Combinatorial models for E_n -operads and iterated loop spaces

Clemens Berger

Université de Nice-Sophia Antipolis

Kolloquium des Fachbereichs Mathematik der Universität Osnabrück 18. April 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2 Stable homotopy
- 3 Little cubes operad
- 4 Deligne conjecture

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let $S^n \subset \mathbb{R}^{n+1}$ be the *unit n-sphere* based at (1, 0, ..., 0). Let (X, *) be a based topological space.

The *n*-th loop space of X is $\Omega^n X = \max_*(S^n, X)$. The *n*-th homotopy group of X is $\pi_n(X) = \pi_0(\Omega^n X)$.

Let $\mathrm{S}^{n-1} \subset \mathrm{S}^n$ be the "equator" $\mathrm{S}^{n-1} = \mathrm{S}^n \cap \{x_{n+1} = 0\}.$

_emma

The quotient map $p:\mathrm{S}^n
ightarrow\mathrm{S}^n/\mathrm{S}^{n-1}\cong\mathrm{S}^nee\mathrm{S}^n$ defines

 $\Omega^n X \times \Omega^n X = \operatorname{map}_*(\mathrm{S}^n \vee \mathrm{S}^n, X) \xrightarrow{\rho^*} \operatorname{map}_*(\mathrm{S}^n, X) = \Omega^n X$

inducing a group structure on $\pi_n(X)$ for $n \ge 1$.

Proposition (Eckmann-Hilton)

```
\pi_n(X) is abelian for n \ge 2.
```

Let $S^n \subset \mathbb{R}^{n+1}$ be the *unit n-sphere* based at (1, 0, ..., 0). Let (X, *) be a based topological space.

The *n*-th loop space of X is $\Omega^n X = \max_*(S^n, X)$. The *n*-th homotopy group of X is $\pi_n(X) = \pi_0(\Omega^n X)$.

Let $\mathrm{S}^{n-1} \subset \mathrm{S}^n$ be the "equator" $\mathrm{S}^{n-1} = \mathrm{S}^n \cap \{x_{n+1} = 0\}.$

emma

The quotient map $p: \mathrm{S}^n \to \mathrm{S}^n/\mathrm{S}^{n-1} \cong \mathrm{S}^n \vee \mathrm{S}^n$ defines

 $\Omega^n X \times \Omega^n X = \operatorname{map}_*(\mathrm{S}^n \vee \mathrm{S}^n, X) \xrightarrow{\rho^*} \operatorname{map}_*(\mathrm{S}^n, X) = \Omega^n X$

inducing a group structure on $\pi_n(X)$ for $n \ge 1$.

Proposition (Eckmann-Hilton)

```
\pi_n(X) is abelian for n \ge 2.
```

Let $S^n \subset \mathbb{R}^{n+1}$ be the *unit n-sphere* based at (1, 0, ..., 0). Let (X, *) be a based topological space.

The *n*-th loop space of X is $\Omega^n X = \max_*(S^n, X)$. The *n*-th homotopy group of X is $\pi_n(X) = \pi_0(\Omega^n X)$.

Let $S^{n-1} \subset S^n$ be the "equator" $S^{n-1} = S^n \cap \{x_{n+1} = 0\}.$

emma

The quotient map $p: S^n \to S^n/S^{n-1} \cong S^n \vee S^n$ defines

```
\Omega^n X \times \Omega^n X = \operatorname{map}_*(\mathrm{S}^n \vee \mathrm{S}^n, X) \xrightarrow{p^*} \operatorname{map}_*(\mathrm{S}^n, X) = \Omega^n X
```

inducing a group structure on $\pi_n(X)$ for $n \ge 1$.

Proposition (Eckmann-Hilton)

```
\pi_n(X) is abelian for n \ge 2.
```

Let $S^n \subset \mathbb{R}^{n+1}$ be the *unit n-sphere* based at (1, 0, ..., 0). Let (X, *) be a based topological space.

The *n*-th loop space of X is $\Omega^n X = \max_*(S^n, X)$. The *n*-th homotopy group of X is $\pi_n(X) = \pi_0(\Omega^n X)$.

Let $S^{n-1} \subset S^n$ be the "equator" $S^{n-1} = S^n \cap \{x_{n+1} = 0\}.$

Lemma

The quotient map $p: S^n \to S^n/S^{n-1} \cong S^n \vee S^n$ defines

$$\Omega^{n}X \times \Omega^{n}X = \operatorname{map}_{*}(\operatorname{S}^{n} \vee \operatorname{S}^{n}, X) \xrightarrow{p^{*}} \operatorname{map}_{*}(\operatorname{S}^{n}, X) = \Omega^{n}X$$

inducing a group structure on $\pi_n(X)$ for $n \ge 1$.

Proposition (Eckmann-Hilton)

 $\pi_n(X)$ is abelian for $n \ge 2$.

Let $S^n \subset \mathbb{R}^{n+1}$ be the *unit n-sphere* based at (1, 0, ..., 0). Let (X, *) be a based topological space.

The *n*-th loop space of X is $\Omega^n X = \max_*(S^n, X)$. The *n*-th homotopy group of X is $\pi_n(X) = \pi_0(\Omega^n X)$.

Let $S^{n-1} \subset S^n$ be the "equator" $S^{n-1} = S^n \cap \{x_{n+1} = 0\}.$

Lemma

The quotient map $p: S^n \to S^n/S^{n-1} \cong S^n \vee S^n$ defines

$$\Omega^{n}X \times \Omega^{n}X = \operatorname{map}_{*}(\operatorname{S}^{n} \vee \operatorname{S}^{n}, X) \xrightarrow{p^{*}} \operatorname{map}_{*}(\operatorname{S}^{n}, X) = \Omega^{n}X$$

inducing a group structure on $\pi_n(X)$ for $n \ge 1$.

Proposition (Eckmann-Hilton)

 $\pi_n(X)$ is abelian for $n \ge 2$.

For (based) spaces X, Y, Z one has a trinatural bijection

$$\operatorname{Top}(X imes Y, Z) \cong \operatorname{Top}(X, \operatorname{map}(Y, Z)$$

resp. $\operatorname{Top}_*(X \wedge Y, Z) \cong \operatorname{Top}_*(X, \operatorname{map}_*(Y, Z))$

where
$$X \wedge Y = (X \times Y)/(X \times \{*_Y\}) \cup (\{*_X\} \times Y).$$

The *n*-th suspension of X is $\Sigma^n X = X \wedge S^n$.

Corollary

 $\operatorname{Top}_*(\Sigma^n X, Z) \cong \operatorname{Top}_*(X, \Omega^n Z)$ whence a map $X \longrightarrow \Omega^n \Sigma^n X$

Theorem (Freudenthal)

 $\pi_k(X) \to \pi_k(\Omega \Sigma X)$ isomorphism if $k \leq 2 \cdot connectivity(X)$

For (based) spaces X, Y, Z one has a trinatural bijection

$$\operatorname{Top}(X imes Y, Z) \cong \operatorname{Top}(X, \operatorname{map}(Y, Z)$$

resp. $\operatorname{Top}_*(X \wedge Y, Z) \cong \operatorname{Top}_*(X, \operatorname{map}_*(Y, Z))$

where
$$X \wedge Y = (X \times Y)/(X \times \{*_Y\}) \cup (\{*_X\} \times Y).$$

The *n*-th suspension of X is $\Sigma^n X = X \wedge S^n$.

Corollary

 $\operatorname{Top}_*(\Sigma^n X, Z) \cong \operatorname{Top}_*(X, \Omega^n Z)$ whence a map $X \longrightarrow \Omega^n \Sigma^n X$

Theorem (Freudenthal)

 $\pi_k(X) \to \pi_k(\Omega \Sigma X)$ isomorphism if $k \leq 2 \cdot connectivity(X)$

For (based) spaces X, Y, Z one has a trinatural bijection

$$\operatorname{Top}(X imes Y, Z) \cong \operatorname{Top}(X, \operatorname{map}(Y, Z)$$

resp. $\operatorname{Top}_*(X \wedge Y, Z) \cong \operatorname{Top}_*(X, \operatorname{map}_*(Y, Z))$

where
$$X \wedge Y = (X \times Y)/(X \times \{*_Y\}) \cup (\{*_X\} \times Y).$$

The *n*-th suspension of X is $\Sigma^n X = X \wedge S^n$.

Corollary

 $\operatorname{Top}_*(\Sigma^n X, Z) \cong \operatorname{Top}_*(X, \Omega^n Z)$ whence a map $X \longrightarrow \Omega^n \Sigma^n X$

Theorem (Freudenthal)

 $\pi_k(X) \to \pi_k(\Omega \Sigma X)$ isomorphism if $k \leq 2 \cdot connectivity(X)$

For (based) spaces X, Y, Z one has a trinatural bijection

$$\operatorname{Top}(X imes Y, Z) \cong \operatorname{Top}(X, \operatorname{map}(Y, Z)$$

resp. $\operatorname{Top}_*(X \wedge Y, Z) \cong \operatorname{Top}_*(X, \operatorname{map}_*(Y, Z))$

where
$$X \wedge Y = (X \times Y)/(X \times \{*_Y\}) \cup (\{*_X\} \times Y).$$

The *n*-th suspension of X is $\Sigma^n X = X \wedge S^n$.

Corollary

$$\operatorname{Top}_*(\Sigma^n X, Z) \cong \operatorname{Top}_*(X, \Omega^n Z)$$
 whence a map $X \longrightarrow \Omega^n \Sigma^n X$

Theorem (Freudenthal)

 $\pi_k(X) \to \pi_k(\Omega \Sigma X)$ isomorphism if $k \leq 2 \cdot connectivity(X)$.

Definition (stable homotopy groups)

•
$$\Omega^{\infty}\Sigma^{\infty}X = \operatorname{colim}(X \to \Omega\Sigma X \to \Omega^{2}\Sigma^{2}X \to \cdots)$$

•
$$\pi_k^{st}(X) = \pi_k(\Omega^{\infty}\Sigma^{\infty}X)$$

The *stable homotopy groups* share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Corollary

$$\pi_k^{st}(X) = \pi_k(\Omega^n \Sigma^n X)$$
 for $n \ge k+2$.

Stable homotopy groups remain difficult to compute; calculating $\pi_k^{st}(S^0)$ is one of the major problems in algebraic topology. The groups are known only for $k \leq 64$:

k	1	2	3	4	5	6	7
$\pi_k^{st}(\mathbf{S}^0)$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/24\mathbb{Z}$			$\mathbb{Z}/240\mathbb{Z}$	$\mathbb{Z}/4\mathbb{Z}$

Definition (stable homotopy groups)

•
$$\Omega^{\infty}\Sigma^{\infty}X = \operatorname{colim}(X \to \Omega\Sigma X \to \Omega^{2}\Sigma^{2}X \to \cdots)$$

•
$$\pi_k^{st}(X) = \pi_k(\Omega^{\infty}\Sigma^{\infty}X)$$

The *stable homotopy groups* share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Corollary

$$\pi_k^{st}(X) = \pi_k(\Omega^n \Sigma^n X)$$
 for $n \ge k+2$.

Stable homotopy groups remain difficult to compute; calculating $\pi_k^{st}(S^0)$ is one of the major problems in algebraic topology. The groups are known only for $k \leq 64$:

k	1	2	3	4	5	6	7
$\pi_k^{st}(\mathbf{S}^0)$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/24\mathbb{Z}$			$\mathbb{Z}/240\mathbb{Z}$	$\mathbb{Z}/4\mathbb{Z}$

Definition (stable homotopy groups)

•
$$\Omega^{\infty}\Sigma^{\infty}X = \operatorname{colim}(X \to \Omega\Sigma X \to \Omega^{2}\Sigma^{2}X \to \cdots)$$

•
$$\pi_k^{st}(X) = \pi_k(\Omega^{\infty}\Sigma^{\infty}X)$$

The *stable homotopy groups* share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Corollary

$$\pi_k^{st}(X) = \pi_k(\Omega^n \Sigma^n X)$$
 for $n \ge k+2$.

Stable homotopy groups remain difficult to compute; calculating $\pi_k^{st}(S^0)$ is one of the major problems in algebraic topology. The groups are known only for $k \leq 64$:

k	1	2	3	4	5	6	7
$\pi_k^{st}(\mathbf{S}^0)$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/24\mathbb{Z}$			$\mathbb{Z}/240\mathbb{Z}$	$\mathbb{Z}/4\mathbb{Z}$

Definition (stable homotopy groups)

•
$$\Omega^{\infty}\Sigma^{\infty}X = \operatorname{colim}(X \to \Omega\Sigma X \to \Omega^{2}\Sigma^{2}X \to \cdots)$$

•
$$\pi_k^{st}(X) = \pi_k(\Omega^{\infty}\Sigma^{\infty}X)$$

The *stable homotopy groups* share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Corollary

$$\pi_k^{st}(X) = \pi_k(\Omega^n \Sigma^n X)$$
 for $n \ge k+2$.

Stable homotopy groups remain difficult to compute; calculating $\pi_k^{st}(S^0)$ is one of the major problems in algebraic topology. The groups are known only for $k \le 64$:

k	1	2	3	4	5	6	7
$\pi_k^{st}(\mathbf{S}^0)$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/24\mathbb{Z}$			$\mathbb{Z}/240\mathbb{Z}$	$\mathbb{Z}/4\mathbb{Z}$

Definition (stable homotopy groups)

•
$$\Omega^{\infty}\Sigma^{\infty}X = \operatorname{colim}(X \to \Omega\Sigma X \to \Omega^{2}\Sigma^{2}X \to \cdots)$$

•
$$\pi_k^{st}(X) = \pi_k(\Omega^{\infty}\Sigma^{\infty}X)$$

The *stable homotopy groups* share some of the good properties of the homology groups (abelianess, exact cofibration sequences).

Corollary

$$\pi_k^{st}(X) = \pi_k(\Omega^n \Sigma^n X)$$
 for $n \ge k+2$.

Stable homotopy groups remain difficult to compute; calculating $\pi_k^{st}(S^0)$ is one of the major problems in algebraic topology. The groups are known only for $k \le 64$:

k	0	1	2	3	4	5	6	7
$\pi_k^{st}(\mathbf{S}^0)$	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/24\mathbb{Z}$	0	0	$\mathbb{Z}/240\mathbb{Z}$	$\mathbb{Z}/4\mathbb{Z}$

Combinatorial models for E_n -operads and iterated loop spaces

п

Little cubes operad

Since $S^n = S^1 \wedge \cdots \wedge S^1$, any *n*-fold loop space $\Omega^n X$ carries *n* different, yet compatible multiplications induced by

$$\mathrm{S}^1\wedge\cdots\wedge\mathrm{S}^1\wedge\cdots\wedge\mathrm{S}^1\to\mathrm{S}^1\wedge\cdots\wedge(\mathrm{S}^1\vee\mathrm{S}^1)\wedge\cdots\wedge\mathrm{S}^1.$$

The two pinch maps $\mathrm{S}^2 o \mathrm{S}^2 ee \mathrm{S}^2$ are given by:

A space of pinch maps $\mathcal{C}_2(2) \subset \mathrm{map}_*(\mathrm{S}^2,\mathrm{S}^2 \lor \mathrm{S}^2)$ is given by:

Combinatorial models for E_n -operads and iterated loop spaces

п

Little cubes operad

Since $S^n = S^1 \wedge \cdots \wedge S^1$, any *n*-fold loop space $\Omega^n X$ carries *n* different, yet compatible multiplications induced by

$$S^{1} \wedge \dots \wedge S^{1} \wedge \dots \wedge S^{1} \rightarrow S^{1} \wedge \dots \wedge (S^{1} \vee S^{1}) \wedge \dots \wedge S^{1}.$$

The two pinch maps $\mathrm{S}^2 \to \mathrm{S}^2 \vee \mathrm{S}^2$ are given by:

2	1	2
1	-	2

A space of pinch maps $\mathcal{C}_2(2) \subset \mathrm{map}_*(\mathrm{S}^2,\mathrm{S}^2 \lor \mathrm{S}^2)$ is given by:

Combinatorial models for E_n -operads and iterated loop spaces

n

Little cubes operad

Since $S^n = S^1 \wedge \cdots \wedge S^1$, any *n*-fold loop space $\Omega^n X$ carries *n* different, yet compatible multiplications induced by

$$S^{1} \wedge \dots \wedge S^{1} \wedge \dots \wedge S^{1} \rightarrow S^{1} \wedge \dots \wedge (S^{1} \vee S^{1}) \wedge \dots \wedge S^{1}.$$

The two pinch maps $\mathrm{S}^2 \to \mathrm{S}^2 \vee \mathrm{S}^2$ are given by:

2	1	2
1	1	2

A space of pinch maps $\mathcal{C}_2(2)\subset \mathrm{map}_*(\mathrm{S}^2,\mathrm{S}^2\vee\mathrm{S}^2)$ is given by:

A space of pinch maps $C_2(3) \subset \max_*(S^2 \vee S^2 \vee S^2)$:

Definition

A topological operad \mathcal{O} is a family of \mathfrak{S}_k -spaces $\mathcal{O}(k)$, $k \ge 0$, equipped with a unit $1 \in \mathcal{O}(1)$ and with substitution maps

 $\mathcal{O}(k) \times \mathcal{O}(n_1) \times \cdots \times \mathcal{O}(n_k) \to \mathcal{O}(n_1 + \cdots + n_k)$

satisfying associativity, unit and equivariance constraints.

A space of pinch maps $C_2(3) \subset \max_*(S^2 \setminus S^2 \vee S^2 \vee S^2)$:

Definition

A topological operad \mathcal{O} is a family of \mathfrak{S}_k -spaces $\mathcal{O}(k)$, $k \ge 0$, equipped with a unit $1 \in \mathcal{O}(1)$ and with substitution maps

$$\mathcal{O}(k) imes \mathcal{O}(n_1) imes \cdots imes \mathcal{O}(n_k) o \mathcal{O}(n_1 + \cdots + n_k)$$

satisfying associativity, unit and equivariance constraints.

Example (Boardman-Vogt '68)

The family $C_2(k)$, $k \ge 0$, defines an operad, the *little squares* operad C_2 . Similarly, one defines the *little n-cubes operad* C_n .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Remark

The little *n*-cubes operad C_n is a *suboperad* of

 $\operatorname{Coend}(\operatorname{S}^n)(k) = \operatorname{map}_*(\operatorname{S}^n, \overbrace{\operatorname{S}^n \vee \cdots \vee \operatorname{S}^n}), \ k \ge 0.$

Example (Boardman-Vogt '68)

The family $C_2(k)$, $k \ge 0$, defines an operad, the *little squares* operad C_2 . Similarly, one defines the *little n-cubes operad* C_n .

$$\mathcal{C}_2(2) \hspace{0.1 cm} imes \hspace{0.1 cm} \mathcal{C}_2(2) \hspace{0.1 cm} imes \hspace{0.1 cm} \mathcal{C}_2(1) \hspace{0.1 cm} \longrightarrow \hspace{0.1 cm} \mathcal{C}_2(2+1)$$

ж

Remark

The little *n*-cubes operad C_n is a *suboperad* of

 $\operatorname{Coend}(\mathbf{S}^n)(k) = \operatorname{map}_*(\mathbf{S}^n, \overbrace{\mathbf{S}^n \vee \cdots \vee \mathbf{S}^n}^n), \ k \ge 0.$

Example (Boardman-Vogt '68)

The family $C_2(k)$, $k \ge 0$, defines an operad, the *little squares* operad C_2 . Similarly, one defines the *little n-cubes operad* C_n .

$$\mathcal{C}_2(2) \quad \times \quad \mathcal{C}_2(2) \quad \times \quad \mathcal{C}_2(1) \quad \longrightarrow \quad \mathcal{C}_2(2+1)$$

Remark

The little *n*-cubes operad C_n is a *suboperad* of

 $\operatorname{Coend}(\operatorname{S}^n)(k) = \operatorname{map}_*(\operatorname{S}^n, \overbrace{\operatorname{S}^n \vee \cdots \vee \operatorname{S}^n}), \ k \ge 0.$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

An \mathcal{O} -action on a space X consists of maps

$$\mathcal{O}(k) \times X^k \to X, \quad k \ge 0,$$

satisfying natural equivariance, associativity and unit constraints.

Example

Any *n*-fold loop space $\Omega^n X$ carries a canonical C_n -action.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

An \mathcal{O} -action on a space X consists of maps

$$\mathcal{O}(k) \times X^k \to X, \quad k \ge 0,$$

satisfying natural equivariance, associativity and unit constraints.

Example

Any *n*-fold loop space $\Omega^n X$ carries a canonical C_n -action.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An \mathcal{O} -action on a space X consists of maps

$$\mathcal{O}(k) \times X^k \to X, \quad k \ge 0,$$

satisfying natural equivariance, associativity and unit constraints.

Example

Any *n*-fold loop space $\Omega^n X$ carries a canonical C_n -action.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A space X is an E_n -space if X comes equipped with an action by an E_n -operad (i.e. a \mathfrak{S} -cofibrant operad weakly equivalent to \mathcal{C}_n).

Theorem (Boardman-Vogt '73, May '72, Segal '74)

Any connected E_n -space is weakly homotopy equivalent to an n-fold loop space.

Theorem (May '72)

For any connected space (X, *), the *free* C_n -space generated by X

$$\mathcal{C}_n(X) = \left(\prod_{k \ge 0} \mathcal{C}_n(k) \times X^k \right) / \sim$$

is weakly homotopy equivalent to $\Omega^n \Sigma^n X$.

A space X is an E_n -space if X comes equipped with an action by an E_n -operad (i.e. a \mathfrak{S} -cofibrant operad weakly equivalent to \mathcal{C}_n).

Theorem (Boardman-Vogt '73, May '72, Segal '74)

Any connected E_n -space is weakly homotopy equivalent to an n-fold loop space.

Theorem (May '72)

For any connected space (X, *), the *free* C_n -space generated by X

$$\mathcal{C}_n(X) = \left(\prod_{k \ge 0} \mathcal{C}_n(k) \times X^k \right) / \sim$$

is weakly homotopy equivalent to $\Omega^n \Sigma^n X$.

A space X is an E_n -space if X comes equipped with an action by an E_n -operad (i.e. a \mathfrak{S} -cofibrant operad weakly equivalent to \mathcal{C}_n).

Theorem (Boardman-Vogt '73, May '72, Segal '74)

Any connected E_n -space is weakly homotopy equivalent to an n-fold loop space.

Theorem (May '72)

For any connected space (X, *), the free \mathcal{C}_n -space generated by X

$$\mathcal{C}_n(X) = \left(\prod_{k \ge 0} \mathcal{C}_n(k) \times X^k \right) / \sim$$

is weakly homotopy equivalent to $\Omega^n \Sigma^n X$.

Lemma (Künneth)

For a field K, the functor $H_*(-; K)$: (spaces) \rightarrow (K-vector spaces) is strong monoidal, i.e. $H_*(X \times Y; K) \cong H_*(X; K) \otimes_K H_*(Y; K)$.

Corollary

The functor $H_*(-; K)$ takes (co)algebraic structures in spaces to corresponding (co)algebraic structures in K-vector spaces.

Example

If X is a topological group then $H_*(X; K)$ is a Hopf algebra over K.

Theorem (F. Cohen '76)

If X is an E_2 -space then $H_*(X; K)$ is a Gerstenhaber K-algebra.

Lemma (Künneth)

For a field K, the functor $H_*(-; K)$: (spaces) \rightarrow (K-vector spaces) is strong monoidal, i.e. $H_*(X \times Y; K) \cong H_*(X; K) \otimes_K H_*(Y; K)$.

Corollary

The functor $H_*(-; K)$ takes (co)algebraic structures in spaces to corresponding (co)algebraic structures in K-vector spaces.

Example

If X is a topological group then $H_*(X; K)$ is a Hopf algebra over K.

Theorem (F. Cohen '76)

If X is an E_2 -space then $H_*(X; K)$ is a Gerstenhaber K-algebra.

Lemma (Künneth)

For a field K, the functor $H_*(-; K)$: (spaces) \rightarrow (K-vector spaces) is strong monoidal, i.e. $H_*(X \times Y; K) \cong H_*(X; K) \otimes_K H_*(Y; K)$.

Corollary

The functor $H_*(-; K)$ takes (co)algebraic structures in spaces to corresponding (co)algebraic structures in K-vector spaces.

Example

If X is a topological group then $H_*(X; K)$ is a Hopf algebra over K.

Theorem (F. Cohen '76)

If X is an E_2 -space then $H_*(X; K)$ is a Gerstenhaber K-algebra.

Lemma (Künneth)

For a field K, the functor $H_*(-; K)$: (spaces) \rightarrow (K-vector spaces) is strong monoidal, i.e. $H_*(X \times Y; K) \cong H_*(X; K) \otimes_K H_*(Y; K)$.

Corollary

The functor $H_*(-; K)$ takes (co)algebraic structures in spaces to corresponding (co)algebraic structures in K-vector spaces.

Example

If X is a topological group then $H_*(X; K)$ is a Hopf algebra over K.

Theorem (F. Cohen '76)

If X is an E_2 -space then $H_*(X; K)$ is a Gerstenhaber K-algebra.

Definition

A Gerstenhaber K-algebra $(H, \cup, \{-, -\})$ is a graded-commutative K-algebra with Lie bracket of degree -1 such that

$$\{f,g\cup h\}=\{f,g\}\cup h+(-1)^{|f|(|g|-1)}g\cup \{f,h\},$$

Remark

Cup product resp. Lie bracket are induced by the generators of $H_0(\mathcal{C}_2(2); K)$ resp. $H_1(\mathcal{C}_2(2); K)$ using that $\mathcal{C}_2(2) \simeq S^1$.

Proposition (Gerstenhaber '63)

For any associative K-algebra A, the Hochschild cohomology $HH^*(A; A)$ is a Gerstenhaber K-algebra.

Definition

A Gerstenhaber K-algebra $(H, \cup, \{-, -\})$ is a graded-commutative K-algebra with Lie bracket of degree -1 such that

$$\{f,g\cup h\}=\{f,g\}\cup h+(-1)^{|f|(|g|-1)}g\cup \{f,h\},$$

Remark

Cup product resp. Lie bracket are induced by the generators of $H_0(\mathcal{C}_2(2); \mathcal{K})$ resp. $H_1(\mathcal{C}_2(2); \mathcal{K})$ using that $\mathcal{C}_2(2) \simeq S^1$.

Proposition (Gerstenhaber '63)

For any associative K-algebra A, the Hochschild cohomology $HH^*(A; A)$ is a Gerstenhaber K-algebra.
Definition

A Gerstenhaber K-algebra $(H, \cup, \{-, -\})$ is a graded-commutative K-algebra with Lie bracket of degree -1 such that

$$\{f,g\cup h\}=\{f,g\}\cup h+(-1)^{|f|(|g|-1)}g\cup \{f,h\}.$$

Remark

Cup product resp. Lie bracket are induced by the generators of $H_0(\mathcal{C}_2(2); \mathcal{K})$ resp. $H_1(\mathcal{C}_2(2); \mathcal{K})$ using that $\mathcal{C}_2(2) \simeq S^1$.

Proposition (Gerstenhaber '63)

For any associative K-algebra A, the Hochschild cohomology $HH^*(A; A)$ is a Gerstenhaber K-algebra.

Definition

For an associative K-algebra A and A-bimodule M, the Hochschild cochain complex of A with coefficients in M is given by

$$C^n(A; M) = \operatorname{Hom}_{K}(A^{\otimes n}, M), \quad n \geq 0,$$

where for $f \in C^n(A; M)$,

$$(\partial_i f)(a_1, \dots, a_{n+1}) = \begin{cases} a_1 f(a_2, \dots, a_{n+1}) & i = 0; \\ f(a_1, \dots, a_i a_{i+1}, \dots, a_{n+1}) & i = 1, \dots, n; \\ f(a_1, \dots, a_n) a_{n+1} & i = n+1. \end{cases}$$
$$(s_i f)(a_1, \dots, a_{n-1}) = f(a_1, \dots, a_i, 1_A, a_{i+1}, \dots, a_{n-1}).$$

The Hochschild cohomology *HH**(*A*; *M*) is the cohomology of the cochain complex of the cosimplicial *K*-module *C**(*A*; *M*).

Definition

For an associative K-algebra A and A-bimodule M, the Hochschild cochain complex of A with coefficients in M is given by

$$C^n(A; M) = \operatorname{Hom}_{K}(A^{\otimes n}, M), \quad n \geq 0,$$

where for $f \in C^n(A; M)$,

$$(\partial_i f)(a_1, \dots, a_{n+1}) = \begin{cases} a_1 f(a_2, \dots, a_{n+1}) & i = 0; \\ f(a_1, \dots, a_i a_{i+1}, \dots, a_{n+1}) & i = 1, \dots, n; \\ f(a_1, \dots, a_n) a_{n+1} & i = n+1. \end{cases}$$
$$(s_i f)(a_1, \dots, a_{n-1}) = f(a_1, \dots, a_i, 1_A, a_{i+1}, \dots, a_{n-1}).$$

The Hochschild cohomology $HH^*(A; M)$ is the cohomology of the cochain complex of the cosimplicial *K*-module $C^*(A; M)$.

There is a *cup product*

$$-\cup -: C^m(A; A) \otimes_{\mathcal{K}} C^n(A; A) \to C^{m+n}(A; A)$$

$$(f \cup g)(a_1,\ldots,a_{m+n}) = f(a_1,\ldots,a_m)g(a_{m+1},\ldots,a_{m+n})$$

and a brace operation

$$-\{-\}: C^m(A; A) \otimes_K C^n(A; A) \to C^{m+n-1}(A; A)$$

where $f{g}(a_1, \ldots, a_{m+n-1})$ is defined by

$$\sum_{1 \le i \le m} (-1)^{(i-1)(n-1)} f(a_1, \ldots, a_{i-1}, g(a_i, \ldots, a_{i+n-1}), a_{i+n}, \ldots, a_{m+n-1}).$$

The bracket $\{f, g\} = f\{g\} - (-1)^{(|f|-1)(|g|-1)}g\{f\}$ induces a Lie bracket of degree -1 on $HH^*(A; A)$.

There is a *cup product*

$$-\cup -: C^m(A; A) \otimes_{\mathcal{K}} C^n(A; A) \to C^{m+n}(A; A)$$

$$(f \cup g)(a_1,\ldots,a_{m+n}) = f(a_1,\ldots,a_m)g(a_{m+1},\ldots,a_{m+n})$$

and a brace operation

$$-\{-\}: C^m(A;A)\otimes_K C^n(A;A) o C^{m+n-1}(A;A)$$

where $f\{g\}(a_1,\ldots,a_{m+n-1})$ is defined by

$$\sum_{1 \le i \le m} (-1)^{(i-1)(n-1)} f(a_1, \ldots, a_{i-1}, g(a_i, \ldots, a_{i+n-1}), a_{i+n}, \ldots, a_{m+n-1}).$$

The bracket $\{f, g\} = f\{g\} - (-1)^{(|f|-1)(|g|-1)}g\{f\}$ induces a Lie bracket of degree -1 on $HH^*(A; A)$.

There is a *cup product*

$$-\cup -: C^m(A; A) \otimes_{\mathcal{K}} C^n(A; A) \to C^{m+n}(A; A)$$

$$(f \cup g)(a_1,\ldots,a_{m+n}) = f(a_1,\ldots,a_m)g(a_{m+1},\ldots,a_{m+n})$$

and a brace operation

$$-\{-\}: C^m(A; A)\otimes_K C^n(A; A) \to C^{m+n-1}(A; A)$$

where $f\{g\}(a_1,\ldots,a_{m+n-1})$ is defined by

$$\sum_{1 \le i \le m} (-1)^{(i-1)(n-1)} f(a_1, \ldots, a_{i-1}, g(a_i, \ldots, a_{i+n-1}), a_{i+n}, \ldots, a_{m+n-1}).$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

The bracket $\{f,g\} = f\{g\} - (-1)^{(|f|-1)(|g|-1)}g\{f\}$ induces a Lie bracket of degree -1 on $HH^*(A; A)$.

Problem

What is the origin of the Gerstenhaber structure on $HH^*(A; A)$?

Theorem (conjectured by Deligne '93)

The Gerstenhaber structure on $HH^*(A; A)$ derives from an E_2 -operad action on the Hochschild cochain complex $C^*(A; A)$.

Proofs have been given by Voronov '00, Kontsevich-Soibelman '00, McClure-Smith '01, B-F '02, Kaufmann-Schwell '07, B-B '09.

Remark

 $HH^0(A; A) = ZA = \{a \in A \mid ab = ba \forall b \in A\}$ is the *center* of *A*. The Hochschild cochain complex $C^*(A; A)$ is thus a kind of *homotopy center* of *A* and the Deligne conjecture states:

The homotopy center of a monoid carries an E₂-operad action.

Problem

What is the origin of the Gerstenhaber structure on $HH^*(A; A)$?

Theorem (conjectured by Deligne '93)

The Gerstenhaber structure on $HH^*(A; A)$ derives from an E_2 -operad action on the Hochschild cochain complex $C^*(A; A)$.

Proofs have been given by Voronov '00, Kontsevich-Soibelman '00, McClure-Smith '01, B-F '02, Kaufmann-Schwell '07, B-B '09.

Remark

 $HH^0(A; A) = ZA = \{a \in A \mid ab = ba \forall b \in A\}$ is the *center* of *A*. The Hochschild cochain complex $C^*(A; A)$ is thus a kind of *homotopy center* of *A* and the Deligne conjecture states:

The homotopy center of a monoid carries an E₂-operad action.

Problem

What is the origin of the Gerstenhaber structure on $HH^*(A; A)$?

Theorem (conjectured by Deligne '93)

The Gerstenhaber structure on $HH^*(A; A)$ derives from an E_2 -operad action on the Hochschild cochain complex $C^*(A; A)$.

Proofs have been given by Voronov '00, Kontsevich-Soibelman '00, McClure-Smith '01, B-F '02, Kaufmann-Schwell '07, B-B '09.

Remark

 $HH^0(A; A) = ZA = \{a \in A \mid ab = ba \forall b \in A\}$ is the *center* of *A*. The Hochschild cochain complex $C^*(A; A)$ is thus a kind of *homotopy center* of *A* and the Deligne conjecture states:

The homotopy center of a monoid carries an E₂-operad action.

Problem

What is the origin of the Gerstenhaber structure on $HH^*(A; A)$?

Theorem (conjectured by Deligne '93)

The Gerstenhaber structure on $HH^*(A; A)$ derives from an E_2 -operad action on the Hochschild cochain complex $C^*(A; A)$.

Proofs have been given by Voronov '00, Kontsevich-Soibelman '00, McClure-Smith '01, B-F '02, Kaufmann-Schwell '07, B-B '09.

Remark

 $HH^0(A; A) = ZA = \{a \in A \mid ab = ba \forall b \in A\}$ is the *center* of *A*. The Hochschild cochain complex $C^*(A; A)$ is thus a kind of *homotopy center* of *A* and the Deligne conjecture states:

The homotopy center of a monoid carries an E_2 -operad action.

Aim

"Conceptual" proof of Deligne conjecture

• "Universal" construction of *E_n*-operads

Definition

For any object X, the endomorphism operad End(X) is defined by

$$\operatorname{End}(X)(k) = \operatorname{Hom}(X^{\otimes k}, X), \quad k \ge 0.$$

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_k \in \mathcal{O}(k), k \ge 0$.

Example

Aim

- "Conceptual" proof of Deligne conjecture
- "Universal" construction of *E_n*-operads

Definition

For any object X, the *endomorphism operad* End(X) is defined by

 $\operatorname{End}(X)(k) = \operatorname{Hom}(X^{\otimes k}, X), \quad k \ge 0.$

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_k \in \mathcal{O}(k), k \ge 0$.

Example

For each monoid A, End(A) is a multiplicative operad.

・ロト・雪・・雪・・雪・・ 白・ ろくの

Aim

- "Conceptual" proof of Deligne conjecture
- "Universal" construction of *E_n*-operads

Definition

For any object X, the endomorphism operad End(X) is defined by

$$\operatorname{End}(X)(k) = \operatorname{Hom}(X^{\otimes k}, X), \quad k \ge 0.$$

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_k \in \mathcal{O}(k), k \ge 0$.

Example

Aim

- "Conceptual" proof of Deligne conjecture
- "Universal" construction of *E_n*-operads

Definition

For any object X, the endomorphism operad End(X) is defined by

$$\operatorname{End}(X)(k) = \operatorname{Hom}(X^{\otimes k}, X), \quad k \ge 0.$$

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_k \in \mathcal{O}(k), k \ge 0$.

Example

Aim

- "Conceptual" proof of Deligne conjecture
- "Universal" construction of *E_n*-operads

Definition

For any object X, the endomorphism operad End(X) is defined by

$$\operatorname{End}(X)(k) = \operatorname{Hom}(X^{\otimes k}, X), \quad k \ge 0.$$

Definition

A multiplicative operad is a non-symmetric operad \mathcal{O} equipped with a "multiplicative system" of elements $m_k \in \mathcal{O}(k), k \ge 0$.

Example

Remark

$$C^k(A; A) = \operatorname{Hom}_{\mathcal{K}}(A^{\otimes k}, A) = \operatorname{End}(A)(k) \quad (k \ge 0)$$

_emma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_i : \mathcal{O}(k) \to \mathcal{O}(k+1)$ and $s_i : \mathcal{O}(k+1) \to \mathcal{O}(k) \quad (k \ge 0).$

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad O in spaces or chain complexes carries a canonical action by an E_2 -operad.

Remark

$$C^k(A; A) = \operatorname{Hom}_{\mathcal{K}}(A^{\otimes k}, A) = \operatorname{End}(A)(k) \quad (k \ge 0)$$

Lemma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_i : \mathcal{O}(k) \to \mathcal{O}(k+1)$ and $s_i : \mathcal{O}(k+1) \to \mathcal{O}(k) \quad (k \ge 0).$

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad O in spaces or chain complexes carries a canonical action by an E_2 -operad.

Remark

$$C^k(A; A) = \operatorname{Hom}_{\mathcal{K}}(A^{\otimes k}, A) = \operatorname{End}(A)(k) \quad (k \ge 0)$$

Lemma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_i : \mathcal{O}(k) \to \mathcal{O}(k+1)$ and $s_i : \mathcal{O}(k+1) \to \mathcal{O}(k) \quad (k \ge 0).$

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad O in spaces or chain complexes carries a canonical action by an E_2 -operad.

Remark

$$C^k(A; A) = \operatorname{Hom}_{\mathcal{K}}(A^{\otimes k}, A) = \operatorname{End}(A)(k) \quad (k \ge 0)$$

Lemma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_i : \mathcal{O}(k) \to \mathcal{O}(k+1)$ and $s_i : \mathcal{O}(k+1) \to \mathcal{O}(k) \quad (k \ge 0).$

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad O in spaces or chain complexes carries a canonical action by an E_2 -operad.

Remark

$$C^k(A; A) = \operatorname{Hom}_{\mathcal{K}}(A^{\otimes k}, A) = \operatorname{End}(A)(k) \quad (k \ge 0)$$

Lemma

Any multiplicative operad \mathcal{O} carries canonical cosimplicial operators $\partial_i : \mathcal{O}(k) \to \mathcal{O}(k+1)$ and $s_i : \mathcal{O}(k+1) \to \mathcal{O}(k) \quad (k \ge 0).$

Theorem (McClure-Smith '04, Kaufmann-Schwell '07, B-B '09)

The cosimplicial totalisation of a multiplicative operad O in spaces or chain complexes carries a canonical action by an E_2 -operad.

An \mathbb{N} -coloured operad \mathcal{L} is given by a family of objects $\mathcal{L}(n_1, \ldots, n_k; n)$, where $(n_1, \ldots, n_k, n) \in \mathbb{N}^{k+1}$, together with units, \mathfrak{S}_k -actions and substitution maps

$$\mathcal{L}(n_1,\ldots,n_k;n)\otimes\mathcal{L}(m_1,\ldots,m_l;n_i)\stackrel{\circ_i}{\longrightarrow} \mathcal{L}(n_1,\ldots,n_{i-1},m_1,\ldots,m_l,n_{i+1},\ldots,n_k;n)$$

which are unital, associative and equivariant.

The underlying category \mathcal{L}_u has as objects the natural numbers and as morphisms the "unary" operations: $\mathcal{L}_u(n, n') = \mathcal{L}(n; n')$. An \mathcal{L} -algebra X consists of a graded object $X(n), n \ge 0$, together with (equivariant, unital, associative) action maps $\mathcal{L}(n_1, \ldots, n_k; n) \otimes X(n_1) \otimes \cdots \otimes X(n_k) \to X(n)$. In particular, each \mathcal{L} -algebra X has an underlying \mathcal{L}_u -diagram.

An \mathbb{N} -coloured operad \mathcal{L} is given by a family of objects $\mathcal{L}(n_1, \ldots, n_k; n)$, where $(n_1, \ldots, n_k, n) \in \mathbb{N}^{k+1}$, together with units, \mathfrak{S}_k -actions and substitution maps

$$\mathcal{L}(n_1,\ldots,n_k;n)\otimes \mathcal{L}(m_1,\ldots,m_l;n_i) \stackrel{\circ_i}{\longrightarrow} \mathcal{L}(n_1,\ldots,n_{i-1},m_1,\ldots,m_l,n_{i+1},\ldots,n_k;n)$$

which are unital, associative and equivariant.

The underlying category \mathcal{L}_u has as objects the natural numbers and as morphisms the "unary" operations: $\mathcal{L}_u(n, n') = \mathcal{L}(n; n')$. An \mathcal{L} -algebra X consists of a graded object $X(n), n \ge 0$, together with (equivariant, unital, associative) action maps $\mathcal{L}(n_1, \ldots, n_k; n) \otimes X(n_1) \otimes \cdots \otimes X(n_k) \to X(n)$. In particular, each \mathcal{L} -algebra X has an underlying \mathcal{L}_u -diagram.

An \mathbb{N} -coloured operad \mathcal{L} is given by a family of objects $\mathcal{L}(n_1, \ldots, n_k; n)$, where $(n_1, \ldots, n_k, n) \in \mathbb{N}^{k+1}$, together with units, \mathfrak{S}_k -actions and substitution maps

$$\mathcal{L}(n_1,\ldots,n_k;n)\otimes\mathcal{L}(m_1,\ldots,m_l;n_i)\stackrel{\circ_i}{\longrightarrow} \mathcal{L}(n_1,\ldots,n_{i-1},m_1,\ldots,m_l,n_{i+1},\ldots,n_k;n)$$

which are unital, associative and equivariant.

The underlying category \mathcal{L}_u has as objects the natural numbers and as morphisms the "unary" operations: $\mathcal{L}_u(n, n') = \mathcal{L}(n; n')$. An \mathcal{L} -algebra X consists of a graded object $X(n), n \ge 0$, together with (equivariant, unital, associative) action maps $\mathcal{L}(n_1, \ldots, n_k; n) \otimes X(n_1) \otimes \cdots \otimes X(n_k) \to X(n)$. In particular, each \mathcal{L} -algebra X has an underlying \mathcal{L}_u -diagram.

An \mathbb{N} -coloured operad \mathcal{L} is given by a family of objects $\mathcal{L}(n_1, \ldots, n_k; n)$, where $(n_1, \ldots, n_k, n) \in \mathbb{N}^{k+1}$, together with units, \mathfrak{S}_k -actions and substitution maps

$$\mathcal{L}(n_1,\ldots,n_k;n)\otimes \mathcal{L}(m_1,\ldots,m_l;n_i)\stackrel{\circ_i}{\longrightarrow} \mathcal{L}(n_1,\ldots,n_{i-1},m_1,\ldots,m_l,n_{i+1},\ldots,n_k;n)$$

which are unital, associative and equivariant.

The underlying category \mathcal{L}_u has as objects the natural numbers and as morphisms the "unary" operations: $\mathcal{L}_u(n, n') = \mathcal{L}(n; n')$. An \mathcal{L} -algebra X consists of a graded object $X(n), n \ge 0$, together with (equivariant, unital, associative) action maps $\mathcal{L}(n_1, \ldots, n_k; n) \otimes X(n_1) \otimes \cdots \otimes X(n_k) \to X(n)$. In particular, each \mathcal{L} -algebra X has an underlying \mathcal{L}_u -diagram.

The \mathbb{N} -coloured operad \mathcal{L} induces a *multitensor* on \mathcal{L}_u -diagrams:

$$(X_1 \otimes_{\mathcal{L}} \cdots \otimes_{\mathcal{L}} X_k)(n) = \int^{n_1, \dots, n_k} \mathcal{L}(-, \cdots, -; n) \otimes X_1(-) \otimes \cdots \otimes X_k(-).$$

Each \mathcal{L}_u -diagram δ defines a symmetric (uncoloured) operad

$$\operatorname{Coend}_{\mathcal{L}}(\delta)(k) = \operatorname{Hom}_{\mathcal{L}_u}(\delta, \overleftarrow{\delta \otimes_{\mathcal{L}} \cdots \otimes_{\mathcal{L}} \delta}) \quad (k \ge 0).$$

Proposition (δ -condensation)

Let X be an \mathcal{L} -algebra and δ be a \mathcal{L}_u -diagram. Then the " δ -totalisation" $\operatorname{Hom}_{\mathcal{L}_u}(\delta, X)$ is equipped with a canonical action by the " δ -condensed" operad $\operatorname{Coend}_{\mathcal{L}}(\delta)$. The \mathbb{N} -coloured operad \mathcal{L} induces a *multitensor* on \mathcal{L}_u -diagrams:

$$(X_1 \otimes_{\mathcal{L}} \cdots \otimes_{\mathcal{L}} X_k)(n) = \int^{n_1, \dots, n_k} \mathcal{L}(-, \cdots, -; n) \otimes X_1(-) \otimes \cdots \otimes X_k(-).$$

Each \mathcal{L}_u -diagram δ defines a symmetric (uncoloured) operad

$$\operatorname{Coend}_{\mathcal{L}}(\delta)(k) = \operatorname{Hom}_{\mathcal{L}_u}(\delta, \overbrace{\delta \otimes_{\mathcal{L}} \cdots \otimes_{\mathcal{L}} \delta}^k) \quad (k \ge 0).$$

Proposition (δ -condensation)

Let X be an \mathcal{L} -algebra and δ be a \mathcal{L}_u -diagram. Then the " δ -totalisation" $\operatorname{Hom}_{\mathcal{L}_u}(\delta, X)$ is equipped with a canonical action by the " δ -condensed" operad $\operatorname{Coend}_{\mathcal{L}}(\delta)$.

The \mathbb{N} -coloured operad \mathcal{L} induces a *multitensor* on \mathcal{L}_u -diagrams:

$$(X_1 \otimes_{\mathcal{L}} \cdots \otimes_{\mathcal{L}} X_k)(n) = \int^{n_1, \dots, n_k} \mathcal{L}(-, \cdots, -; n) \otimes X_1(-) \otimes \cdots \otimes X_k(-).$$

Each \mathcal{L}_u -diagram δ defines a symmetric (uncoloured) operad

$$\operatorname{Coend}_{\mathcal{L}}(\delta)(k) = \operatorname{Hom}_{\mathcal{L}_u}(\delta, \overbrace{\delta \otimes_{\mathcal{L}} \cdots \otimes_{\mathcal{L}} \delta}^k) \quad (k \ge 0).$$

Proposition (δ -condensation)

Let X be an \mathcal{L} -algebra and δ be a \mathcal{L}_u -diagram. Then the " δ -totalisation" $\operatorname{Hom}_{\mathcal{L}_u}(\delta, X)$ is equipped with a canonical action by the " δ -condensed" operad $\operatorname{Coend}_{\mathcal{L}}(\delta)$.

The lattice path operad ${\mathcal L}$ is the ${\mathbb N}\text{-coloured}$ operad defined by

$$\mathcal{L}(n_1,...,n_k;n) = \operatorname{Cat}_{*,*}([n+1],[n_1+1]\otimes\cdots\otimes[n_k+1]).$$

Example. Let $x \in \mathcal{L}(2,1;3)$ be the following lattice path:

The path is determined by the sequence of "directions" and "stops": x = 1|21|1|2.

The lattice path operad ${\mathcal L}$ is the ${\mathbb N}\text{-coloured}$ operad defined by

$$\mathcal{L}(n_1,...,n_k;n) = \operatorname{Cat}_{*,*}([n+1],[n_1+1]\otimes\cdots\otimes[n_k+1]).$$

Example. Let $x \in \mathcal{L}(2, 1; 3)$ be the following lattice path:

The path is determined by the sequence of "directions" and "stops": x = 1|21|1|2.

Lemma

$$\mathcal{L}_u(m, n) = Cat_{*,*}([n+1], [m+1]) = \Delta([m], [n]).$$

Proposition

• The lattice path operad \mathcal{L} is *filtered* by *complexity*, i.e. by the number of angles of the lattice paths;

・ロット (雪) (日) (日) (日)

- $\mathcal{L}^{(0)}$ -algebras are cosimplicial objects;
- *L*⁽¹⁾-algebras are □-monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$ -algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain complexes, δ -condensation of $\mathcal{L}^{(n)}$ yields an E_n -operad.

Lemma

$$\mathcal{L}_u(m, n) = Cat_{*,*}([n+1], [m+1]) = \Delta([m], [n]).$$

Proposition

• The lattice path operad \mathcal{L} is *filtered* by *complexity*, i.e. by the number of angles of the lattice paths;

- $\mathcal{L}^{(0)}$ -algebras are cosimplicial objects;
- *L*⁽¹⁾-algebras are □-monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$ -algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain complexes, δ -condensation of $\mathcal{L}^{(n)}$ yields an E_n -operad.

Lemma

$$\mathcal{L}_u(m,n) = \operatorname{Cat}_{*,*}([n+1],[m+1]) = \Delta([m],[n]).$$

Proposition

• The lattice path operad \mathcal{L} is *filtered* by *complexity*, i.e. by the number of angles of the lattice paths;

- $\mathcal{L}^{(0)}$ -algebras are cosimplicial objects;
- *L*⁽¹⁾-algebras are □-monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$ -algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain complexes, δ -condensation of $\mathcal{L}^{(n)}$ yields an E_n -operad.

Lemma

$$\mathcal{L}_u(m,n) = \operatorname{Cat}_{*,*}([n+1],[m+1]) = \Delta([m],[n]).$$

Proposition

• The lattice path operad \mathcal{L} is *filtered* by *complexity*, i.e. by the number of angles of the lattice paths;

- $\mathcal{L}^{(0)}$ -algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$ -algebras are \Box -monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$ -algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain complexes, δ -condensation of $\mathcal{L}^{(n)}$ yields an E_n -operad.

Lemma

$$\mathcal{L}_u(m, n) = Cat_{*,*}([n+1], [m+1]) = \Delta([m], [n]).$$

Proposition

• The lattice path operad \mathcal{L} is *filtered* by *complexity*, i.e. by the number of angles of the lattice paths;

- $\mathcal{L}^{(0)}$ -algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$ -algebras are \Box -monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$ -algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain complexes, δ -condensation of $\mathcal{L}^{(n)}$ yields an E_n -operad.

Lemma

$$\mathcal{L}_u(m,n) = \operatorname{Cat}_{*,*}([n+1],[m+1]) = \Delta([m],[n]).$$

Proposition

- The lattice path operad \mathcal{L} is *filtered* by *complexity*, i.e. by the number of angles of the lattice paths;
- $\mathcal{L}^{(0)}$ -algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$ -algebras are \Box -monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$ -algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain complexes, δ -condensation of $\mathcal{L}^{(n)}$ yields an E_n -operad.

Lemma

$$\mathcal{L}_u(m,n) = \operatorname{Cat}_{*,*}([n+1],[m+1]) = \Delta([m],[n]).$$

Proposition

- The lattice path operad \mathcal{L} is *filtered* by *complexity*, i.e. by the number of angles of the lattice paths;
- $\mathcal{L}^{(0)}$ -algebras are cosimplicial objects;
- $\mathcal{L}^{(1)}$ -algebras are \Box -monoids in cosimplicial objects;
- $\mathcal{L}^{(2)}$ -algebras are multiplicative operads. (Tamarkin)

Theorem

For the standard cosimplicial object δ in spaces or in chain complexes, δ -condensation of $\mathcal{L}^{(n)}$ yields an E_n -operad.