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Introduction

Definition (polynomials)

k[X ] 3 F (X ) =
∑

i≥0 αiX
i

deg(F ) ≤ n iff αi = 0 for i > n

F : k → k is linear iff F (0) = 0 and deg(F ) ≤ 1.

Definition (polynomial functors of Eilenberg-MacLane)

A functor between abelian categories is of degree ≤ n iff
crFn+1(X1, . . . ,Xn+1) = 0 for all X1, . . . ,Xn+1 of the domain.

F is linear iff F (0) = 0 and deg(F ) ≤ 1.

Purpose of the talk

Degree for functors between non-additive categories

Goodwillie’s cubical cross-effects

nilpotency phenomena
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Semiabelian categories

Definition (additive/abelian)

(E, ?E) additive iff θX ,Y : X + Y → X × Y is invertible, and
every identity has an additive inverse.

An abelian category is an additive category with kernels and
cokernels sth. every mono/epi is a kernel/cokernel.

Definition (idempotent-complete)

An additive category is idempotent-complete if every idempotent
endomorphism has kernel/cokernel.

Lemma (idempotent-complete =⇒ protomodular (Bourn ’96))

In an idempotent-complete additive category, every split epi

f : X
x
� Y is protomodular: f has a kernel and Y + ker(f )� X .
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Semiabelian categories

Definition (semiadditive)

A pointed category is semiadditive iff it has binary sums, pullbacks
of split epis, and every split epi is protomodular.

Lemma

In a semiadditive category θX ,Y : X + Y → X × Y is a strong epi.
E additive & idempotent-complete ⇐⇒ E and Eop semi-additive.

Theorem (Tierney)

E abelian ⇐⇒ E additive and exact.

Definition (Janelidze-Márki-Tholen ’01)

E semiabelian iff E semiadditive and exacta.

afinitely complete, stable strong epi/mono fact, effective equ. relations
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Semiabelian categories

Examples (semiabelian categories)

groups

Lie algebras

cocommutative Hopf algebras (Gran-Sterck-Vercruysse ’19)

Proposition (abelian core)

Each semiabelian category E has an abelian core Ab(E) spanned
by those objects X for which [X ,X ] = ?E.

Definition (commutator subobject)

The commutator subobject [X ,X ] is the image of ker(θX ,X ) along
the folding map ∇X : X + X → X .

Remark

In an abelian category the commutator subobjects are trivial.
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Cubical cross-effects

Definition (Goodwillie cubes for pointed F : E→ E′)

F (X1 + X2) - F (X1)

ΞF
X1,X2

F (X2)
?

- F (?E)
?

F (X1 + X2) - F (X1)

F (X1 + X2 + X3) -

-

F (X1 + X3)

-

ΞF
X1,X2,X3

X2

?
- F (?E)

?

F (X2 + X3)
?

-

-

F (X3)
? -



Goodwillie’s cubical cross-effects &nilpotency in semiabelian categories

Cubical cross-effects

Definition (Goodwillie cubes for pointed F : E→ E′)

F (X1 + X2) - F (X1)

ΞF
X1,X2

F (X2)
?

- F (?E)
?

F (X1 + X2) - F (X1)

F (X1 + X2 + X3) -

-

F (X1 + X3)

-

ΞF
X1,X2,X3

X2

?
- F (?E)

?

F (X2 + X3)
?

-

-

F (X3)
? -



Goodwillie’s cubical cross-effects &nilpotency in semiabelian categories

Cubical cross-effects

Definition (Goodwillie cubes for pointed F : E→ E′)

F (X1 + X2) - F (X1)

ΞF
X1,X2

F (X2)
?

- F (?E)
?

F (X1 + X2) - F (X1)

F (X1 + X2 + X3) -

-

F (X1 + X3)

-

ΞF
X1,X2,X3

X2

?
- F (?E)

?

F (X2 + X3)
?

-

-

F (X3)
? -



Goodwillie’s cubical cross-effects &nilpotency in semiabelian categories

Cubical cross-effects

Definition (cubical cross-effects)

PF
X1,...,Xn

= limit of the punctured cube

θFX1,...,Xn
: F (X1 + · · ·+ Xn)→ PF

X1,...,Xn

crFn (X1, . . . ,Xn) = ker(θFX1,...,Xn
) = “total” kernel of the cube

pointed F : E→ E′ is of degree ≤ n
iff ΞF

X1,...,Xn+1
is a limit-cube ∀X1, . . . ,Xn+1

iff θFX1,...,Xn+1
is invertible ∀X1, . . . ,Xn+1 (θF is strong epi !)

iff crFn+1(X1, . . . ,Xn+1) = ?E′ ∀X1, . . . ,Xn+1

Example (functors of degree ≤ 1)

θFX1,X2
: F (X1 + X2)→ F (X1)× F (X2)

F is of degree ≤ 1 iff F takes sums to products

IdE is of degree ≤ 1 iff E = Ab(E).
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Cubical cross-effects

Definition (Higgins commutators and n-foldedness)

crn+1(X , . . . ,X )

����

// //

?
))

X + · · ·+ X

∇n+1
X ����

θX ,...,X // // PX ,...,X

uu
����

[X , . . . ,X ]n+1
// // X // // X/[X , . . . ,X ]n+1

X is n-folded iff ∇n+1
X factors through θX ,...,X .

Theorem (BB ’17)

TFAE for a semiabelian category E:

IdE is of degree ≤ n

all objects of E are n-folded

[X , . . . ,X ]n+1 = ?E for all X .
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Algebraic nilpotency

Definition (iterated Huq commutators in semiabelian categories)

An object X is n-nilpotent if commutators of length n + 1 vanish:

[X , [X , [X , . . . , [X ,X ] · · · ]]]n+1 = ?E.

Definition (central extensions)

Central extensions are strong epis X
f
� Y sth. [X , ker(f )] = ?E.

Lemma

An object X is n-nilpotent iff it is an n-fold central extension of

the trivial object, i.e. X
fn
� Xn−1

fn−1

� · · ·� X2
f2
� X1

f1
� ?E.

Proposition (Hartl-Van der Linden ’13, BB ’17)

Every n-folded object is n-nilpotent, i.e. iterated Huq commutators
are contained in Higgins commutators of same length.
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Algebraic nilpotency

Example (n-folded 6= n-nilpotent for n ≥ 2)

R ⊂ C ⊂ H ⊂ O

{±1} = Z/2Z and {±1,±i} = Z/4Z
Q8 = {±1,±i ,±j ,±k} 2-nilpotent and 2-folded group

O16 = {±1,±e2, · · · ,±e8} 2-nilpotent, but not 2-folded loop.

Definition (Nilpotency)

Niln(E) is the subcategory spanned by the n-nilpotent objects.
A category is n-nilpotent iff E = Niln(E).
A reflective subcategory D of E is a Birkhoff subcategory iff D is
closed under taking subobjects and quotients in E.

Proposition

The subcategory Niln(E) is a reflective Birkhoff subcategory of E.
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Algebraic nilpotency

Proposition (BB ’17)

E is n-nilpotent iff for all X ,Y the map θX ,Y : X + Y → X × Y
exhibits X + Y as an (n − 1)-fold central extension of X × Y .

Lemma (nilpotency tower)

The first Birkhoff reflection I 1 : E→ Nil1(E) = Ab(E) is
abelianization.
The relative Birkhoff reflections I n,n+1 : Niln+1(E)→ Niln(E) are
central reflections.

X

xxxx
η1
X����

η2
X����

ηnX
�� ��

ηn+1
X
'' ''

?E oooo I 1(X ) oooo I 2(X ) oooo I n(X ) oooo I n+1(X ) oooo
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Algebraic nilpotency

Corollary

Ln(X ) = ker(I n+1(X )� I n(X )) ∈ Ab(E)

?E // Ln(X ) // // X/γn+1(X ) // // X/γn(X ) // ?E

Ln(X ) ∼= γn(X )/γn+1(X )

Theorem (BB ’17)

TFAE for a semiabelian category E:

the functor Ln : E→ Ab(E) is of degree ≤ n for each n

the identity functor of Niln(E) is of degree ≤ n for each n

every n-nilpotent object is n-folded.

Example (Lazard’s Theorem)

For a group X , L(X ) =
⊕

n≥1 Ln(X ) is a Lie ring which is free if X
is free. This shows that the properties above hold for groups.
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Homotopical nilpotency

Definition (Quillen model category)

A Quillen model structure on a bicomplete E consists of three
composable classes of morphisms cofE,weE,fibE such that

weE fulfills 2-out-of-3;

(cofE ∩ weE, fibE) is a weak factorization system;

(cofE,weE ∩ fibE) is a weak factorization system.

Theorem (Quillen ’66)

(E, cofE,weE,fibE) ∃Ho(E) = E/weE within the same universe.

Theorem (Quillen ’66)

The adjunction |−| : sSets� Top : Sing is a Quillen
equivalence: the simplicial fibrations are the Kan fibrations;

There is a canonical model structure on sVT whenever
UT : sVT → sSets takes values in fibrant simplicial sets.
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Homotopical nilpotency

Proposition (Carboni-Kelly-Pedicchio ’93)

A variety VT of T -algebras is a Mal’cev variety if and only if
UT : sVT → sSets takes values in fibrant simplicial sets.

Proposition (Bourn ’96)

Every semiabelian category is a Mal’cev category.

Corollary

The simplical objects of a semiabelian variety VT carry a model
structure sth

we’s are the maps inducing a quasi-iso on Moore complexes;

every strong epi is a fibration.

Proposition

For cofibrant objects X1, . . . ,Xn of sVT the algebraic cross-effects
crn(X1, . . . ,Xn) are homotopy-invariant.
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Homotopical nilpotency

Definition (Homotopical nilpotency degrees)

Let X be a cofibrant object in sVT .

nilT1 (X ) = n iff n is the least integer for which
ηnX : X � I n(X ) is a trivial fibration;

nilT2 (X ) = n iff n is the least integer for which ∇n+1
X factors

up to homotopy through θX ,...,X ;

nilT3 (X ) = n iff n is the least integer for which X is value of
an n-excisive approximation of the identity functor of sVT .

Proposition

For cofibrant X in sVT one has nilT1 (X ) ≤ nilT2 (X ) ≤ nilT3 (X )
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Homotopical nilpotency

Corollary (Berstein-Ganea ’61, Hovey ’93, Biedermann-Dwyer ’10)

For a reduced simplical set X one has

nilGr1 (GX ) = nilBerstein−Ganea(Ω|X |);

nilGr2 (GX ) = cocatHovey (|X |);

nilGr3 (GX ) = nilBiedermann−Dwyer (Ω|X |).

Corollary (cf. Eldred ’13, Costoya-Scherer-Viruel ’15)

For any based connected space X one has

nilBG (ΩX ) ≤ cocatHov (X ) ≤ nilBD(ΩX )

Thank you !
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