mathcal{C}_{\mathcal{A}}^{(2)}:=\left\{(P, Q) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}} \mid P Q \in \mathcal{C}_{\mathcal{A}}\right\}^{\mathrm{op}}$
$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$ iff $\exists \alpha \in \mathcal{A}: P(\alpha)=Q(\alpha)=0$.
For subcomplexes K_{1}, K_{2} of a simplicial complex L sth.
$\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Throughout, \mathcal{A} denotes a hyperplane or sphere arrangement in V. The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.
$\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A} \oplus \mathcal{A}}$ where $\mathcal{A} \oplus \mathcal{A}=(\mathcal{A} \times V) \cup(V \times \mathcal{A})$ in $V \times V$.

Definition (Orlik '91)

$\mathcal{C}_{\mathcal{A}}^{(2)}:=\left\{(P, Q) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}} \mid P Q \in \mathcal{C}_{\mathcal{A}}\right\}^{\mathrm{op}}$
$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$ iff $\exists \alpha \in \mathcal{A}: P(\alpha)=Q(\alpha)=0$.
For subcomplexes K_{1}, K_{2} of a simplicial complex L sth. $\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Proposition (Orlik '91)

$\left|\mathcal{C}_{\mathcal{A}}^{(2)}\right| \simeq \mathcal{M}_{2}(\mathcal{A})$

Definition (Salvetti '87)

$$
\begin{aligned}
& \mathcal{S}_{\mathcal{A}}^{(2)}=\left\{(P, C) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid P \leq C\right\} \\
& (P, C) \geq\left(P^{\prime}, C^{\prime}\right) \text { iff } P \leq P^{\prime} \text { and } P^{\prime} C=C^{\prime}
\end{aligned}
$$

Theorem (Salvetti '87, Arvola '91)

Proof.
The map $(P, Q) \mapsto(P, P Q)$ is a hpty eq. of posets $C_{A}^{(2)} \xrightarrow{\sim} S_{\mathcal{A}}^{(2)}$

Definition (Salvetti '87)

$\mathcal{S}_{\mathcal{A}}^{(2)}=\left\{(P, C) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid P \leq C\right\}$
$(P, C) \geq\left(P^{\prime}, C^{\prime}\right)$ iff $P \leq P^{\prime}$ and $P^{\prime} C=C^{\prime}$.

Theorem (Salvetti '87, Arvola '91)
$\left|\mathcal{S}_{\mathcal{A}}^{(2)}\right| \simeq \mathcal{M}_{2}(\mathcal{A})$.
Proof.
The map $(P, Q) \mapsto(P, P Q)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$

Definition (Salvetti '87)

$\mathcal{S}_{\mathcal{A}}^{(2)}=\left\{(P, C) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid P \leq C\right\}$
$(P, C) \geq\left(P^{\prime}, C^{\prime}\right)$ iff $P \leq P^{\prime}$ and $P^{\prime} C=C^{\prime}$.
Theorem (Salvetti '87, Arvola '91)
$\left|\mathcal{S}_{\mathcal{A}}^{(2)}\right| \simeq \mathcal{M}_{2}(\mathcal{A})$.

Proof.

The map $(P, Q) \mapsto(P, P Q)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$.
Indeed, by Quillen's Theorem A, it suffices to show that the hpty
fibers $C_{(P, C)}=\left\{Q \in \mathcal{F}_{\mathcal{A}} \mid P Q \leq C\right\}$ are contractible.
For $\mathcal{A}_{|P|}=\{\alpha \in \mathcal{A} \mid P(\alpha)=0\}$ we get the identification
$c_{(P, C)}=\left\{Q \in \mathcal{F}_{\mathcal{A}} \mid Q(\alpha) \leq C(\alpha), \alpha \in \mathcal{A}_{|P|}\right\}$. Thus, $C_{(P, C)}$ maps
to the closure of a chamber in $\mathcal{F}_{\mathcal{A} /|P|}$ via $\mathcal{F}_{\mathcal{A}} \mid \mathcal{F}_{|P|} \simeq \mathcal{F}_{\mathcal{A}| | P \mid} . \square$

Definition (Salvetti '87)

$\mathcal{S}_{\mathcal{A}}^{(2)}=\left\{(P, C) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid P \leq C\right\}$
$(P, C) \geq\left(P^{\prime}, C^{\prime}\right)$ iff $P \leq P^{\prime}$ and $P^{\prime} C=C^{\prime}$.

Theorem (Salvetti '87, Arvola '91)

$\left|\mathcal{S}_{\mathcal{A}}^{(2)}\right| \simeq \mathcal{M}_{2}(\mathcal{A})$.

Proof.

The map $(P, Q) \mapsto(P, P Q)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$. Indeed, by Quillen's Theorem A, it suffices to show that the hpty fibers $C_{(P, C)}=\left\{Q \in \mathcal{F}_{\mathcal{A}} \mid P Q \leq C\right\}$ are contractible.

Definition (Salvetti '87)

$\mathcal{S}_{\mathcal{A}}^{(2)}=\left\{(P, C) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid P \leq C\right\}$
$(P, C) \geq\left(P^{\prime}, C^{\prime}\right)$ iff $P \leq P^{\prime}$ and $P^{\prime} C=C^{\prime}$.

Theorem (Salvetti '87, Arvola '91)

$\left|\mathcal{S}_{\mathcal{A}}^{(2)}\right| \simeq \mathcal{M}_{2}(\mathcal{A})$.

Proof.

The map $(P, Q) \mapsto(P, P Q)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$. Indeed, by Quillen's Theorem A, it suffices to show that the hpty fibers $C_{(P, C)}=\left\{Q \in \mathcal{F}_{\mathcal{A}} \mid P Q \leq C\right\}$ are contractible.
For $\mathcal{A}_{|P|}=\{\alpha \in \mathcal{A} \mid P(\alpha)=0\}$ we get the identification $c_{(P, C)}=\left\{Q \in \mathcal{F}_{\mathcal{A}} \mid Q(\alpha) \leq C(\alpha), \alpha \in \mathcal{A}_{|P|}\right\}$.

Definition (Salvetti '87)

$\mathcal{S}_{\mathcal{A}}^{(2)}=\left\{(P, C) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid P \leq C\right\}$
$(P, C) \geq\left(P^{\prime}, C^{\prime}\right)$ iff $P \leq P^{\prime}$ and $P^{\prime} C=C^{\prime}$.

Theorem (Salvetti '87, Arvola '91)

$\left|\mathcal{S}_{\mathcal{A}}^{(2)}\right| \simeq \mathcal{M}_{2}(\mathcal{A})$.

Proof.

The map $(P, Q) \mapsto(P, P Q)$ is a hpty eq. of posets $\mathcal{C}_{\mathcal{A}}^{(2)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(2)}$. Indeed, by Quillen's Theorem A, it suffices to show that the hpty fibers $C_{(P, C)}=\left\{Q \in \mathcal{F}_{\mathcal{A}} \mid P Q \leq C\right\}$ are contractible.
For $\mathcal{A}_{|P|}=\{\alpha \in \mathcal{A} \mid P(\alpha)=0\}$ we get the identification $c_{(P, C)}=\left\{Q \in \mathcal{F}_{\mathcal{A}} \mid Q(\alpha) \leq C(\alpha), \alpha \in \mathcal{A}_{|P|}\right\}$. Thus, $c_{(P, C)}$ maps to the closure of a chamber in $\mathcal{F}_{\mathcal{A} /|P|}$ via $\mathcal{F}_{\mathcal{A}} \backslash \mathcal{F}_{|P|} \simeq \mathcal{F}_{\mathcal{A} /|P|}$.

Alternatively, for hyperplane arrangements \mathcal{A}, proceed as follows:
Let $\operatorname{st}_{(P, C)}=\left\{\left(x_{1}, x_{2}\right) \in V \times V\left|x_{1} \in c_{P} ; x_{2} \in c_{C} \bmod \right| P \mid\right\}$. These are convex subsets of $\mathcal{M}_{2}(\mathcal{A})$, open in their closure. They define a stratification of $\mathcal{M}_{2}(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$
\overline{s t}_{(P, C)} \subseteq \overline{s t}_{\left(P^{\prime}, C^{\prime}\right)} \text { in } M_{2}(\mathcal{A}) \text { iff }(P, C) \geq\left(P^{\prime}, C^{\prime}\right) \text { in } S_{\mathcal{A}}^{(2)} \text {. }
$$

Equivalently, let $V_{(P, C)}=\bigcup_{(P, C) \geq\left(P^{\prime}, C^{\prime}\right)} s t_{\left(P^{\prime}, C^{\prime}\right)}$. This defines an open cover of $\mathcal{M}_{2}(\mathcal{A})$ used by Deligne ' 72 . The $V_{(P, C)}$ are contractible and $V_{(P, C)} \subseteq V_{\left(P^{\prime}, C^{\prime}\right)}$ iff $(P, C) \leq\left(P^{\prime}, C^{\prime}\right)$. Moreover, each $V_{(P, C)} \cap V_{\left(P^{\prime}, C^{\prime}\right)}$ is a union of $V_{\left(P^{\prime \prime}, C^{\prime \prime}\right)}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_{2}(\mathcal{A}) \simeq\left|\mathcal{S}_{\mathcal{A}}^{(2)}\right|$

Alternatively, for hyperplane arrangements \mathcal{A}, proceed as follows:
Let $s t_{(P, C)}=\left\{\left(x_{1}, x_{2}\right) \in V \times V\left|x_{1} \in c_{P} ; x_{2} \in c_{C} \bmod \right| P \mid\right\}$.
are convex subsets of $\mathcal{M}_{2}(\mathcal{A})$, open in their closure. They define a stratification of $\mathcal{M}_{2}(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$
\overline{s t}_{(P, C)} \subseteq \overline{s t}_{\left(P^{\prime}, C^{\prime}\right)} \text { in } \mathcal{M}_{2}(\mathcal{A}) \text { iff }(P, C) \geq\left(P^{\prime}, C^{\prime}\right) \text { in } \mathcal{S}_{\mathcal{A}}^{(2)} .
$$

Equivalently, let $V_{(P, C)}=\bigcup_{(P, C)>\left(P^{\prime}, C^{\prime}\right)} s t_{\left(P^{\prime}, C^{\prime}\right)}$. This defines an open cover of $\mathcal{M}_{2}(\mathcal{A})$ used by Deligne ' 72 . The $V_{(P, C)}$ are contractible and $V_{(P, C)} \subseteq V_{\left(P^{\prime}, C^{\prime}\right)}$ iff $(P, C) \leq\left(P^{\prime}, C^{\prime}\right)$. Moreover, each $V_{(P, C)} \cap V_{\left(P^{\prime}, C^{\prime}\right)}$ is a union of $\left.V_{\left(P^{\prime \prime}, C^{\prime \prime}\right)}\right)^{\prime}$. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_{2}(\mathcal{A}) \simeq\left|\mathcal{S}_{\mathcal{A}}^{(2)}\right|$

Alternatively, for hyperplane arrangements \mathcal{A}, proceed as follows:
Let $s t_{(P, C)}=\left\{\left(x_{1}, x_{2}\right) \in V \times V\left|x_{1} \in c_{P} ; x_{2} \in c_{C} \bmod \right| P \mid\right\}$. These are convex subsets of $\mathcal{M}_{2}(\mathcal{A})$, open in their closure. They define a stratification of $\mathcal{M}_{2}(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

Alternatively, for hyperplane arrangements \mathcal{A}, proceed as follows:
Let $s t_{(P, C)}=\left\{\left(x_{1}, x_{2}\right) \in V \times V\left|x_{1} \in c_{P} ; x_{2} \in c_{C} \bmod \right| P \mid\right\}$. These are convex subsets of $\mathcal{M}_{2}(\mathcal{A})$, open in their closure. They define a stratification of $\mathcal{M}_{2}(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$
\overline{s t}_{(P, C)} \subseteq \overline{s t}_{\left(P^{\prime}, C^{\prime}\right)} \text { in } \mathcal{M}_{2}(\mathcal{A}) \text { iff }(P, C) \geq\left(P^{\prime}, C^{\prime}\right) \text { in } \mathcal{S}_{\mathcal{A}}^{(2)}
$$

Alternatively, for hyperplane arrangements \mathcal{A}, proceed as follows:
Let $s t_{(P, C)}=\left\{\left(x_{1}, x_{2}\right) \in V \times V\left|x_{1} \in c_{P} ; x_{2} \in c_{C} \bmod \right| P \mid\right\}$. These are convex subsets of $\mathcal{M}_{2}(\mathcal{A})$, open in their closure. They define a stratification of $\mathcal{M}_{2}(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$
\overline{s t}_{(P, C)} \subseteq \overline{s t}_{\left(P^{\prime}, C^{\prime}\right)} \text { in } \mathcal{M}_{2}(\mathcal{A}) \text { iff }(P, C) \geq\left(P^{\prime}, C^{\prime}\right) \text { in } \mathcal{S}_{\mathcal{A}}^{(2)}
$$

The intersection of two closed strata is a union of closed strata. Any closed stratum is contractible. Moreover, inclusions of closed strata are closed cofibrations. This implies by a homotopy colimit argument (Reedy '73) that $\mathcal{M}_{2}(\mathcal{A}) \simeq\left|\mathcal{S}_{\mathcal{A}}^{(2)}\right|$.

Alternatively, for hyperplane arrangements \mathcal{A}, proceed as follows:
Let $s t_{(P, C)}=\left\{\left(x_{1}, x_{2}\right) \in V \times V\left|x_{1} \in c_{P} ; x_{2} \in c_{C} \bmod \right| P \mid\right\}$. These are convex subsets of $\mathcal{M}_{2}(\mathcal{A})$, open in their closure. They define a stratification of $\mathcal{M}_{2}(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$
\overline{s t}_{(P, C)} \subseteq \overline{s t}_{\left(P^{\prime}, C^{\prime}\right)} \text { in } \mathcal{M}_{2}(\mathcal{A}) \text { iff }(P, C) \geq\left(P^{\prime}, C^{\prime}\right) \text { in } \mathcal{S}_{\mathcal{A}}^{(2)}
$$

Equivalently, let $V_{(P, C)}=\bigcup_{(P, C) \geq\left(P^{\prime}, C^{\prime}\right)} s t_{\left(P^{\prime}, C^{\prime}\right)}$. This defines an open cover of $\mathcal{M}_{2}(\mathcal{A})$ used by Deligne ' 72 .

Alternatively, for hyperplane arrangements \mathcal{A}, proceed as follows:
Let $s t_{(P, C)}=\left\{\left(x_{1}, x_{2}\right) \in V \times V\left|x_{1} \in c_{P} ; x_{2} \in c_{C} \bmod \right| P \mid\right\}$. These are convex subsets of $\mathcal{M}_{2}(\mathcal{A})$, open in their closure. They define a stratification of $\mathcal{M}_{2}(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$
\overline{s t}_{(P, C)} \subseteq \overline{s t}_{\left(P^{\prime}, C^{\prime}\right)} \text { in } \mathcal{M}_{2}(\mathcal{A}) \text { iff }(P, C) \geq\left(P^{\prime}, C^{\prime}\right) \text { in } \mathcal{S}_{\mathcal{A}}^{(2)}
$$

Equivalently, let $V_{(P, C)}=\bigcup_{(P, C) \geq\left(P^{\prime}, C^{\prime}\right)} s t_{\left(P^{\prime}, C^{\prime}\right)}$. This defines an open cover of $\mathcal{M}_{2}(\mathcal{A})$ used by Deligne ' 72 . The $V_{(P, C)}$ are contractible and $V_{(P, C)} \subseteq V_{\left(P^{\prime}, C^{\prime}\right)}$ iff $(P, C) \leq\left(P^{\prime}, C^{\prime}\right)$. Moreover, each $V_{(P, C)} \cap V_{\left(P^{\prime}, C^{\prime}\right)}$ is a union of $V_{\left(P^{\prime \prime}, C^{\prime \prime}\right)}$'s.

Alternatively, for hyperplane arrangements \mathcal{A}, proceed as follows:
Let $s t_{(P, C)}=\left\{\left(x_{1}, x_{2}\right) \in V \times V\left|x_{1} \in c_{P} ; x_{2} \in c_{C} \bmod \right| P \mid\right\}$. These are convex subsets of $\mathcal{M}_{2}(\mathcal{A})$, open in their closure. They define a stratification of $\mathcal{M}_{2}(\mathcal{A})$ labelled by $\mathcal{S}_{\mathcal{A}}^{(2)}$ such that

$$
\overline{s t}_{(P, C)} \subseteq \overline{s t}_{\left(P^{\prime}, C^{\prime}\right)} \text { in } \mathcal{M}_{2}(\mathcal{A}) \text { iff }(P, C) \geq\left(P^{\prime}, C^{\prime}\right) \text { in } \mathcal{S}_{\mathcal{A}}^{(2)}
$$

Equivalently, let $V_{(P, C)}=\bigcup_{(P, C) \geq\left(P^{\prime}, C^{\prime}\right)} s_{\left(P^{\prime}, C^{\prime}\right)}$. This defines an open cover of $\mathcal{M}_{2}(\mathcal{A})$ used by Deligne ' 72 . The $V_{(P, C)}$ are contractible and $V_{(P, C)} \subseteq V_{\left(P^{\prime}, C^{\prime}\right)}$ iff $(P, C) \leq\left(P^{\prime}, C^{\prime}\right)$. Moreover, each $V_{(P, C)} \cap V_{\left(P^{\prime}, C^{\prime}\right)}$ is a union of $V_{\left(P^{\prime \prime}, C^{\prime \prime}\right)}$'s. A homotopy colimit argument (McCord '67) yields $\mathcal{M}_{2}(\mathcal{A}) \simeq\left|\mathcal{S}_{\mathcal{A}}^{(2)}\right|$.

Definition

$\mathcal{C}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k}\right) \in\left(\mathcal{F}_{\mathcal{A}}\right)^{k} \mid P_{1} \ldots P_{k} \in \mathcal{C}_{\mathcal{A}}\right\}^{\mathrm{op}}$
$\mathcal{S}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k-1}, C\right) \in\left(\mathcal{F}_{A}\right)^{k-1} \times \mathcal{C}_{\mathcal{A}} \mid P_{1} \leq \cdots \leq P_{k-1} \leq C\right\}$
$\left(P_{1}, \ldots, P_{k-1}, C\right) \geq\left(P_{1}^{\prime}, \ldots, P_{k-1}^{\prime}, C^{\prime}\right)$ iff $\forall i: P_{i} \leq P_{i}^{\prime} \wedge P_{i}^{\prime} C=C^{\prime}$

Theorem

$\left|\mathcal{C}_{\mathcal{A}}^{(k)}\right| \simeq \mathcal{M}_{k}(\mathcal{A})$ and $\left(P_{1}, \ldots, P_{k}\right) \mapsto\left(P_{1}, P_{1} P_{2}, \ldots, P_{1} P_{2} \ldots P_{k}\right)$
defines a homotopy equivalence of posets $\mathcal{C}_{\mathcal{A}}^{(k)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(k)}$
Proof.
The homotopy fibers $C_{\left(P_{1}, \ldots, P_{k-1}, C\right)}$ are homotopy colimits over $\left\{Q \mid P_{1} Q \leq P_{2}\right\}$ of homotopy fibers $C_{\left(P_{2}, \ldots, P_{k-1}, C\right)}$

Definition

$\mathcal{C}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k}\right) \in\left(\mathcal{F}_{\mathcal{A}}\right)^{k} \mid P_{1} \ldots P_{k} \in \mathcal{C}_{\mathcal{A}}\right\}^{\mathrm{op}}$
$\mathcal{S}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k-1}, C\right) \in\left(\mathcal{F}_{A}\right)^{k-1} \times \mathcal{C}_{\mathcal{A}} \mid P_{1} \leq \cdots \leq P_{k-1} \leq C\right\}$
$\left(P_{1}, \ldots, P_{k-1}, C\right) \geq\left(P_{1}^{\prime}, \ldots, P_{k-1}^{\prime}, C^{\prime}\right)$ iff $\forall i: P_{i} \leq P_{i}^{\prime} \wedge P_{i}^{\prime} C=C^{\prime}$

Theorem

$\left|\mathcal{C}_{\mathcal{A}}^{(k)}\right| \simeq \mathcal{M}_{k}(\mathcal{A})$ and $\left(P_{1}, \ldots, P_{k}\right) \mapsto\left(P_{1}, P_{1} P_{2}, \ldots, P_{1} P_{2} \cdots P_{k}\right)$ defines a homotopy equivalence of posets $\mathcal{C}_{\mathcal{A}}^{(k)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(k)}$.

Definition

$$
\begin{aligned}
& \mathcal{C}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k}\right) \in\left(\mathcal{F}_{\mathcal{A}}\right)^{k} \mid P_{1} \cdots P_{k} \in \mathcal{C}_{\mathcal{A}}\right\}^{\mathrm{op}} \\
& \mathcal{S}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k-1}, C\right) \in\left(\mathcal{F}_{A}\right)^{k-1} \times \mathcal{C}_{\mathcal{A}} \mid P_{1} \leq \cdots \leq P_{k-1} \leq C\right\} \\
& \left(P_{1}, \ldots, P_{k-1}, C\right) \geq\left(P_{1}^{\prime}, \ldots, P_{k-1}^{\prime}, C^{\prime}\right) \text { iff } \forall i: P_{i} \leq P_{i}^{\prime} \wedge P_{i}^{\prime} C=C^{\prime}
\end{aligned}
$$

Theorem

$\left|\mathcal{C}_{\mathcal{A}}^{(k)}\right| \simeq \mathcal{M}_{k}(\mathcal{A})$ and $\left(P_{1}, \ldots, P_{k}\right) \mapsto\left(P_{1}, P_{1} P_{2}, \ldots, P_{1} P_{2} \ldots P_{k}\right)$ defines a homotopy equivalence of posets $\mathcal{C}_{\mathcal{A}}^{(k)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(k)}$.

Proof.

The homotopy fibers $c_{\left(P_{1}, \ldots, P_{k-1}, C\right)}$ are homotopy colimits over $\left\{Q \mid P_{1} Q \leq P_{2}\right\}$ of homotopy fibers $c_{\left(P_{2}, \ldots, P_{k-1}, C\right)}$.

Definition

For $C \in \mathcal{C}_{\mathcal{A}}$, a function $\mu: \mathcal{A} \rightarrow\{0,1, \ldots, k-1\}$ is C-admissible iff $\exists\left(P_{1}, \ldots, P_{k-1}, C\right) \in \mathcal{S}_{\mathcal{A}}^{(k)}: \mu(\alpha)=\max \left\{i \mid P_{i}(\alpha)=0\right\}$.

Proposition

$$
\begin{aligned}
& \left.\times\{0,1, \ldots, k-1\}^{\mathcal{A}} \mid \mu \text { is } C \text {-admissible }\right\}, \\
& \left\{\begin{array}{l}
\mu(\alpha) \leq \mu^{\prime}(\alpha) \text { for any } \alpha \in \mathcal{A} ; \\
\mu(\alpha)<\mu^{\prime}(\alpha) \text { for } \alpha \text { separating } C, C^{\prime} .
\end{array}\right.
\end{aligned}
$$

Corollary

For simpliciz/ arrangements, $S_{\mathcal{A}}^{(k)} \cong C_{\mathcal{A}} \times\{0, \ldots, k-1\}^{r k}\left(F_{\mathcal{A}}\right)$
For Coxeter arrangements, $\mathcal{S}_{\mathcal{A}_{W}}^{(k)} \cong W \times\{0, \ldots, k-1\}^{\mathrm{rk}(W)}$
\square
is anti-isomorphic to Fox-Neuwirth's cell decomposition, and

Definition

For $C \in \mathcal{C}_{\mathcal{A}}$, a function $\mu: \mathcal{A} \rightarrow\{0,1, \ldots, k-1\}$ is C-admissible iff $\exists\left(P_{1}, \ldots, P_{k-1}, C\right) \in \mathcal{S}_{\mathcal{A}}^{(k)}: \mu(\alpha)=\max \left\{i \mid P_{i}(\alpha)=0\right\}$.

Proposition

$\mathcal{S}_{\mathcal{A}}^{(k)} \cong\left\{(C, \mu) \in \mathcal{C}_{\mathcal{A}} \times\{0,1, \ldots, k-1\}^{\mathcal{A}} \mid \mu\right.$ is C-admissible $\}$,
$(C, \mu) \leq\left(C^{\prime}, \mu^{\prime}\right)$ iff $\left\{\begin{array}{l}\mu(\alpha) \leq \mu^{\prime}(\alpha) \text { for any } \alpha \in \mathcal{A} ; \\ \mu(\alpha)<\mu^{\prime}(\alpha) \text { for } \alpha \text { separating } C, C^{\prime} \text {. }\end{array}\right.$

Corollary

For simplicial arrangements, $\mathcal{S}_{\mathcal{A}}^{(k)} \cong \mathcal{C}_{\mathcal{A}} \times\{0$,
For Coxeter arrangements, $\mathcal{S}_{\mathcal{A}_{W}}^{(k)} \cong W \times\{0, \ldots, k-1\}^{\operatorname{rk}(W)}$
$\mathcal{S}_{\mathcal{A}_{\mathfrak{E}_{n}}}^{(k)}$ is anti-isomorphic to Fox-Neuwirth's cell decomposition, and

Definition

For $C \in \mathcal{C}_{\mathcal{A}}$, a function $\mu: \mathcal{A} \rightarrow\{0,1, \ldots, k-1\}$ is C-admissible iff $\exists\left(P_{1}, \ldots, P_{k-1}, C\right) \in \mathcal{S}_{\mathcal{A}}^{(k)}: \mu(\alpha)=\max \left\{i \mid P_{i}(\alpha)=0\right\}$.

Proposition

$$
\begin{aligned}
& \mathcal{S}_{\mathcal{A}}^{(k)} \cong\left\{(C, \mu) \in \mathcal{C}_{\mathcal{A}} \times\{0,1, \ldots, k-1\}^{\mathcal{A}} \mid \mu \text { is } C \text {-admissible }\right\}, \\
& (C, \mu) \leq\left(C^{\prime}, \mu^{\prime}\right) \text { iff }\left\{\begin{array}{l}
\mu(\alpha) \leq \mu^{\prime}(\alpha) \text { for any } \alpha \in \mathcal{A} ; \\
\mu(\alpha)<\mu^{\prime}(\alpha) \text { for } \alpha \text { separating } C, C^{\prime}
\end{array}\right.
\end{aligned}
$$

Corollary

For simplicial arrangements, $\mathcal{S}_{\mathcal{A}}^{(k)} \cong \mathcal{C}_{\mathcal{A}} \times\{0, \ldots, k-1\}^{\mathrm{rk}\left(\mathcal{F}_{\mathcal{A}}\right)}$.
For Coxeter arrangements, $\mathcal{S}_{\mathcal{A}_{W}}^{(k)} \cong W \times\{0, \ldots, k-1\}^{\mathrm{rk}(W)}$.
$\mathcal{S}_{\mathcal{A}_{\mathfrak{G}_{n}}}^{(k)}$ is anti-isomorphic to Fox-Neuwirth's cell decomposition, and

Definition

For $C \in \mathcal{C}_{\mathcal{A}}$, a function $\mu: \mathcal{A} \rightarrow\{0,1, \ldots, k-1\}$ is C-admissible iff $\exists\left(P_{1}, \ldots, P_{k-1}, C\right) \in \mathcal{S}_{\mathcal{A}}^{(k)}: \mu(\alpha)=\max \left\{i \mid P_{i}(\alpha)=0\right\}$.

Proposition

$$
\begin{aligned}
& \mathcal{S}_{\mathcal{A}}^{(k)} \cong\left\{(C, \mu) \in \mathcal{C}_{\mathcal{A}} \times\{0,1, \ldots, k-1\}^{\mathcal{A}} \mid \mu \text { is } C \text {-admissible }\right\}, \\
& (C, \mu) \leq\left(C^{\prime}, \mu^{\prime}\right) \text { iff }\left\{\begin{array}{l}
\mu(\alpha) \leq \mu^{\prime}(\alpha) \text { for any } \alpha \in \mathcal{A} ; \\
\mu(\alpha)<\mu^{\prime}(\alpha) \text { for } \alpha \text { separating } C, C^{\prime}
\end{array}\right.
\end{aligned}
$$

Corollary

For simplicial arrangements, $\mathcal{S}_{\mathcal{A}}^{(k)} \cong \mathcal{C}_{\mathcal{A}} \times\{0, \ldots, k-1\}^{\mathrm{rk}\left(\mathcal{F}_{\mathcal{A}}\right)}$.
For Coxeter arrangements, $\mathcal{S}_{\mathcal{A}_{W}}^{(k)} \cong W \times\{0, \ldots, k-1\}^{\mathrm{rk}(W)}$.
$\mathcal{S}_{\mathcal{A}_{\mathfrak{S}_{n}}}^{(k)}$ is anti-isomorphic to Fox-Neuwirth's cell decomposition, and isomorphic to Milgram's permutohedral model for $F\left(\mathbb{R}^{k}, n\right)$.

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.
Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;
- For any $C, C^{\prime}, C^{\prime \prime}: S\left(C, C^{\prime \prime}\right)=S\left(C, C^{\prime}\right) \Delta S\left(C^{\prime}, C^{\prime \prime}\right)$.

Proposition (Björner-Edelman-Ziegler '90)

The face posed $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

Let E_{Δ} be the simplicial set whose d-simplices are $(d+1)$-tupels $\left(C_{0}, C_{1}, \ldots, C_{d}\right)$ of chambers. $\left(C_{0}, C_{1}, \ldots, C_{d}\right) \in E_{\mathcal{A}}^{(k)}$ iff $\left(S\left(C_{0}, C_{1}\right), \ldots, S\left(C_{d-1}, C_{d}\right)\right)$ contains $<k$ times each $\alpha \in \mathcal{A}$.

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$

Definition

Let $F_{\mathcal{A}}$ be the simplicial set whose d-simplices are $(d+1)$-tupels

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.
Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

Proposition (Björner-Edelman-Ziegler '90)
 The face poset \mathcal{F}_{A} is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

Let F_{A} be the simplicial set whose d-simplices are $(d+1)$-tupels

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.

Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;
\square
\square
\square

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.
Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;
- For any $C, C^{\prime}, C^{\prime \prime}: S\left(C, C^{\prime \prime}\right)=S\left(C, C^{\prime}\right) \Delta S\left(C^{\prime}, C^{\prime \prime}\right)$.
\square
\square

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.
Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;
- For any $C, C^{\prime}, C^{\prime \prime}: S\left(C, C^{\prime \prime}\right)=S\left(C, C^{\prime}\right) \Delta S\left(C^{\prime}, C^{\prime \prime}\right)$.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}. Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;
- For any $C, C^{\prime}, C^{\prime \prime}: S\left(C, C^{\prime \prime}\right)=S\left(C, C^{\prime}\right) \Delta S\left(C^{\prime}, C^{\prime \prime}\right)$.

Proposition (Björner-Edelman-Ziegler '90)

The face poset $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

Let $E_{\mathcal{A}}$ be the simplicial set whose d-simplices are $(d+1)$-tupels $\left(C_{0}, C_{1}, \ldots, C_{d}\right)$ of chambers. $\left(C_{0}, C_{1}, \ldots, C_{d}\right) \in E_{\mathcal{A}}^{(k)}$ iff $\left(S\left(C_{0}, C_{1}\right), \ldots, S\left(C_{d-1}, C_{d}\right)\right)$ contains $<k$ times each $\alpha \in \mathcal{A}$.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by

- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

$\left|E_{\mathcal{A}_{G_{n}}}^{(k)}\right| \sim \mathcal{M}_{k}\left(\mathcal{A}_{G_{n}}\right)$. For varying n, the operad on the left has the homotopy type of Boardman-Vogt's operad of little k-cubes.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $\left|E_{A_{w}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{W}\right)$
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement. \equiv

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(S_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by

- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtration.

Theorem (Smith '89, Kashiwabara '93, B. '96)

> $\left|E_{\mathcal{A}_{\mathfrak{G}_{n}}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$. For varying n, the operad on the left has the homotopy type of Boardman-Vogt's operad of little k-cubes.

Conjecture (Fiedorowicz)
For any finite Coxeter group W, one has $\left|E_{\mathcal{A}_{W}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{W}\right)$
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by $\left(C_{0}, \mu_{0}\right) \leq \cdots \leq\left(C_{d}, \mu_{d}\right) \mapsto\left(C_{0}, \ldots, C_{d}\right)$
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

$\left|E_{\mathcal{A}_{G_{0}}}^{(k)}\right| \sim \mathcal{M}_{k}\left(\mathcal{A}_{G_{n}}\right)$. For varying n, the operad on the left has the
homotopy type of Boardman-Vogt's operad of little k-cubes.

Conjecture (Fiedorowicz)
For any finite Coveter group W, one has $\left|E_{A_{w}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{W}\right)$
This would extend the operad structure of the B/C/D-Coxeter
groups to the higher complements of their Coxeter arrangement.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by $\left(C_{0}, \mu_{0}\right) \leq \cdots \leq\left(C_{d}, \mu_{d}\right) \mapsto\left(C_{0}, \ldots, C_{d}\right)$
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.
\square Theorem (Smith '89, Kashiwabara '93, B. '96)

$\left|E_{\mathcal{A}_{\infty}}^{(k)}\right| \sim \mathcal{M}_{k}\left(\mathcal{A}_{\Omega_{n}}\right)$. For varying n, the operad on the left has thehomotopy type of Boardman-Vogt's operad of little k-cubes.
\square
Conjecture (Fiedorowicz)
For any finite Coveter group W, one has $\left|E_{A_{w}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{W}\right)$
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by $\left(C_{0}, \mu_{0}\right) \leq \cdots \leq\left(C_{d}, \mu_{d}\right) \mapsto\left(C_{0}, \ldots, C_{d}\right)$
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

$\left|E_{\mathcal{A}_{\mathfrak{S}_{n}}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$. For varying n, the operad on the left has the homotopy type of Boardman-Vogt's operad of little k-cubes.

Conjecture (Fiedorowicz)
For any finite Coxeter group W, one has $\left|E_{\mathcal{A}_{W}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{W}\right)$.
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by $\left(C_{0}, \mu_{0}\right) \leq \cdots \leq\left(C_{d}, \mu_{d}\right) \mapsto\left(C_{0}, \ldots, C_{d}\right)$
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

$\left|E_{\mathcal{A}_{\mathfrak{S}_{n}}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$. For varying n, the operad on the left has the homotopy type of Boardman-Vogt's operad of little k-cubes.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $\left|E_{\mathcal{A}_{W}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{W}\right)$.
This would extend the operad structure of the $B / C / D-C o x e t e r$ groups to the higher complements of their Coxeter arrangement.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by $\left(C_{0}, \mu_{0}\right) \leq \cdots \leq\left(C_{d}, \mu_{d}\right) \mapsto\left(C_{0}, \ldots, C_{d}\right)$
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Theorem (Smith '89, Kashiwabara '93, B. '96)

$\left|E_{\mathcal{A}_{\mathfrak{G}_{n}}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$. For varying n, the operad on the left has the homotopy type of Boardman-Vogt's operad of little k-cubes.

Conjecture (Fiedorowicz)

For any finite Coxeter group W, one has $\left|E_{\mathcal{A}_{W}}^{(k)}\right| \simeq \mathcal{M}_{k}\left(\mathcal{A}_{W}\right)$.
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement.

W．Arvola－Complexified real arrangements of hyperplanes， Manuscripta Math．71（1991），295－306．

囯 C．Berger－Opérades cellulaires et espaces de lacets itérés，Ann． Inst．Fourier 46（1996），1125－1157．

目 A．Björner，P．H．Edelman，G．M．Ziegler－Hyperplane arrangements with a lattice of regions，Discr．Comp．Geom．5（1990），263－288．

目 E．Brieskorn－Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe，Invent． Math．12（1971），57－61．

目 P．Deligne－Les immeubles des groupes de tresses généralisés， Invent．Math．17（1972），273－302．

围 A．Dimca and S．Papadima－Hypersurface complements，Milnor fibers and higher homotopy groups of arrangements，Ann．of Math． 158（2003），473－507．

E J. Edmonds and A. Mandel - Topology of oriented matroids, Notices AMS 25(1978), A-510.
(J. Folkman and J. Lawrence - Oriented matroids, J. Comb. Theory, Ser. B 25(1978), 199-236.

R R. Fox and L. Neuwirth - The braid groups, Math. Scand. 10(1962), 119-126.

R I.M. Gelfand and G.L. Rybnikov - Algebraic and topological invariants of oriented matroids, Sov. Math. Dokl. 40(1990), 148-152.
T. Kashiwabara - On the Homotopy Type of Configuration Complexes, Contemp. Math. 146(1993), 159-170.

R M.C. McCord - Homotopy type comparison of a space with complexes associated with its open covers, Proc. AMS 18(1967), 705-708.
R R.J. Milgram - Iterated loop spaces, Ann. of Math 84(1966),

围 P．Orlik－Complements of subspace arrangements，J．Alg．Geom． 1（1992），147－156．
（in D．Quillen－Higher algebraic K－theory I，Lecture Notes in Math． 341，Springer Verlag（1973），85－147．

R R．Randell－Morse theory，Milnor fibers and minimality of hyperplane arrangements，Proc．AMS 130（2002），2737－2743．
圊 C．L．Reedy－Homotopy theories of model categories（1973），cf． http：／／www．math．mit．edu／～psh．
固 M．Salvetti－Topology of the complement of real hyperplanes in \mathbb{C}^{n} ，Invent．Math．88（1987），603－618．

䡒 M．Salvetti and S．Settepanella－Combinatorial Morse theory and minimality of hyperplane arrangements，Geometry and Topology 11（2007），1733－1766．

围 J．H．Smith－Simplicial Group Models for $\Omega^{n} S^{n} X$ ，Israel J．of Math．66（1989）．330－350．

[^0]: Proposition (Coxeter,Tits)
 There is a one-to-one correspondence between essential Coxeter
 arrangements \mathcal{A}_{W} and finite Coxeter groups W. The latter are
 classified by their Coxeter diagrams.

[^1]: The Coxeter group W acts simply transitively on $\mathcal{C}_{\mathcal{A}_{W}}$

