**Clemens Berger** 

University of Nice-Sophia Antipolis

CT 2016 in Halifax August 11, 2016





- 3 Graphic monoids
- 4 Moment categories



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

#### Introduction

## Purpose of the talk

(hyperplane arrangements)<sup>algebraisation</sup>(graphic monoids) (graphic monoids)<sup>categorification</sup>(moment categories) (unital moment categories)<sup>semantics</sup>(operads)

Examples (Fox-Neuwirth, Salvetti, McClure-Smith, Berger-Fresse)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへの

#### Introduction

### Purpose of the talk

 $\begin{array}{l} (\text{hyperplane arrangements})^{algebraisation} (\text{graphic monoids}) \\ (\text{graphic monoids})^{categorification} (\text{moment categories}) \\ (\text{unital moment categories})^{semantics} (\text{operads}) \end{array}$ 

Examples (Fox-Neuwirth, Salvetti, McClure-Smith, Berger-Fresse) (braid arrangements)  $\leftrightarrow \sigma$  (symmetric groups)  $\leftrightarrow \sigma$  ( $E_n$ -operads)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Introduction

## Purpose of the talk

 $\begin{array}{l} (\text{hyperplane arrangements})^{algebraisation} (\text{graphic monoids}) \\ (\text{graphic monoids})^{categorification} (\text{moment categories}) \\ (\text{unital moment categories})^{semantics} (\text{operads}) \end{array}$ 

# Examples (Fox-Neuwirth, Salvetti, McClure-Smith, Berger-Fresse)

(braid arrangements)  $\leftrightarrow$  (symmetric groups)  $\leftrightarrow (E_n$ -operads)

# Definition (hyperplane arrangements in $\mathbb{R}^n$ )

A linear hyperplane arrangement  $\mathcal{A} = \{H_{\alpha} \subset \mathbb{R}^{n}, \alpha \in |\mathcal{A}|\}$  is

- essential iff  $\bigcap_{\alpha \in |\mathcal{A}|} H_{\alpha} = (0);$
- Coxeter iff ∀α, β ∈ |A| : s<sub>α</sub>(H<sub>β</sub>) ∈ A where s<sub>α</sub> is the orthogonal reflection with respect to the hyperplane H<sub>α</sub>.

### Proposition (Coxeter, Tits

```
There is a one-to-one correspondence
```

(essential Coxeter arrangements) 
$$\stackrel{\cong}{\leftrightarrow}$$
 (finite Coxeter groups)  
 $\mathcal{A}_{G} \stackrel{\cong}{\leftrightarrow} G$ 

# Definition (hyperplane arrangements in $\mathbb{R}^n$ )

A linear hyperplane arrangement  $\mathcal{A} = \{H_{\alpha} \subset \mathbb{R}^{n}, \, \alpha \in |\mathcal{A}|\}$  is

• essential iff 
$$\bigcap_{\alpha \in |\mathcal{A}|} H_{\alpha} = (0);$$

Coxeter iff ∀α, β ∈ |A| : s<sub>α</sub>(H<sub>β</sub>) ∈ A where s<sub>α</sub> is the orthogonal reflection with respect to the hyperplane H<sub>α</sub>.

### Proposition (Coxeter, Tits

```
There is a one-to-one correspondence
```

(essential Coxeter arrangements) 
$$\stackrel{\cong}{\leftrightarrow}$$
 (finite Coxeter groups)  
 $\mathcal{A}_{G} \stackrel{\cong}{\leftrightarrow} G$ 

# Definition (hyperplane arrangements in $\mathbb{R}^n$ )

A linear hyperplane arrangement  $\mathcal{A} = \{H_{\alpha} \subset \mathbb{R}^{n}, \alpha \in |\mathcal{A}|\}$  is

• essential iff 
$$\bigcap_{\alpha \in |\mathcal{A}|} H_{\alpha} = (0);$$

Coxeter iff ∀α, β ∈ |A| : s<sub>α</sub>(H<sub>β</sub>) ∈ A where s<sub>α</sub> is the orthogonal reflection with respect to the hyperplane H<sub>α</sub>.

## Proposition (Coxeter, Tits)

```
here is a one-to-one correspondence
(essential Coxeter arrangements) \stackrel{\cong}{\leftrightarrow} (finite Coxeter gro
\mathcal{A}_{G} \stackrel{\cong}{\leftrightarrow} G
```

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

# Definition (hyperplane arrangements in $\mathbb{R}^n$ )

A linear hyperplane arrangement  $\mathcal{A} = \{H_{\alpha} \subset \mathbb{R}^{n}, \alpha \in |\mathcal{A}|\}$  is

• essential iff 
$$\bigcap_{\alpha \in |\mathcal{A}|} H_{\alpha} = (0);$$

Coxeter iff ∀α, β ∈ |A| : s<sub>α</sub>(H<sub>β</sub>) ∈ A where s<sub>α</sub> is the orthogonal reflection with respect to the hyperplane H<sub>α</sub>.

# Proposition (Coxeter, Tits)

There is a one-to-one correspondence

(essential Coxeter arrangements) 
$$\stackrel{\cong}{\leftrightarrow}$$
 (finite Coxeter groups)  
 $\mathcal{A}_{\mathcal{C}} \stackrel{\cong}{\leftrightarrow} \mathcal{G}$ 

Hyperplane arrangements

# Example (symmetric group $\mathfrak{S}_3$ and its $\mathcal{A}_{\mathfrak{S}_3}$ in $\mathbb{R}^2$ )



### Definition (face poset $\mathcal{F}_{\mathcal{A}}$ )

 $\mathcal{F}_{\mathcal{A}_{\mathfrak{S}_2}} = \{ \mathsf{6} ext{ facets of dim } 2, \mathsf{6} ext{ facets of dim } 1, 1 ext{ facet of dim } 0 \}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hyperplane arrangements

# Example (symmetric group $\mathfrak{S}_3$ and its $\mathcal{A}_{\mathfrak{S}_3}$ in $\mathbb{R}^2$ )



### Definition (face poset $\mathcal{F}_{\mathcal{A}}$ )

 $\mathcal{F}_{\mathcal{A}_{\mathfrak{S}_2}} = \{ \mathsf{6} ext{ facets of dim } 2, \mathsf{6} ext{ facets of dim } 1, 1 ext{ facet of dim } 0 \}$ 

# Example (symmetric group $\mathfrak{S}_3$ and its $\mathcal{A}_{\mathfrak{S}_3}$ in $\mathbb{R}^2$ )



# Definition (face poset $\mathcal{F}_{\mathcal{A}}$ )

 $\mathcal{F}_{\mathcal{A}_{\mathfrak{S}_3}} = \{ \texttt{6 facets of dim } 2, \texttt{6 facets of dim } 1, \texttt{1 facet of dim } \texttt{0} \}$ 

Hyperplane arrangements

# Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

 $xy = z \iff \forall s \in x, t \in y : s + \epsilon(t - s) \in z \text{ for } \epsilon > 0 \text{ small}$ 

- (0) is neutral element;
- xyx = xy  $\forall x, y \in \mathcal{F}_{\mathcal{A}};$

• 
$$x \subset \overline{y} \iff xy = y;$$

• the univ. comm. quotient of  $\mathcal{F}_{\mathcal{A}}$  is a geometric lattice  $\mathcal{L}_{\mathcal{A}}$ .

Definition (*k*-th complement of an arrangement)

$$M_k(\mathcal{A}) = \mathbb{R}^n \otimes \mathbb{R}^k - \bigcup_{lpha \in |\mathcal{A}|} H_lpha \otimes \mathbb{R}^k$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem (Orlik-Solomon, Salvetti)

Hyperplane arrangements

## Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$$xy = z \iff \forall s \in x, t \in y : s + \epsilon(t - s) \in z \text{ for } \epsilon > 0 \text{ small}$$

- (0) is neutral element;
- $xyx = xy \quad \forall x, y \in \mathcal{F}_{\mathcal{A}};$

• 
$$x \subset \overline{y} \iff xy = y;$$

• the univ. comm. quotient of  $\mathcal{F}_{\mathcal{A}}$  is a geometric lattice  $\mathcal{L}_{\mathcal{A}}$ .

Definition (*k*-th complement of an arrangement)

$$M_k(\mathcal{A}) = \mathbb{R}^n \otimes \mathbb{R}^k - \bigcup_{lpha \in |\mathcal{A}|} H_lpha \otimes \mathbb{R}^k$$

## Theorem (Orlik-Solomon, Salvetti)

Hyperplane arrangements

## Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$$xy = z \iff \forall s \in x, t \in y : s + \epsilon(t - s) \in z \text{ for } \epsilon > 0 \text{ small}$$

- (0) is neutral element;
- $xyx = xy \quad \forall x, y \in \mathcal{F}_{\mathcal{A}};$

• 
$$x \subset \overline{y} \iff xy = y;$$

• the univ. comm. quotient of  $\mathcal{F}_{\mathcal{A}}$  is a geometric lattice  $\mathcal{L}_{\mathcal{A}}$ .

Definition (k-th complement of an arrangement)

$$M_k(\mathcal{A}) = \mathbb{R}^n \otimes \mathbb{R}^k - \bigcup_{lpha \in |\mathcal{A}|} H_lpha \otimes \mathbb{R}^k$$

Theorem (Orlik-Solomon, Salvetti)

 $\mathcal{L}_{\mathcal{A}} \left( \mathcal{F}_{\mathcal{A}} 
ight)$  determines cohomology (homotopy type) of  $M_2(\mathcal{A})$ 

Hyperplane arrangements

## Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$$xy = z \iff \forall s \in x, t \in y : s + \epsilon(t - s) \in z \text{ for } \epsilon > 0 \text{ small}$$

- (0) is neutral element;
- $xyx = xy \quad \forall x, y \in \mathcal{F}_{\mathcal{A}};$

• 
$$x \subset \overline{y} \iff xy = y;$$

• the univ. comm. quotient of  $\mathcal{F}_{\mathcal{A}}$  is a geometric lattice  $\mathcal{L}_{\mathcal{A}}$ .

Definition (k-th complement of an arrangement)

$$M_k(\mathcal{A}) = \mathbb{R}^n \otimes \mathbb{R}^k - \bigcup_{lpha \in |\mathcal{A}|} H_lpha \otimes \mathbb{R}^k$$

Theorem (Orlik-Solomon, Salvetti)

 $\mathcal{L}_{\mathcal{A}}$   $(\mathcal{F}_{\mathcal{A}})$  determines cohomology (homotopy type) of  $M_2(\mathcal{A})$ .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

Hyperplane arrangements

## Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$$xy = z \iff \forall s \in x, t \in y : s + \epsilon(t - s) \in z \text{ for } \epsilon > 0 \text{ small}$$

- (0) is neutral element;
- $xyx = xy \quad \forall x, y \in \mathcal{F}_{\mathcal{A}};$

• 
$$x \subset \overline{y} \iff xy = y;$$

• the univ. comm. quotient of  $\mathcal{F}_{\mathcal{A}}$  is a geometric lattice  $\mathcal{L}_{\mathcal{A}}$ .

Definition (*k*-th complement of an arrangement)

$$M_k(\mathcal{A}) = \mathbb{R}^n \otimes \mathbb{R}^k - \bigcup_{lpha \in |\mathcal{A}|} H_lpha \otimes \mathbb{R}^k$$

Theorem (Orlik-Solomon, Salvetti)

 $\mathcal{L}_{\mathcal{A}} \left( \mathcal{F}_{\mathcal{A}} 
ight)$  determines cohomology (homotopy type) of  $M_2(\mathcal{A})$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Hyperplane arrangements

## Lemma (face monoid $\overline{\mathcal{F}}_{\mathcal{A}}$ with facets x, y, z)

$$xy = z \iff \forall s \in x, t \in y : s + \epsilon(t - s) \in z \text{ for } \epsilon > 0 \text{ small}$$

- (0) is neutral element;
- $xyx = xy \quad \forall x, y \in \mathcal{F}_{\mathcal{A}};$

• 
$$x \subset \overline{y} \iff xy = y;$$

• the univ. comm. quotient of  $\mathcal{F}_{\mathcal{A}}$  is a geometric lattice  $\mathcal{L}_{\mathcal{A}}$ .

Definition (*k*-th complement of an arrangement)

$$M_k(\mathcal{A}) = \mathbb{R}^n \otimes \mathbb{R}^k - \bigcup_{lpha \in |\mathcal{A}|} H_lpha \otimes \mathbb{R}^k$$

Theorem (Orlik-Solomon, Salvetti)

Hyperplane arrangements

## Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$$xy = z \iff \forall s \in x, t \in y : s + \epsilon(t - s) \in z \text{ for } \epsilon > 0 \text{ small}$$

- (0) is neutral element;
- $xyx = xy \quad \forall x, y \in \mathcal{F}_{\mathcal{A}};$

• 
$$x \subset \overline{y} \iff xy = y;$$

• the univ. comm. quotient of  $\mathcal{F}_{\mathcal{A}}$  is a geometric lattice  $\mathcal{L}_{\mathcal{A}}$ .

## Definition (*k*-th complement of an arrangement)

$$M_k(\mathcal{A}) = \mathbb{R}^n \otimes \mathbb{R}^k - \bigcup_{lpha \in |\mathcal{A}|} H_lpha \otimes \mathbb{R}^k$$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

## Theorem (Orlik-Solomon, Salvetti)

Hyperplane arrangements

## Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$$xy = z \iff \forall s \in x, t \in y : s + \epsilon(t - s) \in z \text{ for } \epsilon > 0 \text{ small}$$

- (0) is neutral element;
- $xyx = xy \quad \forall x, y \in \mathcal{F}_{\mathcal{A}};$

• 
$$x \subset \overline{y} \iff xy = y;$$

• the univ. comm. quotient of  $\mathcal{F}_{\mathcal{A}}$  is a geometric lattice  $\mathcal{L}_{\mathcal{A}}$ .

## Definition (*k*-th complement of an arrangement)

$$M_k(\mathcal{A}) = \mathbb{R}^n \otimes \mathbb{R}^k - \bigcup_{lpha \in |\mathcal{A}|} H_lpha \otimes \mathbb{R}^k$$

## Theorem (Orlik-Solomon, Salvetti)

# Definition (skew lattice, left regular band, graphic monoid)

A monoid  $(M, \cdot, 1)$  is called *graphic* iff  $\forall x, y \in M : xyx = xy$ .

### \_emma

- $x^2 = x$  (all elements are idempotent);
- $x \leq y \iff yx = x$  is a *partial order* (the right Green order);
- xy = yx if and only if  $x \wedge y$  exists in  $(M, \preceq)$ ;
- x ≃ y ⇔ xy = x and yx = y is a congruence on (M, ·).

   The quotient M/ ≃ is the universal comm. quotient of M
   (the so-called support semi-meet lattice of M).

# Definition (skew lattice, left regular band, graphic monoid)

A monoid  $(M, \cdot, 1)$  is called *graphic* iff  $\forall x, y \in M : xyx = xy$ .

### emma

- $x^2 = x$  (all elements are idempotent);
- $x \leq y \iff yx = x$  is a *partial order* (the right Green order);
- xy = yx if and only if  $x \wedge y$  exists in  $(M, \preceq)$ ;
- x ≃ y ⇔ xy = x and yx = y is a congruence on (M, ·) The quotient M/ ≃ is the universal comm. quotient of M (the so-called support semi-meet lattice of M).

# Definition (skew lattice, left regular band, graphic monoid)

A monoid  $(M, \cdot, 1)$  is called *graphic* iff  $\forall x, y \in M : xyx = xy$ .

### Lemma

- $x^2 = x$  (all elements are idempotent);
- $x \leq y \iff yx = x$  is a *partial order* (the right Green order);
- xy = yx if and only if  $x \wedge y$  exists in  $(M, \preceq)$ ;

# Definition (skew lattice, left regular band, graphic monoid)

A monoid  $(M, \cdot, 1)$  is called *graphic* iff  $\forall x, y \in M : xyx = xy$ .

### Lemma

In any graphic monoid M one has

- $x^2 = x$  (all elements are idempotent);
- $x \leq y \iff yx = x$  is a *partial order* (the right Green order);
- xy = yx if and only if  $x \wedge y$  exists in  $(M, \preceq)$ ;

# Definition (skew lattice, left regular band, graphic monoid)

A monoid  $(M, \cdot, 1)$  is called *graphic* iff  $\forall x, y \in M : xyx = xy$ .

### Lemma

In any graphic monoid M one has

•  $x^2 = x$  (all elements are idempotent);

•  $x \leq y \iff yx = x$  is a *partial order* (the right Green order);

• xy = yx if and only if  $x \wedge y$  exists in  $(M, \preceq)$ ;

•  $x \simeq y \stackrel{\text{def.}}{\iff} xy = x$  and yx = y is a congruence on  $(M, \cdot)$ . The quotient  $M/\simeq$  is the universal comm. quotient of M (the so-called support semi-meet lattice of M).

Definition (skew lattice, left regular band, graphic monoid)

A monoid  $(M, \cdot, 1)$  is called *graphic* iff  $\forall x, y \in M : xyx = xy$ .

### Lemma

- $x^2 = x$  (all elements are idempotent);
- $x \leq y \iff yx = x$  is a *partial order* (the right Green order);
- xy = yx if and only if  $x \wedge y$  exists in  $(M, \preceq)$ ;

Definition (skew lattice, left regular band, graphic monoid)

A monoid  $(M, \cdot, 1)$  is called *graphic* iff  $\forall x, y \in M : xyx = xy$ .

### Lemma

In any graphic monoid M one has

•  $x^2 = x$  (all elements are idempotent);

•  $x \leq y \iff yx = x$  is a *partial order* (the right Green order);

• xy = yx if and only if  $x \wedge y$  exists in  $(M, \preceq)$ ;

 x ≃ y ∉ xy = x and yx = y is a congruence on (M, ·). The quotient M/ ≃ is the universal comm. quotient of M (the so-called support semi-meet lattice of M).

# Example (graphic line $L = \mathcal{F}_{\mathcal{A}_{\mathfrak{S}_2}}$ )

The three-element set  $L = \{0, \pm\}$  is a graphic monoid for ++ = +, -- = -, -+ = -, +- = + with neutral element 0.

## Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism  $M \rightarrow L$ . M is said to have enough hyperplanes if any two elements  $x, y \in M$  can be distinguished by their values on hyperplanes.

### \_emma (relationship with oriented matroids)

# Example (graphic line $L = \mathcal{F}_{\mathcal{A}_{\mathfrak{S}_2}}$ )

The three-element set  $L = \{0, \pm\}$  is a graphic monoid for ++=+, --=-, -+=-, +-=+ with neutral element 0.

## Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism  $M \rightarrow L$ . M is said to have enough hyperplanes if any two elements  $x, y \in M$  can be distinguished by their values on hyperplanes.

### \_emma (relationship with oriented matroids)

# Example (graphic line $L = \mathcal{F}_{\mathcal{A}_{\mathfrak{S}_2}}$ )

The three-element set  $L = \{0, \pm\}$  is a graphic monoid for ++=+, --=-, -+=-, +-=+ with neutral element 0.

# Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism  $M \rightarrow L$ . M is said to have enough hyperplanes if any two elements  $x, y \in M$  can be distinguished by their values on hyperplanes.

### \_emma (relationship with oriented matroids)

# Example (graphic line $L = \mathcal{F}_{\mathcal{A}_{\mathfrak{S}_2}}$ )

The three-element set  $L = \{0, \pm\}$  is a graphic monoid for ++=+, --=-, -+=-, +-=+ with neutral element 0.

# Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism  $M \rightarrow L$ . M is said to have enough hyperplanes if any two elements  $x, y \in M$  can be distinguished by their values on hyperplanes.

## Lemma (relationship with oriented matroids)

## Definition (centric elements)

An element  $x \in M$  is said to be *centric* if  $x \simeq y \implies x = y$ .

### Lemma

A graphic monoid is commutative iff all its elements are centric.

### Remark

There are graphic monoids (e.g. the graphic line) in which the only centric element is the neutral element. Such graphic monoids will be called *primitive* provided they also have non-centric elements.

## Definition (centric elements)

An element  $x \in M$  is said to be *centric* if  $x \simeq y \implies x = y$ .

### \_emma

A graphic monoid is commutative iff all its elements are centric.

### Remark

There are graphic monoids (e.g. the graphic line) in which the only centric element is the neutral element. Such graphic monoids will be called *primitive* provided they also have non-centric elements.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ◎

## Definition (centric elements)

An element  $x \in M$  is said to be *centric* if  $x \simeq y \implies x = y$ .

### Lemma

A graphic monoid is commutative iff all its elements are centric.

### Remark

There are graphic monoids (e.g. the graphic line) in which the only centric element is the neutral element. Such graphic monoids will be called *primitive* provided they also have non-centric elements.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Definition (centric elements)

An element  $x \in M$  is said to be *centric* if  $x \simeq y \implies x = y$ .

### Lemma

A graphic monoid is commutative iff all its elements are centric.

## Remark

There are graphic monoids (e.g. the graphic line) in which the only centric element is the neutral element. Such graphic monoids will be called *primitive* provided they also have non-centric elements.

・ロト ・ 日下・ ・ 田下・ ・ 日下・ く日下

## Definition (centric elements)

An element  $x \in M$  is said to be *centric* if  $x \simeq y \implies x = y$ .

### Lemma

A graphic monoid is commutative iff all its elements are centric.

### Remark

There are graphic monoids (e.g. the graphic line) in which the only centric element is the neutral element. Such graphic monoids will be called *primitive* provided they also have non-centric elements.

### Definition (moment structures)

A moment structure on a category  ${\mathcal M}$  consists of

- a set  $m_A$  of special endo's (*moments*) for each object A
- an operation  $f_*: m_A \rightarrow m_B$  for each  $f: A \rightarrow B$  such that

I 
$$1_A \in m_A$$
 $\phi_*(\psi) = \phi\psi$   $(\forall \phi, \psi \in m_A)$ 
( $gf)_* = g_*f_*$   $(\forall A \xrightarrow{f} B \xrightarrow{g} C)$ 
 $f\phi = f_*(\phi)f$   $(\forall \phi \in m_A, f : A \to B)$ 

### Definition (moment structures)

A moment structure on a category  ${\mathcal M}$  consists of

- a set  $m_A$  of special endo's (moments) for each object A
- an operation  $f_*: m_A \to m_B$  for each  $f: A \to B$  such that

1<sub>A</sub> 
$$\in$$
 m<sub>A</sub>
 $\phi_*(\psi) = \phi\psi$  ( $\forall \phi, \psi \in m_A$ )
(gf)<sub>\*</sub> = g<sub>\*</sub>f<sub>\*</sub> ( $\forall A \xrightarrow{f} B \xrightarrow{g} C$ )
 $f \phi = f_*(\phi)f$  ( $\forall \phi \in m_A, f : A \to B$ )

### Definition (moment structures)

A moment structure on a category  ${\mathcal M}$  consists of

- a set  $m_A$  of special endo's (moments) for each object A
- an operation  $f_*: m_A \to m_B$  for each  $f: A \to B$  such that

### Definition (moment structures)

A moment structure on a category  $\mathcal M$  consists of

- a set  $m_A$  of special endo's (moments) for each object A
- an operation  $f_*: m_A \to m_B$  for each  $f: A \to B$  such that

### Definition (moment structures)

A moment structure on a category  $\mathcal M$  consists of

- a set  $m_A$  of special endo's (moments) for each object A
- an operation  $f_*: m_A \to m_B$  for each  $f: A \to B$  such that

1<sub>A</sub> 
$$\in m_A$$
 $\phi_*(\psi) = \phi\psi$  ( $\forall \phi, \psi \in m_A$ )
 $(gf)_* = g_*f_*$  ( $\forall A \xrightarrow{f} B \xrightarrow{g} C$ )
 $f\phi = f_*(\phi)f$  ( $\forall \phi \in m_A, f : A \to B$ 

### Definition (moment structures)

A moment structure on a category  $\mathcal M$  consists of

- a set  $m_A$  of special endo's (moments) for each object A
- an operation  $f_*: m_A \to m_B$  for each  $f: A \to B$  such that

### Definition (moment structures)

A moment structure on a category  $\mathcal M$  consists of

- a set  $m_A$  of special endo's (moments) for each object A
- an operation  $f_*: m_A \to m_B$  for each  $f: A \to B$  such that

### Definition (moment structures)

A moment structure on a category  $\mathcal M$  consists of

- a set  $m_A$  of special endo's (moments) for each object A
- an operation  $f_*: m_A \to m_B$  for each  $f: A \to B$  such that

# Definition (active/inert maps of a moment structure)

A map  $f : A \to B$  is called *active* (resp. *inert*) if  $f_*(1_A) = 1_B$  (resp. there exists  $r : B \to A$  such that  $rf = 1_A$  and  $fr \in m_B$ ).

#### \_emma

- Epimorphisms are active; inert maps have unique retractions;
- A map f : A → B admits a factorization f = f<sub>inert</sub> f<sub>active</sub> if and only if the idempotent moment f<sub>\*</sub>(1<sub>A</sub>) splits.

#### Definition (moment categories)

- each inert map admits a unique active retraction;
- if fi = jg for i, j inert and f, g active, then gr = sf where r, s are the unique active retractions of i, j.

# Definition (active/inert maps of a moment structure)

A map  $f : A \to B$  is called *active* (resp. *inert*) if  $f_*(1_A) = 1_B$  (resp. there exists  $r : B \to A$  such that  $rf = 1_A$  and  $fr \in m_B$ ).

#### \_emma

- Epimorphisms are active; inert maps have unique retractions;
- A map f : A → B admits a factorization f = f<sub>inert</sub> f<sub>active</sub> if and only if the idempotent moment f<sub>\*</sub>(1<sub>A</sub>) splits.

## Definition (moment categories)

- each inert map admits a unique active retraction;
- if fi = jg for i, j inert and f, g active, then gr = sf where r, s are the unique active retractions of i, j.

# Definition (active/inert maps of a moment structure)

A map  $f : A \to B$  is called *active* (resp. *inert*) if  $f_*(1_A) = 1_B$  (resp. there exists  $r : B \to A$  such that  $rf = 1_A$  and  $fr \in m_B$ ).

### Lemma

- Epimorphisms are active; inert maps have *unique* retractions;
- A map f : A → B admits a factorization f = f<sub>inert</sub> f<sub>active</sub> if and only if the idempotent moment f<sub>\*</sub>(1<sub>A</sub>) splits.

## Definition (moment categories)

- each inert map admits a unique active retraction;
- if fi = jg for i, j inert and f, g active, then gr = sf where r, s are the unique active retractions of i, j.

# Definition (active/inert maps of a moment structure)

A map  $f : A \to B$  is called *active* (resp. *inert*) if  $f_*(1_A) = 1_B$  (resp. there exists  $r : B \to A$  such that  $rf = 1_A$  and  $fr \in m_B$ ).

### Lemma

## • Epimorphisms are active; inert maps have unique retractions;

 A map f : A → B admits a factorization f = f<sub>inert</sub>f<sub>active</sub> if and only if the idempotent moment f<sub>\*</sub>(1<sub>A</sub>) splits.

## Definition (moment categories)

- each inert map admits a unique active retraction;
- if fi = jg for i, j inert and f, g active, then gr = sf where r, s are the unique active retractions of i, j.

# Definition (active/inert maps of a moment structure)

A map  $f : A \to B$  is called *active* (resp. *inert*) if  $f_*(1_A) = 1_B$  (resp. there exists  $r : B \to A$  such that  $rf = 1_A$  and  $fr \in m_B$ ).

## Lemma

- Epimorphisms are active; inert maps have *unique* retractions;
- A map f : A → B admits a factorization f = f<sub>inert</sub> f<sub>active</sub> if and only if the idempotent moment f<sub>\*</sub>(1<sub>A</sub>) splits.

## Definition (moment categories)

- each inert map admits a unique active retraction;
- if fi = jg for i, j inert and f, g active, then gr = sf where r, s are the unique active retractions of i, j.

## Definition (active/inert maps of a moment structure)

A map  $f : A \to B$  is called *active* (resp. *inert*) if  $f_*(1_A) = 1_B$  (resp. there exists  $r : B \to A$  such that  $rf = 1_A$  and  $fr \in m_B$ ).

## Lemma

- Epimorphisms are active; inert maps have *unique* retractions;
- A map f : A → B admits a factorization f = f<sub>inert</sub> f<sub>active</sub> if and only if the idempotent moment f<sub>\*</sub>(1<sub>A</sub>) splits.

## Definition (moment categories)

- each inert map admits a unique active retraction;
- if fi = jg for i, j inert and f, g active, then gr = sf where r, s are the unique active retractions of i, j.

## Definition (active/inert maps of a moment structure)

A map  $f : A \to B$  is called *active* (resp. *inert*) if  $f_*(1_A) = 1_B$  (resp. there exists  $r : B \to A$  such that  $rf = 1_A$  and  $fr \in m_B$ ).

## Lemma

- Epimorphisms are active; inert maps have *unique* retractions;
- A map f : A → B admits a factorization f = f<sub>inert</sub> f<sub>active</sub> if and only if the idempotent moment f<sub>\*</sub>(1<sub>A</sub>) splits.

## Definition (moment categories)

A moment category is a category with an abstract active/inert factorization system such that

• each inert map admits a unique active retraction;

• if fi = jg for i, j inert and f, g active, then gr = sf where r, s are the unique active retractions of i, j.

# Definition (active/inert maps of a moment structure)

A map  $f : A \to B$  is called *active* (resp. *inert*) if  $f_*(1_A) = 1_B$  (resp. there exists  $r : B \to A$  such that  $rf = 1_A$  and  $fr \in m_B$ ).

## Lemma

- Epimorphisms are active; inert maps have *unique* retractions;
- A map f : A → B admits a factorization f = f<sub>inert</sub> f<sub>active</sub> if and only if the idempotent moment f<sub>\*</sub>(1<sub>A</sub>) splits.

## Definition (moment categories)

- each inert map admits a unique active retraction;
- if fi = jg for i, j inert and f, g active, then gr = sf where r, s are the unique active retractions of i, j.

## Proposition

A category  ${\cal M}$  is a moment category if and only if  ${\cal M}$  admits a moment structure in which all moments split.



## Proposition

A category  ${\cal M}$  is a moment category if and only if  ${\cal M}$  admits a moment structure in which all moments split.

## Proof.

## $\Leftarrow \mathsf{done}$

 $\Rightarrow \text{ Define } m_A = \{ \phi \in \mathcal{M}(A, A) \mid \phi_{act} \phi_{in} = 1 \}.$ For  $f : A \to B$  define  $f_* : m_A \to m_B$  by



## Proposition

A category  ${\cal M}$  is a moment category if and only if  ${\cal M}$  admits a moment structure in which all moments split.

## Proof.

 $\Leftarrow \mathsf{done}$ 

⇒ Define  $m_A = \{\phi \in \mathcal{M}(A, A) \mid \phi_{act}\phi_{in} = 1\}$ . For  $f : A \to B$  define  $f_* : m_A \to m_B$  by



# Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

## Example (corestriction categories – Cockett-Lack)

Corestriction categories correspond one-to-one to categories with *centric* moment structure.

## Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

## Example (simplex category $\Delta$ and Segal's category $\Gamma$ )

•  $[m] \xrightarrow{\phi} [n]$  is active/inert iff  $\phi$  endpoint/distance -preserving.  $(\underline{a}_1, \dots, \underline{a}_m)$ 

# Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

# Example (corestriction categories – Cockett-Lack)

Corestriction categories correspond one-to-one to categories with *centric* moment structure.

## Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

# Example (simplex category $\Delta$ and Segal's category $\Gamma$ )

- $[m] \xrightarrow{\phi} [n]$  is active/inert iff  $\phi$  endpoint/distance -preserving.
- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$  active/inert iff  $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}/|\underline{n}_i| = 1 \, \forall i$

# Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

# Example (corestriction categories – Cockett-Lack)

Corestriction categories correspond one-to-one to categories with *centric* moment structure.

# Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

# Example (simplex category $\Delta$ and Segal's category $\mathsf{\Gamma})$

•  $[m] \xrightarrow{\phi} [n]$  is active/inert iff  $\phi$  endpoint/distance -preserving. •  $m \xrightarrow{(n_1,\dots,n_m)} n$  active/inert iff  $n \in [1,\dots,n_m]$  =  $n/[n_1] = 1 \forall i$ 

# Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

# Example (corestriction categories – Cockett-Lack)

Corestriction categories correspond one-to-one to categories with *centric* moment structure.

# Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

# Example (simplex category $\Delta$ and Segal's category $\Gamma$ )

•  $[m] \stackrel{\phi}{\rightarrow} [n]$  is active/inert iff  $\phi$  endpoint/distance -preserving.

•  $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$  active/inert iff  $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}/|\underline{n}_i| = 1 \forall i$ .

# Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

# Example (corestriction categories – Cockett-Lack)

Corestriction categories correspond one-to-one to categories with *centric* moment structure.

# Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

# Example (simplex category $\Delta$ and Segal's category $\Gamma$ )

- $[m] \stackrel{\phi}{\rightarrow} [n]$  is active/inert iff  $\phi$  endpoint/distance -preserving.
- $\underline{\underline{m}} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{\underline{n}}$  active/inert iff  $\underline{\underline{n}}_1 \cup \dots \cup \underline{\underline{n}}_m = \underline{\underline{n}}/|\underline{\underline{n}}_i| = 1 \forall i$ .

# Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

# Example (corestriction categories – Cockett-Lack)

Corestriction categories correspond one-to-one to categories with *centric* moment structure.

# Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

# Example (simplex category $\Delta$ and Segal's category $\Gamma$ )

- $[m] \stackrel{\phi}{\rightarrow} [n]$  is active/inert iff  $\phi$  endpoint/distance -preserving.
- $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$  active/inert iff  $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}/|\underline{n}_i| = 1 \, \forall i$ .

### Lemma

For any object A of a moment category, the poset  $(m_A, \preceq)$  of moments of A is isomorphic to the poset of *inert* subobjets of A.

#### Definition (unital moment categories, e.g. $\Delta$ and $\Gamma$

A *unit* of a moment category is an object U such that  $m_U$  is primitive, and every active map with target U admits exactly one inert section.

A moment is *elementary* if it splits over a unit.

NOTATION FOR ELEMENTARY MOMENTS:  $e_{\alpha} \in el_{A} \subset m_{A}$ .

A *nilobject N* is an object such that  $el_N = \emptyset$ .

### Lemma

For any object A of a moment category, the poset  $(m_A, \preceq)$  of moments of A is isomorphic to the poset of *inert* subobjets of A.

# Definition (unital moment categories, e.g. $\Delta$ and $\Gamma$ )

A *unit* of a moment category is an object U such that  $m_U$  is primitive, and every active map with target U admits exactly one inert section.

A moment is *elementary* if it splits over a unit.

Notation for elementary moments:  $e_{\alpha} \in el_{A} \subset m_{A}$ .

A *nilobject* N is an object such that  $eI_N = \emptyset$ .

#### Lemma

For any object A of a moment category, the poset  $(m_A, \preceq)$  of moments of A is isomorphic to the poset of *inert* subobjets of A.

# Definition (unital moment categories, e.g. $\Delta$ and $\Gamma$ )

A *unit* of a moment category is an object U such that  $m_U$  is primitive, and every active map with target U admits exactly one inert section.

A moment is *elementary* if it splits over a unit. NOTATION FOR ELEMENTARY MOMENTS:  $e_{\alpha} \in el_A \subset m_A$ . A *nilobject* N is an object such that  $el_N = \emptyset$ . A moment category is said to be *unital* if it has units and for every active map  $f : A \longrightarrow B$ : if A is a nilobject then B as well.

#### Lemma

For any object A of a moment category, the poset  $(m_A, \preceq)$  of moments of A is isomorphic to the poset of *inert* subobjets of A.

# Definition (unital moment categories, e.g. $\Delta$ and $\Gamma$ )

A *unit* of a moment category is an object U such that  $m_U$  is primitive, and every active map with target U admits exactly one inert section.

A moment is *elementary* if it splits over a unit.

NOTATION FOR ELEMENTARY MOMENTS:  $e_{\alpha} \in el_A \subset m_A$ . A *nilobject* N is an object such that  $el_N = \emptyset$ . A moment category is said to be *unital* if it has units and for every active map  $f : A \longrightarrow B$ : if A is a nilobject then B as well.

#### Lemma

For any object A of a moment category, the poset  $(m_A, \preceq)$  of moments of A is isomorphic to the poset of *inert* subobjets of A.

# Definition (unital moment categories, e.g. $\Delta$ and $\Gamma$ )

A *unit* of a moment category is an object U such that  $m_U$  is primitive, and every active map with target U admits exactly one inert section.

A moment is *elementary* if it splits over a unit.

NOTATION FOR ELEMENTARY MOMENTS:  $e_{\alpha} \in el_A \subset m_A$ .

A *nilobject* N is an object such that  $eI_N = \emptyset$ .

#### Lemma

For any object A of a moment category, the poset  $(m_A, \preceq)$  of moments of A is isomorphic to the poset of *inert* subobjets of A.

# Definition (unital moment categories, e.g. $\Delta$ and $\Gamma$ )

A *unit* of a moment category is an object U such that  $m_U$  is primitive, and every active map with target U admits exactly one inert section.

A moment is *elementary* if it splits over a unit.

NOTATION FOR ELEMENTARY MOMENTS:  $e_{\alpha} \in el_A \subset m_A$ .

A *nilobject* N is an object such that  $eI_N = \emptyset$ .

#### Lemma

For any object A of a moment category, the poset  $(m_A, \preceq)$  of moments of A is isomorphic to the poset of *inert* subobjets of A.

## Definition (unital moment categories, e.g. $\Delta$ and $\Gamma$ )

A *unit* of a moment category is an object U such that  $m_U$  is primitive, and every active map with target U admits exactly one inert section.

A moment is *elementary* if it splits over a unit.

NOTATION FOR ELEMENTARY MOMENTS:  $e_{\alpha} \in el_A \subset m_A$ .

A *nilobject* N is an object such that  $eI_N = \emptyset$ .

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

Definition (wreath product of unital moment categories  $\mathcal{A},\mathcal{B})$ 

 $\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{ (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \mid \mathcal{A} \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{\mathcal{A}}, \mathcal{B}_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B}) \} \\ (f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \longrightarrow (\mathcal{A}', \mathcal{B}_{e_{\beta}}') \text{ where } f_{\alpha}^{\beta} \text{ for each } e_{\beta} \preceq f_{*}(e_{\alpha}) \end{array}$ 

## Examples (cf. Haugseng-Gepner, Lurie, Barwick)

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

Definition (wreath product of unital moment categories  $\mathcal{A},\mathcal{B})$ 

 $\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{ (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \mid \mathcal{A} \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{\mathcal{A}}, \mathcal{B}_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B}) \} \\ (f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \longrightarrow (\mathcal{A}', \mathcal{B}'_{e_{\beta}}) \text{ where } f_{\alpha}^{\beta} \text{ for each } e_{\beta} \preceq f_{*}(e_{\alpha}) \end{array}$ 

## Examples (cf. Haugseng-Gepner, Lurie, Barwick)

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

Definition (wreath product of unital moment categories  $\mathcal{A},\mathcal{B})$ 

 $\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{(A, B_{e_{\alpha}}) \mid A \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{A}, B_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B}) \} \\ (f, f_{\alpha}^{\beta}) : (A, B_{e_{\alpha}}) \longrightarrow (A', B'_{e_{\beta}}) \text{ where } f_{\alpha}^{\beta} \text{ for each } e_{\beta} \preceq f_{*}(e_{\alpha}) \end{array}$ 

## Examples (cf. Haugseng-Gepner, Lurie, Barwick)

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

## Definition (wreath product of unital moment categories $\mathcal{A}, \mathcal{B}$ )

 $Ob(\mathcal{A} \wr \mathcal{B}) = \{ (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \mid \mathcal{A} \in Ob(\mathcal{A}), e_{\alpha} \in e_{\mathcal{A}}, \mathcal{B}_{e_{\alpha}} \in Ob(\mathcal{B}) \}$  $(f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \longrightarrow (\mathcal{A}', \mathcal{B}'_{e_{\beta}}) \text{ where } f_{\alpha}^{\beta} \text{ for each } e_{\beta} \preceq f_{*}(e_{\alpha})$ 

## Examples (cf. Haugseng-Gepner, Lurie, Barwick)

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

## Definition (wreath product of unital moment categories $\mathcal{A}, \mathcal{B}$ )

$$Ob(\mathcal{A} \wr \mathcal{B}) = \{ (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \mid \mathcal{A} \in Ob(\mathcal{A}), e_{\alpha} \in el_{\mathcal{A}}, \mathcal{B}_{e_{\alpha}} \in Ob(\mathcal{B}) \}$$
  
(f  $f_{\alpha}^{\beta}$ )  $(\mathcal{A}, \mathcal{B}_{\alpha}) \longrightarrow (\mathcal{A}', \mathcal{B}')$  where  $f_{\alpha}^{\beta}$  for each  $e_{\alpha} \prec f_{\alpha}(e_{\alpha})$ 

## Examples (cf. Haugseng-Gepner, Lurie, Barwick)

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

## Definition (wreath product of unital moment categories $\mathcal{A}, \mathcal{B}$ )

$$\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{(\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \mid \mathcal{A} \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{\mathcal{A}}, \mathcal{B}_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B})\} \\ (f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \longrightarrow (\mathcal{A}', \mathcal{B}'_{e_{\beta}}) \text{ where } f_{\alpha}^{\beta} \text{ for each } e_{\beta} \preceq f_{*}(e_{\alpha}) \end{array}$$

#### Examples (cf. Haugseng-Gepner, Lurie, Barwick)

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

## Definition (wreath product of unital moment categories $\mathcal{A}, \mathcal{B}$ )

$$\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{(\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \mid \mathcal{A} \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{\mathcal{A}}, \mathcal{B}_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B})\} \\ (f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \longrightarrow (\mathcal{A}', \mathcal{B}'_{e_{\beta}}) \text{ where } f_{\alpha}^{\beta} \text{ for each } e_{\beta} \preceq f_{*}(e_{\alpha}) \end{array}$$

## Examples (cf. Haugseng-Gepner, Lurie, Barwick)

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

## Definition (wreath product of unital moment categories $\mathcal{A}, \mathcal{B}$ )

$$\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{(\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \mid \mathcal{A} \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{\mathcal{A}}, \mathcal{B}_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B})\} \\ (f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \longrightarrow (\mathcal{A}', \mathcal{B}'_{e_{\beta}}) \text{ where } f_{\alpha}^{\beta} \text{ for each } e_{\beta} \preceq f_{*}(e_{\alpha}) \end{array}$$

## Examples (cf. Haugseng-Gepner, Lurie, Barwick)

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

## Definition (wreath product of unital moment categories $\mathcal{A}, \mathcal{B}$ )

$$\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{(\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \mid \mathcal{A} \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{\mathcal{A}}, \mathcal{B}_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B})\} \\ (f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \longrightarrow (\mathcal{A}', \mathcal{B}'_{e_{\beta}}) \text{ where } f_{\alpha}^{\beta} \text{ for each } e_{\beta} \preceq f_{*}(e_{\alpha}) \end{array}$$

## Examples (cf. Haugseng-Gepner, Lurie, Barwick)

# Definition ( $\mathcal{M}$ -operads for unital moment categories $\mathcal{M}$ )

An  $\mathcal{M}$ -operad  $\mathcal{O}$  in a symmetric monoidal category  $(\mathcal{E}, \otimes, I)$ assigns to each object A of  $\mathcal{M}$  an object  $\mathcal{O}(A)$  of  $\mathcal{E}$ , equipped with

- a unit  $I \to \mathcal{O}(U)$  in  $\mathcal{E}$  for each unit U in  $\mathcal{M}$ ;
- a unital, associative composition O(A) ⊗ O(f) → O(B) for each active f : A → B, where O(f) = ⊗<sub>e<sub>α</sub>∈el<sub>A</sub></sub>B<sub>f<sub>\*</sub>(e<sub>α</sub>)</sub>.

## Definition (wreath product of unital moment categories $\mathcal{A}, \mathcal{B}$ )

$$\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{(\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \mid \mathcal{A} \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{\mathcal{A}}, \mathcal{B}_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B})\}\\ (f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{e_{\alpha}}) \longrightarrow (\mathcal{A}', \mathcal{B}'_{e_{\beta}}) \text{ where } f_{\alpha}^{\beta} \text{ for each } e_{\beta} \preceq f_{*}(e_{\alpha}) \end{array}$$

# Examples (cf. Haugseng-Gepner, Lurie, Barwick)