Combinatorial models for E_{n}-operads and iterated loop spaces

Clemens Berger

Université de Nice-Sophia Antipolis

Kolloquium des Fachbereichs Mathematik der Universität Osnabrück 18. April 2012
(1) Iterated loop spaces
(2) Stable homotopy
(3) Little cubes operad

4 Deligne conjecture
(5) Lattice path operad

Let $S^{n} \subset \mathbb{R}^{n+1}$ be the unit n-sphere based at $(1,0, \ldots, 0)$. Let $(X, *)$ be a based topological space.
The n-th loop space of X is $\Omega^{n} X=\operatorname{map}_{*}\left(S^{n}, X\right)$.
The n-th homotopy group of X is $\pi_{n}(X)=\pi_{0}\left(\Omega^{n} X\right)$.
Let $\mathrm{S}^{n-1} \subset \mathrm{~S}^{n}$ be the "equator" $\mathrm{S}^{n-1}=\mathrm{S}^{n} \cap\left\{x_{n+1}=0\right\}$

Lemma

The quotient map $p: \mathrm{S}^{n} \rightarrow \mathrm{~S}^{n} / \mathrm{S}^{n-1} \cong \mathrm{~S}^{n} V \mathrm{~S}^{n}$ defines

inducing a group structure on $\pi_{n}(X)$ for $n \geq 1$.

Proposition (Eckmann-Hilton)
$\pi_{n}(X)$ is abelian for $n \geq 2$.

Let $S^{n} \subset \mathbb{R}^{n+1}$ be the unit n-sphere based at $(1,0, \ldots, 0)$.
Let $(X, *)$ be a based topological space.
The n-th loop space of X is $\Omega^{n} X=\operatorname{map}_{*}\left(S^{n}, X\right)$. The n-th homotopy group of X is $\pi_{n}(X)=\pi_{0}\left(\Omega^{n} X\right)$.

Lemma

The quotient map p
$\mathrm{S}^{n} \rightarrow \mathrm{~S}^{n} / \mathrm{S}^{n-1} \cong \mathrm{~S}^{n} \vee \mathrm{~S}^{n}$ defines
inducing a group structure on $\pi_{n}(X)$ for $n \geq 1$.

Proposition (Eckmann-Hilton)
$\pi_{n}(X)$ is abelian for $n \geq 2$.

Let $S^{n} \subset \mathbb{R}^{n+1}$ be the unit n-sphere based at $(1,0, \ldots, 0)$.
Let $(X, *)$ be a based topological space.
The n-th loop space of X is $\Omega^{n} X=\operatorname{map}_{*}\left(S^{n}, X\right)$.
The n-th homotopy group of X is $\pi_{n}(X)=\pi_{0}\left(\Omega^{n} X\right)$.
Let $S^{n-1} \subset S^{n}$ be the "equator" $S^{n-1}=S^{n} \cap\left\{x_{n+1}=0\right\}$.

Lemma

The quotient map p
$\mathrm{S}^{n} \rightarrow \mathrm{~S}^{n} / \mathrm{S}^{n-1} \cong \mathrm{~S}^{n} \mathrm{~V}^{n}$ defines
inducing a group structure on $\pi_{n}(X)$ for $n \geq 1$.
Proposition (Eckmann-Hilton)
$\pi_{n}(X)$ is abelian for $n \geq 2$.

Let $S^{n} \subset \mathbb{R}^{n+1}$ be the unit n-sphere based at $(1,0, \ldots, 0)$.
Let $(X, *)$ be a based topological space.
The n-th loop space of X is $\Omega^{n} X=\operatorname{map}_{*}\left(S^{n}, X\right)$.
The n-th homotopy group of X is $\pi_{n}(X)=\pi_{0}\left(\Omega^{n} X\right)$.
Let $S^{n-1} \subset S^{n}$ be the "equator" $S^{n-1}=S^{n} \cap\left\{x_{n+1}=0\right\}$.

Lemma

The quotient map $p: \mathrm{S}^{n} \rightarrow \mathrm{~S}^{n} / \mathrm{S}^{n-1} \cong \mathrm{~S}^{n} \vee \mathrm{~S}^{n}$ defines

$$
\Omega^{n} X \times \Omega^{n} X=\operatorname{map}_{*}\left(\mathrm{~S}^{n} \vee \mathrm{~S}^{n}, X\right) \xrightarrow{p^{*}} \operatorname{map}_{*}\left(\mathrm{~S}^{n}, X\right)=\Omega^{n} X
$$

inducing a group structure on $\pi_{n}(X)$ for $n \geq 1$.
Proposition (Eckmann-Hilton)
$\pi_{n}(X)$ is abelian for $n \geq 2$.

Let $S^{n} \subset \mathbb{R}^{n+1}$ be the unit n-sphere based at $(1,0, \ldots, 0)$.
Let $(X, *)$ be a based topological space.
The n-th loop space of X is $\Omega^{n} X=\operatorname{map}_{*}\left(S^{n}, X\right)$.
The n-th homotopy group of X is $\pi_{n}(X)=\pi_{0}\left(\Omega^{n} X\right)$.
Let $S^{n-1} \subset S^{n}$ be the "equator" $S^{n-1}=S^{n} \cap\left\{x_{n+1}=0\right\}$.

Lemma

The quotient map $p: \mathrm{S}^{n} \rightarrow \mathrm{~S}^{n} / \mathrm{S}^{n-1} \cong \mathrm{~S}^{n} \vee \mathrm{~S}^{n}$ defines

$$
\Omega^{n} X \times \Omega^{n} X=\operatorname{map}_{*}\left(\mathrm{~S}^{n} \vee \mathrm{~S}^{n}, X\right) \xrightarrow{p^{*}} \operatorname{map}_{*}\left(\mathrm{~S}^{n}, X\right)=\Omega^{n} X
$$

inducing a group structure on $\pi_{n}(X)$ for $n \geq 1$.

Proposition (Eckmann-Hilton)

$\pi_{n}(X)$ is abelian for $n \geq 2$.

Proposition

For (based) spaces X, Y, Z one has a trinatural bijection

$$
\begin{aligned}
\operatorname{Top}(X \times Y, Z) & \cong \operatorname{Top}(X, \operatorname{map}(Y, Z) \\
\text { resp. } \operatorname{Top}_{*}(X \wedge Y, Z) & \cong \operatorname{Top}_{*}\left(X, \operatorname{map}_{*}(Y, Z)\right)
\end{aligned}
$$

where $X \wedge Y=(X \times Y) /(X \times\{* y\}) \cup(\{* x\} \times Y)$.
The n-th suspension of X is $\Sigma^{n} X=X \wedge S^{n}$

Corollary

$\operatorname{Top}_{*}\left(\Sigma^{n} X, Z\right) \cong \operatorname{Top}_{*}\left(X, \Omega^{n} Z\right)$ whence a map $X \longrightarrow \Omega^{n} \Sigma^{n} X$

Theorem (Freudenthal)

$\pi_{k}(X) \rightarrow \pi_{k}(\Omega \Sigma X)$ isomorphism if $k \leq 2 \cdot$ connectivity (X)

Proposition

For (based) spaces X, Y, Z one has a trinatural bijection

$$
\begin{aligned}
\operatorname{Top}(X \times Y, Z) & \cong \operatorname{Top}(X, \operatorname{map}(Y, Z) \\
\text { resp. } \operatorname{Top}_{*}(X \wedge Y, Z) & \cong \operatorname{Top}_{*}\left(X, \operatorname{map}_{*}(Y, Z)\right)
\end{aligned}
$$

where $X \wedge Y=(X \times Y) /(X \times\{* y\}) \cup(\{* x\} \times Y)$.
The n-th suspension of X is $\Sigma^{n} X=X \wedge S^{n}$.
Corollary
$\operatorname{Top}_{*}\left(\Sigma^{n} X, Z\right) \cong \operatorname{Top}_{*}\left(X, \Omega^{n} Z\right)$ whence a map $X \longrightarrow \Omega^{n} \Sigma^{n} X$

Theorem (Freudenthal)

$\pi_{k}(X) \rightarrow \pi_{k}(\Omega \Sigma X)$ isomorphism if $k \leq 2 \cdot$ connectivity (X)

Proposition

For (based) spaces X, Y, Z one has a trinatural bijection

$$
\begin{aligned}
\operatorname{Top}(X \times Y, Z) & \cong \operatorname{Top}(X, \operatorname{map}(Y, Z) \\
\text { resp. } \operatorname{Top}_{*}(X \wedge Y, Z) & \cong \operatorname{Top}_{*}\left(X, \operatorname{map}_{*}(Y, Z)\right)
\end{aligned}
$$

where $X \wedge Y=(X \times Y) /(X \times\{* y\}) \cup(\{* x\} \times Y)$.
The n-th suspension of X is $\Sigma^{n} X=X \wedge \mathrm{~S}^{n}$.

Corollary

$\operatorname{Top}_{*}\left(\Sigma^{n} X, Z\right) \cong \operatorname{Top}_{*}\left(X, \Omega^{n} Z\right)$ whence a $\operatorname{map} X \longrightarrow \Omega^{n} \Sigma^{n} X$

Theorem (Freudenthal)
$\pi_{k}(X) \rightarrow \pi_{k}(\Omega \Sigma X)$ isomorphism if $k \leq 2 \cdot$ connectivity (X).

Proposition

For (based) spaces X, Y, Z one has a trinatural bijection

$$
\begin{aligned}
\operatorname{Top}(X \times Y, Z) & \cong \operatorname{Top}(X, \operatorname{map}(Y, Z) \\
\text { resp. } \operatorname{Top}_{*}(X \wedge Y, Z) & \cong \operatorname{Top}_{*}\left(X, \operatorname{map}_{*}(Y, Z)\right)
\end{aligned}
$$

where $X \wedge Y=(X \times Y) /\left(X \times\left\{*_{Y}\right\}\right) \cup(\{* x\} \times Y)$.
The n-th suspension of X is $\Sigma^{n} X=X \wedge S^{n}$.

Corollary

$\operatorname{Top}_{*}\left(\Sigma^{n} X, Z\right) \cong \operatorname{Top}_{*}\left(X, \Omega^{n} Z\right)$ whence a $\operatorname{map} X \longrightarrow \Omega^{n} \Sigma^{n} X$

Theorem (Freudenthal)

$\pi_{k}(X) \rightarrow \pi_{k}(\Omega \Sigma X)$ isomorphism if $k \leq 2 \cdot$ connectivity (X).

Definition (stable homotopy groups)

- $\Omega^{\infty} \Sigma^{\infty} X=\operatorname{colim}\left(X \rightarrow \Omega \Sigma X \rightarrow \Omega^{2} \Sigma^{2} X \rightarrow \cdots\right)$
- $\pi_{k}^{s t}(X)=\pi_{k}\left(\Omega^{\infty} \Sigma^{\infty} X\right)$

The stable homotopy groups share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Corollary
$\pi_{k}^{s t}(X)=\pi_{k}\left(\Omega^{n} \Sigma^{n} X\right)$ for $n \geq k+2$.
Stable homotopy groups remain difficult to compute; calculating $\pi_{k}^{s t}\left(S^{0}\right)$ is one of the major problems in algebraic topology.
The groups are known only for $k \leq 64$:

k	0	1	2	3	4	5	6	7
$\pi_{k}^{s t}\left(S^{0}\right)$	\mathbb{Z}	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 24 \mathbb{Z}$	0	0	$\mathbb{Z} / 240 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$

Definition (stable homotopy groups)

- $\Omega^{\infty} \Sigma^{\infty} X=\operatorname{colim}\left(X \rightarrow \Omega \Sigma X \rightarrow \Omega^{2} \Sigma^{2} X \rightarrow \cdots\right)$
- $\pi_{k}^{s t}(X)=\pi_{k}\left(\Omega^{\infty} \Sigma^{\infty} X\right)$

The stable homotopy groups share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Definition (stable homotopy groups)

- $\Omega^{\infty} \Sigma^{\infty} X=\operatorname{colim}\left(X \rightarrow \Omega \Sigma X \rightarrow \Omega^{2} \Sigma^{2} X \rightarrow \cdots\right)$
- $\pi_{k}^{s t}(X)=\pi_{k}\left(\Omega^{\infty} \Sigma^{\infty} X\right)$

The stable homotopy groups share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Corollary
$\pi_{k}^{s t}(X)=\pi_{k}\left(\Omega^{n} \sum^{n} X\right)$ for $n \geq k+2$.
Stable homotopy groups remain difficult to compute; calculating $\pi_{k}^{s t}\left(\mathrm{~S}^{0}\right)$ is one of the major problems in algebraic topology.
The groups are known only for $k \leq 64$:

Definition (stable homotopy groups)

- $\Omega^{\infty} \Sigma^{\infty} X=\operatorname{colim}\left(X \rightarrow \Omega \Sigma X \rightarrow \Omega^{2} \Sigma^{2} X \rightarrow \cdots\right)$
- $\pi_{k}^{s t}(X)=\pi_{k}\left(\Omega^{\infty} \Sigma^{\infty} X\right)$

The stable homotopy groups share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Corollary

$\pi_{k}^{s t}(X)=\pi_{k}\left(\Omega^{n} \sum^{n} X\right)$ for $n \geq k+2$.
Stable homotopy groups remain difficult to compute; calculating $\pi_{k}^{s t}\left(\mathrm{~S}^{0}\right)$ is one of the major problems in algebraic topology.
The groups are known only for $k \leq 64$:

Definition (stable homotopy groups)

- $\Omega^{\infty} \Sigma^{\infty} X=\operatorname{colim}\left(X \rightarrow \Omega \Sigma X \rightarrow \Omega^{2} \Sigma^{2} X \rightarrow \cdots\right)$
- $\pi_{k}^{s t}(X)=\pi_{k}\left(\Omega^{\infty} \Sigma^{\infty} X\right)$

The stable homotopy groups share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Corollary

$$
\pi_{k}^{s t}(X)=\pi_{k}\left(\Omega^{n} \sum^{n} X\right) \text { for } n \geq k+2
$$

Stable homotopy groups remain difficult to compute; calculating $\pi_{k}^{s t}\left(\mathrm{~S}^{0}\right)$ is one of the major problems in algebraic topology.
The groups are known only for $k \leq 64$:

k	0	1	2	3	4	5	6	7
$\pi_{k}^{s t}\left(\mathrm{~S}^{0}\right)$	\mathbb{Z}	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 24 \mathbb{Z}$	0	0	$\mathbb{Z} / 240 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$

Since $S^{n}=\overbrace{S^{1} \wedge \cdots \wedge S^{1}}$, any n-fold loop space $\Omega^{n} X$ carries n different, yet compatible multiplications induced by

$$
S^{1} \wedge \cdots \wedge S^{1} \wedge \cdots \wedge S^{1} \rightarrow S^{1} \wedge \cdots \wedge\left(S^{1} \vee S^{1}\right) \wedge \cdots \wedge S^{1}
$$

The two pinch maps $S^{2} \rightarrow S^{2} \vee S^{2}$ are given by:

A space of pinch maps $\mathcal{C}_{2}(2) \subset \operatorname{map}_{*}\left(S^{2}, S^{2} \vee S^{2}\right)$ is given by:

Since $S^{n}=\overbrace{S^{1} \wedge \cdots \wedge S^{1}}$, any n-fold loop space $\Omega^{n} X$ carries n different, yet compatible multiplications induced by

$$
S^{1} \wedge \cdots \wedge S^{1} \wedge \cdots \wedge S^{1} \rightarrow S^{1} \wedge \cdots \wedge\left(S^{1} \vee S^{1}\right) \wedge \cdots \wedge S^{1}
$$

The two pinch maps $S^{2} \rightarrow S^{2} \vee S^{2}$ are given by:

A space of pinch maps $\mathcal{C}_{2}(2) \subset \operatorname{map}_{*}\left(S^{2}, S^{2} \vee S^{2}\right)$ is given by:

Since $S^{n}=\overbrace{S^{1} \wedge \cdots \wedge S^{1}}$, any n-fold loop space $\Omega^{n} X$ carries n different, yet compatible multiplications induced by

$$
S^{1} \wedge \cdots \wedge S^{1} \wedge \cdots \wedge S^{1} \rightarrow S^{1} \wedge \cdots \wedge\left(S^{1} \vee S^{1}\right) \wedge \cdots \wedge S^{1}
$$

The two pinch maps $S^{2} \rightarrow S^{2} \vee S^{2}$ are given by:

A space of pinch maps $\mathcal{C}_{2}(2) \subset \operatorname{map}_{*}\left(S^{2}, S^{2} \vee S^{2}\right)$ is given by:

A space of pinch maps $\mathcal{C}_{2}(3) \subset \operatorname{map}_{*}\left(S^{2}, S^{2} \vee S^{2} \vee S^{2}\right)$:

Definition

A tonological operad \mathcal{O} is a family of \mathscr{S}_{k}-spaces $\mathcal{O}(k), k \geq 0$, equipped with a unit $1 \in \mathcal{O}(1)$ and with substitution maps

$$
\mathcal{O}(k) \times \mathcal{O}\left(n_{1}\right) \times \cdots \times \mathcal{O}\left(n_{k}\right) \rightarrow \mathcal{O}\left(n_{1}+\cdots+n_{k}\right)
$$

satisfying associativity, unit and equivariance constraints.

A space of pinch maps $\mathcal{C}_{2}(3) \subset \operatorname{map}_{*}\left(S^{2}, S^{2} \vee S^{2} \vee S^{2}\right)$:

Definition

A topological operad \mathcal{O} is a family of \mathfrak{S}_{k}-spaces $\mathcal{O}(k), k \geq 0$, equipped with a unit $1 \in \mathcal{O}(1)$ and with substitution maps

$$
\mathcal{O}(k) \times \mathcal{O}\left(n_{1}\right) \times \cdots \times \mathcal{O}\left(n_{k}\right) \rightarrow \mathcal{O}\left(n_{1}+\cdots+n_{k}\right)
$$

satisfying associativity, unit and equivariance constraints.

Example (Boardman-Vogt '68)

The family $\mathcal{C}_{2}(k), k \geq 0$, defines an operad, the little squares operad \mathcal{C}_{2}. Similarly, one defines the little n-cubes operad \mathcal{C}_{n}.

$$
\mathcal{C}_{2}(2) \times \mathcal{C}_{2}(2) \times \mathcal{C}_{2}(1) \quad \longrightarrow \quad \mathcal{C}_{2}(2+1)
$$

Example (Boardman-Vogt '68)

The family $\mathcal{C}_{2}(k), k \geq 0$, defines an operad, the little squares operad \mathcal{C}_{2}. Similarly, one defines the little n-cubes operad \mathcal{C}_{n}.

$$
\mathcal{C}_{2}(2) \times \mathcal{C}_{2}(2) \times \mathcal{C}_{2}(1) \quad \longrightarrow \quad \mathcal{C}_{2}(2+1)
$$

1
2

Remark

The little r-cubes operad C_{n} is a suboperad of

Example (Boardman-Vogt '68)

The family $\mathcal{C}_{2}(k), k \geq 0$, defines an operad, the little squares operad \mathcal{C}_{2}. Similarly, one defines the little n-cubes operad \mathcal{C}_{n}.

$$
\mathcal{C}_{2}(2) \times \mathcal{C}_{2}(2) \times \mathcal{C}_{2}(1) \quad \longrightarrow \quad \mathcal{C}_{2}(2+1)
$$

1
2

Remark

The little n-cubes operad \mathcal{C}_{n} is a suboperad of
$\operatorname{Coend}\left(S^{n}\right)(k)=\operatorname{map}_{*}(S^{n}, \overbrace{S^{n} \vee \cdots \vee S^{n}}^{k}), k \geq 0$.

Definition

An \mathcal{O}-action on a space X consists of maps

$$
\mathcal{O}(k) \times X^{k} \rightarrow X, \quad k \geq 0
$$

satisfying natural equivariance, associativity and unit constraints.

Example

Any n-fold loop space $\Omega^{n} X$ carries a canonical C_{n}-action

Definition

An \mathcal{O}-action on a space X consists of maps

$$
\mathcal{O}(k) \times X^{k} \rightarrow X, \quad k \geq 0
$$

satisfying natural equivariance, associativity and unit constraints.

Example

Any n-fold loop space $\Omega^{n} X$ carries a canonical \mathcal{C}_{n}-action.

Definition

An \mathcal{O}-action on a space X consists of maps

$$
\mathcal{O}(k) \times X^{k} \rightarrow X, \quad k \geq 0
$$

satisfying natural equivariance, associativity and unit constraints.

Example

Any n-fold loop space $\Omega^{n} X$ carries a canonical \mathcal{C}_{n}-action.

$$
\begin{array}{ccc}
\mathcal{C}_{n}(k) \times\left(\Omega^{n} X\right)^{k} & \rightarrow \operatorname{map}_{*}\left(\mathrm{~S}^{n},\left(\mathrm{~S}^{n}\right)^{\vee k}\right) \times \operatorname{map}_{*}\left(\left(\mathrm{~S}^{n}\right)^{\vee k}, X\right) \\
\Omega^{n} X & = & \operatorname{map}_{*}\left(S^{n}, X\right)
\end{array}
$$

Definition

A space X is an E_{n}-space if X comes equipped with an action by an E_{n}-operad (i.e. a \mathfrak{S}-cofibrant operad weakly equivalent to \mathcal{C}_{n}).

Theorem (Boardman-Vogt '73, May '72, Segal '74)
 Any connected E_{n}-space is weakly homotopy equivalent to an n-fold loop space.

Theorem (May '72)

For any connected space $(X, *)$, the free C_{n}-space generated by X

is weakly homotopy equivalent to $\Omega^{n} \sum^{n} X$

Definition

A space X is an E_{n}-space if X comes equipped with an action by an E_{n}-operad (i.e. a \mathfrak{S}-cofibrant operad weakly equivalent to \mathcal{C}_{n}).

Theorem (Boardman-Vogt '73, May '72, Segal '74)

Any connected E_{n}-space is weakly homotopy equivalent to an n-fold loop space.

Theorem (May '72)

For any connected space $(X, *)$, the free \mathcal{C}_{n}-space generated by X

is weakly homotopy equivalent to $\Omega^{n} \sum^{n} X$

Definition

A space X is an E_{n}-space if X comes equipped with an action by an E_{n}-operad (i.e. a \mathfrak{S}-cofibrant operad weakly equivalent to \mathcal{C}_{n}).

Theorem (Boardman-Vogt '73, May '72, Segal '74)

Any connected E_{n}-space is weakly homotopy equivalent to an n-fold loop space.

Theorem (May '72)

For any connected space $(X, *)$, the free \mathcal{C}_{n}-space generated by X

$$
\mathcal{C}_{n}(X)=\left(\coprod_{k \geq 0} \mathcal{C}_{n}(k) \times X^{k}\right) / \sim
$$

is weakly homotopy equivalent to $\Omega^{n} \sum^{n} X$.

Lemma (Künneth)

For a field K, the functor $H_{*}(-; K):($ spaces $) \rightarrow(K$-vector spaces) is strong monoidal, i.e. $H_{*}(X \times Y ; K) \cong H_{*}(X ; K) \otimes_{K} H_{*}(Y ; K)$.

Corollary
The functor $H_{*}(-; K)$ takes (co)algebraic structures in spaces to corresponding (co)algebraic structures in K-vector spaces.

Example

If X is a top ological group then $H_{*}(X ; K)$ is a Hopf algebra over K

Theorem (F. Cohen '76)

If X is an E_{2}-space then $H_{*}(X ; K)$ is a Gerstenhaber K-algebra.

Lemma (Künneth)

For a field K, the functor $H_{*}(-; K):($ spaces $) \rightarrow(K$-vector spaces) is strong monoidal, i.e. $H_{*}(X \times Y ; K) \cong H_{*}(X ; K) \otimes_{K} H_{*}(Y ; K)$.

Corollary

The functor $H_{*}(-; K)$ takes (co)algebraic structures in spaces to corresponding (co)algebraic structures in K-vector spaces.

Example
 If X is a topological group then $H_{*}(X ; K)$ is a Hopf algebra over K

\square
Theorem (F. Cohen '76)
If X is an E_{2}-space then $H_{*}(X ; K)$ is a Gerstenhaber K-algebra

Lemma (Künneth)

For a field K, the functor $H_{*}(-; K):($ spaces $) \rightarrow(K$-vector spaces) is strong monoidal, i.e. $H_{*}(X \times Y ; K) \cong H_{*}(X ; K) \otimes_{K} H_{*}(Y ; K)$.

Corollary

The functor $H_{*}(-; K)$ takes (co)algebraic structures in spaces to corresponding (co)algebraic structures in K-vector spaces.

Example

If X is a topological group then $H_{*}(X ; K)$ is a Hopf algebra over K.

If X is an E_{2}-space then $H_{*}(X ; K)$ is a Gerstenhaber K-algebra

Lemma (Künneth)

For a field K, the functor $H_{*}(-; K):($ spaces $) \rightarrow(K$-vector spaces) is strong monoidal, i.e. $H_{*}(X \times Y ; K) \cong H_{*}(X ; K) \otimes_{K} H_{*}(Y ; K)$.

Corollary

The functor $H_{*}(-; K)$ takes (co)algebraic structures in spaces to corresponding (co)algebraic structures in K-vector spaces.

Example

If X is a topological group then $H_{*}(X ; K)$ is a Hopf algebra over K.

Theorem (F. Cohen '76)

If X is an E_{2}-space then $H_{*}(X ; K)$ is a Gerstenhaber K-algebra.

Definition

A Gerstenhaber K-algebra $(H, \cup,\{-,-\})$ is a graded-commutative K-algebra with Lie bracket of degree -1 such that

$$
\{f, g \cup h\}=\{f, g\} \cup h+(-1)^{|f|(|g|-1)} g \cup\{f, h\} .
$$

Remark

Cup product resp. Lie bracket are induced by the generators of $H_{0}\left(\mathcal{C}_{2}(2) ; K\right)$ resp. $H_{1}\left(\mathcal{C}_{2}(2) ; K\right)$ using that $\mathcal{C}_{2}(2) \simeq S^{1}$

Proposition (Gerstenhaber '63)

For any associative K-algebra A, the Hochschild cohomology $H H^{*}(A ; A)$ is a Gerstenhaber K-algebra

Definition

A Gerstenhaber K-algebra $(H, \cup,\{-,-\})$ is a graded-commutative K-algebra with Lie bracket of degree -1 such that

$$
\{f, g \cup h\}=\{f, g\} \cup h+(-1)^{|f|(|g|-1)} g \cup\{f, h\} .
$$

Remark

Cup product resp. Lie bracket are induced by the generators of $H_{0}\left(\mathcal{C}_{2}(2) ; K\right)$ resp. $H_{1}\left(\mathcal{C}_{2}(2) ; K\right)$ using that $\mathcal{C}_{2}(2) \simeq S^{1}$.

Proposition (Gerstenhaber '63)

For any associative K-algebra A, the Hochschild cohomology $H H^{*}(A ; A)$ is a Gerstenhaber K-algebra.

Definition

A Gerstenhaber K-algebra $(H, \cup,\{-,-\})$ is a graded-commutative K-algebra with Lie bracket of degree -1 such that

$$
\{f, g \cup h\}=\{f, g\} \cup h+(-1)^{|f|(|g|-1)} g \cup\{f, h\} .
$$

Remark

Cup product resp. Lie bracket are induced by the generators of $H_{0}\left(\mathcal{C}_{2}(2) ; K\right)$ resp. $H_{1}\left(\mathcal{C}_{2}(2) ; K\right)$ using that $\mathcal{C}_{2}(2) \simeq S^{1}$.

Proposition (Gerstenhaber '63)

For any associative K-algebra A, the Hochschild cohomology $H H^{*}(A ; A)$ is a Gerstenhaber K-algebra.

Definition

For an associative K-algebra A and A-bimodule M, the Hochschild cochain complex of A with coefficients in M is given by

$$
C^{n}(A ; M)=\operatorname{Hom}_{K}\left(A^{\otimes n}, M\right), \quad n \geq 0
$$

where for $f \in C^{n}(A ; M)$,

$$
\begin{aligned}
\left(\partial_{i} f\right)\left(a_{1}, \ldots, a_{n+1}\right) & = \begin{cases}a_{1} f\left(a_{2}, \ldots, a_{n+1}\right) & i=0 ; \\
f\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n+1}\right) & i=1, \ldots, n ; \\
f\left(a_{1}, \ldots, a_{n}\right) a_{n+1} & i=n+1\end{cases} \\
\left(s_{i} f\right)\left(a_{1}, \ldots, a_{n-1}\right) & =f\left(a_{1}, \ldots, a_{i}, 1_{A}, a_{i+1}, \ldots, a_{n-1}\right) .
\end{aligned}
$$

The Hochschild cohomology $H H^{*}(A ; M)$ is the cohomology of the cochain complex of the cosimplicial K-module $C^{*}(A ; M)$

Definition

For an associative K-algebra A and A-bimodule M, the Hochschild cochain complex of A with coefficients in M is given by

$$
C^{n}(A ; M)=\operatorname{Hom}_{K}\left(A^{\otimes n}, M\right), \quad n \geq 0
$$

where for $f \in C^{n}(A ; M)$,

$$
\begin{aligned}
\left(\partial_{i} f\right)\left(a_{1}, \ldots, a_{n+1}\right) & = \begin{cases}a_{1} f\left(a_{2}, \ldots, a_{n+1}\right) & i=0 ; \\
f\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n+1}\right) & i=1, \ldots, n ; \\
f\left(a_{1}, \ldots, a_{n}\right) a_{n+1} & i=n+1 .\end{cases} \\
\left(s_{i} f\right)\left(a_{1}, \ldots, a_{n-1}\right) & =f\left(a_{1}, \ldots, a_{i}, 1_{A}, a_{i+1}, \ldots, a_{n-1}\right) .
\end{aligned}
$$

The Hochschild cohomology $H H^{*}(A ; M)$ is the cohomology of the cochain complex of the cosimplicial K-module $C^{*}(A ; M)$.

There is a cup product

$$
\begin{gathered}
-\cup-: C^{m}(A ; A) \otimes_{K} C^{n}(A ; A) \rightarrow C^{m+n}(A ; A) \\
(f \cup g)\left(a_{1}, \ldots, a_{m+n}\right)=f\left(a_{1}, \ldots, a_{m}\right) g\left(a_{m+1}, \ldots, a_{m+n}\right)
\end{gathered}
$$

and a brace operation

where $f\{g\}\left(a_{1}, \ldots, a_{m+n-1}\right)$ is defined by

There is a cup product

$$
\begin{gathered}
-\cup-: C^{m}(A ; A) \otimes_{K} C^{n}(A ; A) \rightarrow C^{m+n}(A ; A) \\
(f \cup g)\left(a_{1}, \ldots, a_{m+n}\right)=f\left(a_{1}, \ldots, a_{m}\right) g\left(a_{m+1}, \ldots, a_{m+n}\right)
\end{gathered}
$$

and a brace operation

$$
-\{-\}: C^{m}(A ; A) \otimes_{k} C^{n}(A ; A) \rightarrow C^{m+n-1}(A ; A)
$$

where $f\{g\}\left(a_{1}, \ldots, a_{m+n-1}\right)$ is defined by

$$
\sum_{1 \leq i \leq m}(-1)^{(i-1)(n-1)} f\left(a_{1}, \ldots, a_{i-1}, g\left(a_{i}, \ldots, a_{i+n-1}\right), a_{i+n}, \ldots, a_{m+n-1}\right)
$$

There is a cup product

$$
\begin{gathered}
-\cup-: C^{m}(A ; A) \otimes_{K} C^{n}(A ; A) \rightarrow C^{m+n}(A ; A) \\
(f \cup g)\left(a_{1}, \ldots, a_{m+n}\right)=f\left(a_{1}, \ldots, a_{m}\right) g\left(a_{m+1}, \ldots, a_{m+n}\right)
\end{gathered}
$$

and a brace operation

$$
-\{-\}: C^{m}(A ; A) \otimes_{k} C^{n}(A ; A) \rightarrow C^{m+n-1}(A ; A)
$$

where $f\{g\}\left(a_{1}, \ldots, a_{m+n-1}\right)$ is defined by

$$
\sum_{1 \leq i \leq m}(-1)^{(i-1)(n-1)} f\left(a_{1}, \ldots, a_{i-1}, g\left(a_{i}, \ldots, a_{i+n-1}\right), a_{i+n}, \ldots, a_{m+n-1}\right)
$$

The bracket $\{f, g\}=f\{g\}-(-1)^{(|f|-1)(|g|-1)} g\{f\}$ induces a Lie bracket of degree -1 on $H H^{*}(A ; A)$.

Problem

What is the origin of the Gerstenhaber structure on ${H H^{*}}^{*}(A ; A)$?

Theorem (conjectured by Deligne '93)

The Gerstenhaber structure on $H H^{*}(A ; A)$ derives from an E_{2}-operad action on the Hochschild cochain complex $C^{*}(A ; A)$

Proofs have been given by Voronov '00, Kontsevich-Soibelman '00,

 McClure-Smith '01, B-F '02, Kaufmann-Schwell '07, B-B '09.
Remark

$H H^{0}(A ; A)=Z A=\{a \in A \mid a b=b a \forall b \in A\}$ is the center of A. The Hochschild cochain complex $C^{*}(A ; A)$ is thus a kind of homotopy center of A and the Deligne conjecture states:

The homotopy center of a monoid carries an E_{2}-operad action.

Problem

What is the origin of the Gerstenhaber structure on ${H H^{*}}^{*}(A ; A)$?

Theorem (conjectured by Deligne '93)

The Gerstenhaber structure on $H H^{*}(A ; A)$ derives from an E_{2}-operad action on the Hochschild cochain complex $C^{*}(A ; A)$.

Proofs have been given by Voronov '00, Kontsevich-Soibelman '00, McClure-Smith '01, B-F '02, Kaufmann-Schwell '07, B-B '09.

Remark

$H H^{0}(A ; A)=Z A=\{a \in A \mid a b=b a \forall b \in A\}$ is the center of A
The Hochschild cochain complex $C^{*}(A ; A)$ is thus a kind of homotopy center of A and the Deligne conjecture states:

The homotopy center of a monoid carries an E_{2}-operad action.

Problem

What is the origin of the Gerstenhaber structure on ${H H^{*}}^{*}(A ; A)$?

Theorem (conjectured by Deligne '93)

The Gerstenhaber structure on $H H^{*}(A ; A)$ derives from an E_{2}-operad action on the Hochschild cochain complex $C^{*}(A ; A)$.

Proofs have been given by Voronov '00, Kontsevich-Soibelman '00, McClure-Smith '01, B-F '02, Kaufmann-Schwell '07, B-B '09.

Problem

What is the origin of the Gerstenhaber structure on $H H^{*}(A ; A)$?

Theorem (conjectured by Deligne '93)

The Gerstenhaber structure on $H H^{*}(A ; A)$ derives from an E_{2}-operad action on the Hochschild cochain complex $C^{*}(A ; A)$.

Proofs have been given by Voronov '00, Kontsevich-Soibelman '00, McClure-Smith '01, B-F '02, Kaufmann-Schwell '07, B-B '09.

Remark

$H H^{0}(A ; A)=Z A=\{a \in A \mid a b=b a \forall b \in A\}$ is the center of A. The Hochschild cochain complex $C^{*}(A ; A)$ is thus a kind of homotopy center of A and the Deligne conjecture states:

The homotopy center of a monoid carries an E2-operad action.

Aim

- "Conceptual" proof of Deligne conjecture
- "Universal" construction of E_{n}-operads

Definition

For any object X, the endomorphism operad $\operatorname{End}(X)$ is defined by

$$
\operatorname{End}(X)(k)=\operatorname{Hom}\left(X^{\otimes k}, X\right), \quad k \geq 0 .
$$

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_{k} \in \mathcal{O}(k), k \geq 0$.

Example

For each monoid A, $\operatorname{End}(A)$ is a multiplicative operad

Aim

- "Conceptual" proof of Deligne conjecture - "Universal" construction of E_{n}-operads

Definition

For any object X, the endomorphism operad $\operatorname{End}(X)$ is defined by $\operatorname{End}(X)(k)=\operatorname{Hom}\left(X^{\otimes k}, X\right), \quad k \geq 0$.

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_{k} \in \mathcal{O}(k), k \geq 0$

Example

For each monoid A, $\operatorname{End}(A)$ is a multiplicative operad

Aim

- "Conceptual" proof of Deligne conjecture
- "Universal" construction of E_{n}-operads

Definition

For any object X, the endomorphism operad $\operatorname{End}(X)$ is defined by

$$
\operatorname{End}(X)(k)=\operatorname{Hom}\left(X^{\otimes k}, X\right), \quad k \geq 0
$$

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_{k} \in \mathcal{O}(k), k \geq 0$.

Example
For each monoid A, $\operatorname{End}(A)$ is a multiplicative operad

Aim

- "Conceptual" proof of Deligne conjecture
- "Universal" construction of E_{n}-operads

Definition

For any object X, the endomorphism operad $\operatorname{End}(X)$ is defined by

$$
\operatorname{End}(X)(k)=\operatorname{Hom}\left(X^{\otimes k}, X\right), \quad k \geq 0
$$

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_{k} \in \mathcal{O}(k), k \geq 0$.

Example
 For each monoid $A, \operatorname{End}(A)$ is a multiplicative operad

Aim

- "Conceptual" proof of Deligne conjecture
- "Universal" construction of E_{n}-operads

Definition

For any object X, the endomorphism operad $\operatorname{End}(X)$ is defined by

$$
\operatorname{End}(X)(k)=\operatorname{Hom}\left(X^{\otimes k}, X\right), \quad k \geq 0
$$

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_{k} \in \mathcal{O}(k), k \geq 0$.

Example

For each monoid $A, \operatorname{End}(A)$ is a multiplicative operad.

Remark

$C^{k}(A ; A)=\operatorname{Hom}_{K}\left(A^{\otimes k}, A\right)=\operatorname{End}(A)(k) \quad(k \geq 0)$

Lemma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_{i}: \mathcal{O}(k) \rightarrow \mathcal{O}(k+1)$ and $s_{i}: \mathcal{O}(k+1) \rightarrow \mathcal{O}(k) \quad(k \geq 0)$.

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad \mathcal{O} in spaces or chain complexes carries a canonical action by an E_{2}-operad.

For a K-algebra A and $\mathcal{O}=\operatorname{End}(A)$ the cosimplicial totalisation yields $C^{*}(A ; A)$ so that the theorem implies the Deligne conjecture. Our proof of the theorem is based on the lattice path operad.

Remark

$$
C^{k}(A ; A)=\operatorname{Hom}_{K}\left(A^{\otimes k}, A\right)=\operatorname{End}(A)(k) \quad(k \geq 0)
$$

Lemma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_{i}: \mathcal{O}(k) \rightarrow \mathcal{O}(k+1)$ and $s_{i}: \mathcal{O}(k+1) \rightarrow \mathcal{O}(k) \quad(k \geq 0)$.

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad \mathcal{O} in spaces or chain complexes carries a canonical action by an E_{2}-operad

For a K-algebra A and $\mathcal{O}=\operatorname{End}(A)$ the cosimplicial totalisation yields $C^{*}(A ; A)$ so that the theorem implies the Deligne conjecture Our proof of the theorem is based on the lattice path operad.

Remark

$$
C^{k}(A ; A)=\operatorname{Hom}_{K}\left(A^{\otimes k}, A\right)=\operatorname{End}(A)(k) \quad(k \geq 0)
$$

Lemma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_{i}: \mathcal{O}(k) \rightarrow \mathcal{O}(k+1)$ and $s_{i}: \mathcal{O}(k+1) \rightarrow \mathcal{O}(k) \quad(k \geq 0)$.

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad \mathcal{O} in spaces or chain complexes carries a canonical action by an E_{2}-operad.

For a K-algebra A and $\mathcal{O}=\operatorname{End}(A)$ the cosimplicial totalisation yields $C^{*}(A ; A)$ so that the theorem implies the Deligne conjecture Our proof of the theorem is based on the lattice path operad.

Remark

$$
C^{k}(A ; A)=\operatorname{Hom}_{K}\left(A^{\otimes k}, A\right)=\operatorname{End}(A)(k) \quad(k \geq 0)
$$

Lemma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_{i}: \mathcal{O}(k) \rightarrow \mathcal{O}(k+1)$ and $s_{i}: \mathcal{O}(k+1) \rightarrow \mathcal{O}(k) \quad(k \geq 0)$.

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad \mathcal{O} in spaces or chain complexes carries a canonical action by an E_{2}-operad.

For a K-algebra A and $\mathcal{O}=\operatorname{End}(A)$ the cosimplicial totalisation yields $C^{*}(A ; A)$ so that the theorem implies the Deligne conjecture.

Remark

$$
C^{k}(A ; A)=\operatorname{Hom}_{K}\left(A^{\otimes k}, A\right)=\operatorname{End}(A)(k) \quad(k \geq 0)
$$

Lemma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_{i}: \mathcal{O}(k) \rightarrow \mathcal{O}(k+1)$ and $s_{i}: \mathcal{O}(k+1) \rightarrow \mathcal{O}(k) \quad(k \geq 0)$.

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad \mathcal{O} in spaces or chain complexes carries a canonical action by an E_{2}-operad.

For a K-algebra A and $\mathcal{O}=\operatorname{End}(A)$ the cosimplicial totalisation yields $C^{*}(A ; A)$ so that the theorem implies the Deligne conjecture. Our proof of the theorem is based on the lattice path operad.

Definition

An \mathbb{N}-coloured operad \mathcal{L} is given by a family of objects $\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right)$, where $\left(n_{1}, \ldots, n_{k}, n\right) \in \mathbb{N}^{k+1}$, together with units, \mathfrak{S}_{k}-actions and substitution maps

$$
\begin{gathered}
\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right) \otimes \mathcal{L}\left(m_{1}, \ldots, m_{l} ; n_{i}\right) \xrightarrow{\circ_{i}} \\
\mathcal{L}\left(n_{1}, \ldots, n_{i-1}, m_{1}, \ldots, m_{l}, n_{i+1}, \ldots, n_{k} ; n\right),
\end{gathered}
$$

which are unital, associative and equivariant.
The underlying category \mathcal{L}_{u} has as objects the natural numbers
and as morphisms the "unary" operations: $\mathcal{L}_{u}\left(n, n^{\prime}\right)=\mathcal{L}\left(n ; n^{\prime}\right)$. An \mathcal{L}-algebra X consists of a graded object $X(n), n \geq 0$, together with (equivariant, unital, associative) action maps $\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right) \otimes X\left(n_{1}\right) \otimes \cdots \otimes X\left(n_{k}\right) \rightarrow X(n)$ In particular, each \mathcal{L}-algebra X has an underlying \mathcal{L}_{μ}-diagram

Definition

An \mathbb{N}-coloured operad \mathcal{L} is given by a family of objects $\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right)$, where $\left(n_{1}, \ldots, n_{k}, n\right) \in \mathbb{N}^{k+1}$, together with units, \mathfrak{S}_{k}-actions and substitution maps

$$
\begin{gathered}
\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right) \otimes \mathcal{L}\left(m_{1}, \ldots, m_{l} ; n_{i}\right) \xrightarrow{\circ_{i}} \\
\mathcal{L}\left(n_{1}, \ldots, n_{i-1}, m_{1}, \ldots, m_{l}, n_{i+1}, \ldots, n_{k} ; n\right),
\end{gathered}
$$

which are unital, associative and equivariant.
The underlying category \mathcal{L}_{u} has as objects the natural numbers and as morphisms the "unary" operations: $\mathcal{L}_{u}\left(n, n^{\prime}\right)=\mathcal{L}\left(n ; n^{\prime}\right)$. An \mathcal{L}-algebra X consists of a graded object $X(n), n \geq 0$, toget
with (equivariant, unital, associative) action maps
$\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right) \otimes X\left(n_{1}\right) \otimes \cdots \otimes X\left(n_{k}\right) \rightarrow X(n)$.
In particular, each \mathcal{L}-algebra X has an underlying \mathcal{L}_{u}-diagram.

Definition

An \mathbb{N}-coloured operad \mathcal{L} is given by a family of objects $\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right)$, where $\left(n_{1}, \ldots, n_{k}, n\right) \in \mathbb{N}^{k+1}$, together with units, \mathfrak{S}_{k}-actions and substitution maps

$$
\begin{gathered}
\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right) \otimes \mathcal{L}\left(m_{1}, \ldots, m_{l} ; n_{i}\right) \xrightarrow{\circ_{i}} \\
\mathcal{L}\left(n_{1}, \ldots, n_{i-1}, m_{1}, \ldots, m_{l}, n_{i+1}, \ldots, n_{k} ; n\right),
\end{gathered}
$$

which are unital, associative and equivariant.
The underlying category \mathcal{L}_{u} has as objects the natural numbers and as morphisms the "unary" operations: $\mathcal{L}_{u}\left(n, n^{\prime}\right)=\mathcal{L}\left(n ; n^{\prime}\right)$. An \mathcal{L}-algebra X consists of a graded object $X(n), n \geq 0$, together with (equivariant, unital, associative) action maps $\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right) \otimes X\left(n_{1}\right) \otimes \cdots \otimes X\left(n_{k}\right) \rightarrow X(n)$.

Definition

An \mathbb{N}-coloured operad \mathcal{L} is given by a family of objects $\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right)$, where $\left(n_{1}, \ldots, n_{k}, n\right) \in \mathbb{N}^{k+1}$, together with units, \mathfrak{S}_{k}-actions and substitution maps

$$
\begin{gathered}
\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right) \otimes \mathcal{L}\left(m_{1}, \ldots, m_{l} ; n_{i}\right) \xrightarrow{\circ_{i}} \\
\mathcal{L}\left(n_{1}, \ldots, n_{i-1}, m_{1}, \ldots, m_{l}, n_{i+1}, \ldots, n_{k} ; n\right),
\end{gathered}
$$

which are unital, associative and equivariant.
The underlying category \mathcal{L}_{u} has as objects the natural numbers and as morphisms the "unary" operations: $\mathcal{L}_{u}\left(n, n^{\prime}\right)=\mathcal{L}\left(n ; n^{\prime}\right)$. An \mathcal{L}-algebra X consists of a graded object $X(n), n \geq 0$, together with (equivariant, unital, associative) action maps $\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right) \otimes X\left(n_{1}\right) \otimes \cdots \otimes X\left(n_{k}\right) \rightarrow X(n)$. In particular, each \mathcal{L}-algebra X has an underlying \mathcal{L}_{u}-diagram.

The \mathbb{N}-coloured operad \mathcal{L} induces a multitensor on \mathcal{L}_{u}-diagrams:

$$
\begin{gathered}
\left(X_{1} \otimes \mathcal{L} \cdots \otimes_{\mathcal{L}} X_{k}\right)(n)= \\
\int^{n_{1}, \ldots, n_{k}} \mathcal{L}(-, \cdots,-; n) \otimes X_{1}(-) \otimes \cdots \otimes X_{k}(-) .
\end{gathered}
$$

Each \mathcal{L}_{u}-diagram δ defines a symmetric (uncoloured) operad

Proposition (δ-condensation)

Let X be an \mathcal{L}-algebra and δ be a \mathcal{L}_{μ}-diagram.
Then the " δ-totalisation" $\operatorname{Hom}_{\mathcal{L}_{u}}(\delta, X)$ is equipped with a canonical action by the " δ-condensed" operad $\operatorname{Coend}_{\mathcal{L}}(\delta)$.

The \mathbb{N}-coloured operad \mathcal{L} induces a multitensor on $\mathcal{L}_{u^{-}}$-diagrams:

$$
\begin{gathered}
\left(X_{1} \otimes_{\mathcal{L}} \cdots \otimes_{\mathcal{L}} X_{k}\right)(n)= \\
\int^{n_{1}, \ldots, n_{k}} \mathcal{L}(-, \cdots,-; n) \otimes X_{1}(-) \otimes \cdots \otimes X_{k}(-) .
\end{gathered}
$$

Each \mathcal{L}_{u}-diagram δ defines a symmetric (uncoloured) operad

$$
\operatorname{Coend}_{\mathcal{L}}(\delta)(k)=\operatorname{Hom}_{\mathcal{L}_{u}}(\delta, \overbrace{\delta \otimes_{\mathcal{L}} \cdots \otimes_{\mathcal{L}} \delta}^{k}) \quad(k \geq 0) .
$$

Proposition (δ-condensation)

Let X be an \mathcal{L}-algebra and δ be a \mathcal{L}_{u}-diagram.
Then the " δ-totalisation" $\operatorname{Hom}_{\mathcal{L}_{u}}(\delta, X)$ is equipped with a canonical action by the " δ-condensed" operad $\operatorname{Coend}_{\mathcal{L}}(\delta)$.

The \mathbb{N}-coloured operad \mathcal{L} induces a multitensor on \mathcal{L}_{U}-diagrams:

$$
\begin{gathered}
\left(X_{1} \otimes \mathcal{L} \cdots \otimes_{\mathcal{L}} X_{k}\right)(n)= \\
\int^{n_{1}, \ldots, n_{k}} \mathcal{L}(-, \cdots,-; n) \otimes X_{1}(-) \otimes \cdots \otimes X_{k}(-) .
\end{gathered}
$$

Each \mathcal{L}_{u}-diagram δ defines a symmetric (uncoloured) operad

$$
\operatorname{Coend}_{\mathcal{L}}(\delta)(k)=\operatorname{Hom}_{\mathcal{L}_{u}}(\delta, \overbrace{\delta \otimes_{\mathcal{L}} \cdots \otimes_{\mathcal{L}} \delta}^{k}) \quad(k \geq 0) .
$$

Proposition (δ-condensation)

Let X be an \mathcal{L}-algebra and δ be a \mathcal{L}_{u}-diagram.
Then the " δ-totalisation" $\operatorname{Hom}_{\mathcal{L}_{u}}(\delta, X)$ is equipped with a canonical action by the " δ-condensed" operad $\operatorname{Coend}_{\mathcal{L}}(\delta)$.

Definition

The lattice path operad \mathcal{L} is the \mathbb{N}-coloured operad defined by

$$
\mathcal{L}\left(n_{1}, . ., n_{k} ; n\right)=\operatorname{Cat}_{*, *}\left([n+1],\left[n_{1}+1\right] \otimes \cdots \otimes\left[n_{k}+1\right]\right) .
$$

Example. Let $x \in \mathcal{L}(2,1 ; 3)$ be the following lattice path:

The path is determined by the sequence of "directions" and "stops" : $x=1|21| 1 \mid 2$.

Definition

The lattice path operad \mathcal{L} is the \mathbb{N}-coloured operad defined by

$$
\mathcal{L}\left(n_{1}, . ., n_{k} ; n\right)=\operatorname{Cat}_{*, *}\left([n+1],\left[n_{1}+1\right] \otimes \cdots \otimes\left[n_{k}+1\right]\right) .
$$

Example. Let $x \in \mathcal{L}(2,1 ; 3)$ be the following lattice path:

The path is determined by the sequence of "directions" and "stops" : $x=1|21| 1 \mid 2$.

Lemma

$\mathcal{L}_{u}(m, n)=\operatorname{Cat}_{*, *}([n+1],[m+1])=\Delta([m],[n])$.
Proposition

- The lattice path operad \mathcal{L} is filtered by complexity, i.e. by the number of angles of the lattice paths;
- $\mathcal{C}(0)$-algehras are cosimnlicial obiects;
- $\mathcal{L}^{(1)}$-algebras are \square-monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$-algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain
complexes, δ-condensation of $\mathcal{L}^{(n)}$ yields an E_{n}-operad.
For $n=2$ we get the previous theorem

Lemma

$$
\mathcal{L}_{u}(m, n)=\operatorname{Cat}_{*, *}([n+1],[m+1])=\Delta([m],[n]) .
$$

Proposition

- The lattice path operad \mathcal{L} is filtered by complexity, i.e. by the number of angles of the lattice paths;
- $\mathcal{L}^{(0)}$-algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$-algebras are \square-monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$-algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain
complexes, δ-condensation of $\mathcal{L}^{(n)}$ yields an E_{n}-operad.
For $n=2$ we get the previous theorem.

Lemma

$$
\mathcal{L}_{u}(m, n)=\operatorname{Cat}_{*, *}([n+1],[m+1])=\Delta([m],[n])
$$

Proposition

- The lattice path operad \mathcal{L} is filtered by complexity, i.e. by the number of angles of the lattice paths;
- $\mathcal{L}^{(0)}$-algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$-algebras are \square-monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$-algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain
complexes, δ-condensation of $\mathcal{L}^{(n)}$ yields an E_{n}-operad.
For $n=2$ we get the previous theorem.

Lemma

$$
\mathcal{L}_{u}(m, n)=\operatorname{Cat}_{*, *}([n+1],[m+1])=\Delta([m],[n]) .
$$

Proposition

- The lattice path operad \mathcal{L} is filtered by complexity, i.e. by the number of angles of the lattice paths;
- $\mathcal{L}^{(0)}$-algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$-algebras are \square-monoids in cosimplicial objects;

- $\mathcal{L}^{(2)}$-algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain
complexes, δ-condensation of $\mathcal{L}^{(n)}$ yields an E_{n}-operad.
For $n=2$ we get the previous theorem.

Lemma

$$
\mathcal{L}_{u}(m, n)=\operatorname{Cat}_{*, *}([n+1],[m+1])=\Delta([m],[n]) .
$$

Proposition

- The lattice path operad \mathcal{L} is filtered by complexity, i.e. by the number of angles of the lattice paths;
- $\mathcal{L}^{(0)}$-algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$-algebras are \square-monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$-algebras are multiplicative operads. (Tamarkin)

> Theorem
> For the standard cosimplicial object δ in spaces or in chain
> complexes, δ-condensation of $\mathcal{L}^{(n)}$ yields an E_{n}-operad.

For $n=2$ we get the previous theorem.

Lemma

$$
\mathcal{L}_{u}(m, n)=\operatorname{Cat}_{*, *}([n+1],[m+1])=\Delta([m],[n]) .
$$

Proposition

- The lattice path operad \mathcal{L} is filtered by complexity, i.e. by the number of angles of the lattice paths;
- $\mathcal{L}^{(0)}$-algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$-algebras are \square-monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$-algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain complexes, δ-condensation of $\mathcal{L}^{(n)}$ yields an E_{n}-operad.

[^0]
Lemma

$$
\mathcal{L}_{u}(m, n)=\operatorname{Cat}_{*, *}([n+1],[m+1])=\Delta([m],[n]) .
$$

Proposition

- The lattice path operad \mathcal{L} is filtered by complexity, i.e. by the number of angles of the lattice paths;
- $\mathcal{L}^{(0)}$-algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$-algebras are \square-monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$-algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain complexes, δ-condensation of $\mathcal{L}^{(n)}$ yields an E_{n}-operad.

For $n=2$ we get the previous theorem.

[^0]: For $n=2$ we get the previous theorem

