Hyperplane arrangements, graphic monoids and moment categories

Clemens Berger

University of Nice-Sophia Antipolis

CT 2016 in Halifax
August 11, 2016
(1) Introduction
(2) Hyperplane arrangements
(3) Graphic monoids
(4) Moment categories
(5) Unital moment categories

Purpose of the talk

（hyperplane arrangements）$\stackrel{\text { algebraisation }}{\rightsquigarrow}$（graphic monoids） （graphic monoids）$\stackrel{\text { categorification }}{\rightsquigarrow \rightarrow}$（moment categories） （unital moment categories）$\xrightarrow{\text { semantics }}$（operads）

Examples（Fox－Neuwirth，Salvetti，McClure－Smith，Berger－Fresse）

（braid arrangements）$m>$（symmetric groups）$\rightsquigarrow>\left(E_{n}\right.$－operads）

Purpose of the talk

$$
\begin{aligned}
& \text { (hyperplane arrangements) }{ }^{\text {algebraisation }} \text { (graphic monoids) } \\
& \text { (graphic monoids) }) \text { categorification }(\text { moment categories }) \\
& \text { (unital moment categories) }) \text { semantics }(\text { operads })
\end{aligned}
$$

Examples (Fox-Neuwirth, Salvetti, McClure-Smith, Berger-Fresse)
(braid arrangements) $\rightsquigarrow \rightsquigarrow$ (symmetric groups) $\rightsquigarrow \rightsquigarrow\left(E_{n}\right.$-operads)

Purpose of the talk

(hyperplane arrangements) $\stackrel{\text { algebraisation }}{\underset{\sim}{l}}$ (graphic monoids)

(graphic monoids) ${ }^{\text {categorification }} \underset{\sim}{ }$ (moment categories)
(unital moment categories) ${ }^{\text {semantics }}$ (operads)

Examples (Fox-Neuwirth, Salvetti, McClure-Smith, Berger-Fresse)

(braid arrangements) $\rightsquigarrow \rightsquigarrow$ (symmetric groups) $\rightsquigarrow \rightsquigarrow\left(E_{n}\right.$-operads)

Definition (hyperplane arrangements in \mathbb{R}^{n})

A linear hyperplane arrangement $\mathcal{A}=\left\{H_{\alpha} \subset \mathbb{R}^{n}, \alpha \in|\mathcal{A}|\right\}$ is

- essential iff $\bigcap_{\alpha \in|\mathcal{A}|} H_{\alpha}=(0)$;
- Coxeter iff $\forall \alpha, \beta \in|\mathcal{A}|: s_{\alpha}\left(H_{\beta}\right) \in \mathcal{A}$ where s_{α} is the orthogonal reflection with respect to the hyperplane H_{α}.

Proposition (Coxeter, Tits)

There is a one-to-one correspondence
(essential Coxeter arrangements) $\xlongequal[\leftrightarrows]{\leftrightarrows}$ (finite Coxeter groups)

Definition (hyperplane arrangements in \mathbb{R}^{n})

A linear hyperplane arrangement $\mathcal{A}=\left\{H_{\alpha} \subset \mathbb{R}^{n}, \alpha \in|\mathcal{A}|\right\}$ is

- essential iff $\bigcap_{\alpha \in|\mathcal{A}|} H_{\alpha}=(0)$;
- Coxeter iff $\forall \alpha, \beta \in|\mathcal{A}|: s_{\alpha}\left(H_{\beta}\right) \in \mathcal{A}$ where s_{α} is the orthogonal reflection with respect to the hyperplane H_{α}.

Proposition (Coxeter, Tits)

There is a one-to-one correspondence
(essential Coxeter arrangements) $\xlongequal[\leftrightarrows]{\leftrightarrows}$ (finite Coxeter groups)

Definition (hyperplane arrangements in \mathbb{R}^{n})

A linear hyperplane arrangement $\mathcal{A}=\left\{H_{\alpha} \subset \mathbb{R}^{n}, \alpha \in|\mathcal{A}|\right\}$ is

- essential iff $\bigcap_{\alpha \in|\mathcal{A}|} H_{\alpha}=(0)$;
- Coxeter iff $\forall \alpha, \beta \in|\mathcal{A}|: s_{\alpha}\left(H_{\beta}\right) \in \mathcal{A}$ where s_{α} is the orthogonal reflection with respect to the hyperplane H_{α}.

Proposition (Coxeter, Tits)
There is a one-to-one correspondence
(essential Coxeter arrangements) $\underset{\stackrel{~}{\leftrightarrows}}{(\text { finite Coxeter groups) }}$

Definition (hyperplane arrangements in \mathbb{R}^{n})

A linear hyperplane arrangement $\mathcal{A}=\left\{H_{\alpha} \subset \mathbb{R}^{n}, \alpha \in|\mathcal{A}|\right\}$ is

- essential iff $\bigcap_{\alpha \in|\mathcal{A}|} H_{\alpha}=(0)$;
- Coxeter iff $\forall \alpha, \beta \in|\mathcal{A}|: s_{\alpha}\left(H_{\beta}\right) \in \mathcal{A}$ where s_{α} is the orthogonal reflection with respect to the hyperplane H_{α}.

Proposition (Coxeter, Tits)

There is a one-to-one correspondence
(essential Coxeter arrangements) $\xlongequal{\curvearrowleft}$ (finite Coxeter groups)

$$
\mathcal{A}_{G} \stackrel{\cong}{\stackrel{ }{\leftrightarrows}} G
$$

Example (symmetric group \mathfrak{S}_{3} and its $\mathcal{A}_{\mathfrak{S}_{3}}$ in \mathbb{R}^{2})

Definition (face poset $\mathcal{F}_{\mathcal{A}}$)

$$
\mathcal{F}_{\mathcal{A}_{\mathfrak{E}_{3}}}=\{6 \text { facets of } \operatorname{dim} 2,6 \text { facets of } \operatorname{dim} 1,1 \text { facet of } \operatorname{dim} 0\}
$$

Example (symmetric group \mathfrak{S}_{3} and its $\mathcal{A}_{\mathfrak{S}_{3}}$ in \mathbb{R}^{2})

Definition (face poset $\mathcal{F}_{\mathcal{A}}$)

Example (symmetric group \mathfrak{S}_{3} and its $\mathcal{A}_{\mathfrak{S}_{3}}$ in \mathbb{R}^{2})

Definition (face poset $\mathcal{F}_{\mathcal{A}}$)

$$
\mathcal{F}_{\mathcal{A}_{\mathfrak{G}_{3}}}=\{6 \text { facets of } \operatorname{dim} 2,6 \text { facets of dim } 1,1 \text { facet of dim } 0\}
$$

Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$x y=z \stackrel{\text { def }}{\Longleftrightarrow} \forall s \in x, t \in y: s+\epsilon(t-s) \in z$ for $\epsilon>0$ small

- (0) is neutral element;
- $x y x=x y \quad \forall x \quad y \in F_{A}$.
- $x \subset \bar{y} \Longleftrightarrow x y=y$;
- the univ. comm. quotient of $\mathcal{F}_{\mathcal{A}}$ is a geometric lattice $\mathcal{L}_{\mathcal{A}}$.

Definition (k-th complement of an arrangement)

Theorem (Orlik-Solomon, Salvetti)

$\mathcal{L}_{\mathcal{A}}\left(\mathcal{F}_{\mathcal{A}}\right)$ determines cohomology (homotopy type) of $M_{2}(\mathcal{A})$

Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$$
x y=z \stackrel{\text { def }}{\Longleftrightarrow} \forall s \in x, t \in y: s+\epsilon(t-s) \in z \text { for } \epsilon>0 \text { small }
$$

- (0) is neutral element;
- $x y x=x y \quad \forall x, y \in \mathcal{F}_{4}$:
- $x \subset \bar{y} \Longleftrightarrow x y=y$;
- the univ. comm. quotient of $\mathcal{F}_{\mathcal{A}}$ is a geometric lattice $\mathcal{L}_{\mathcal{A}}$.

Definition (k-th complement of an arrangement)

Theorem (Orlik-Solomon, Salvetti)

$\mathcal{L}_{\mathcal{A}}\left(\mathcal{F}_{\mathcal{A}}\right)$ determines cohomology (homotopy type) of $M_{2}(\mathcal{A})$

Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$x y=z \stackrel{\text { def }}{\Longleftrightarrow} \forall s \in x, t \in y: s+\epsilon(t-s) \in z$ for $\epsilon>0$ small

- (0) is neutral element;
- $x y x=x y \quad \forall x, y \in \mathcal{F}_{\mathcal{A}}$;
- $x \subset \bar{y} \Longleftrightarrow x y=y$;
- the univ. comm. quotient of $\mathcal{F}_{\mathcal{A}}$ is a geometric lattice $\mathcal{L}_{\mathcal{A}}$

Definition (k-th complement of an arrangement)

Theorem (Orlik-Solomon, Salvetti)

$\mathcal{C}_{1}\left(F_{A}\right)$ determines cohomology (homotopy type) of $M_{2}(\mathcal{A})$

Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$x y=z \stackrel{\text { def }}{\Longleftrightarrow} \forall s \in x, t \in y: s+\epsilon(t-s) \in z$ for $\epsilon>0$ small

- (0) is neutral element;
- $x y x=x y \quad \forall x, y \in \mathcal{F}_{\mathcal{A}}$;
- $x \subset \bar{y} \Longleftrightarrow x y=y$;
- the univ. comm. quotient of $\mathcal{F}_{\mathcal{A}}$ is a geometric lattice $\mathcal{L}_{\mathcal{A}}$

Definition (k-th complement of an arrangement)

Theorem (Orlik-Solomon, Salvetti)

$\mathcal{L}_{1}\left(F_{\mathcal{A}}\right)$ determines cohomology (homotopy type) of $M_{2}(\mathcal{A})$

Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$x y=z \stackrel{\text { def }}{\Longleftrightarrow} \forall s \in x, t \in y: s+\epsilon(t-s) \in z$ for $\epsilon>0$ small

- (0) is neutral element;
- $x y x=x y \quad \forall x, y \in \mathcal{F}_{\mathcal{A}}$;
- $x \subset \bar{y} \Longleftrightarrow x y=y$;
- the univ. comm. quotient of $\mathcal{F}_{\mathcal{A}}$ is a geometric lattice $\mathcal{L}_{\mathcal{A}}$

Definition (k-th complement of an arrangement)

Theorem (Orlik-Solomon, Salvetti)

$\mathcal{L}_{1}\left(F_{\mathcal{A}}\right)$ determines cohomology (homotopy type) of $M_{2}(\mathcal{A})$

Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)
$x y=z \stackrel{\text { def }}{\Longleftrightarrow} \forall s \in x, t \in y: s+\epsilon(t-s) \in z$ for $\epsilon>0$ small

- (0) is neutral element;
- $x y x=x y \quad \forall x, y \in \mathcal{F}_{\mathcal{A}}$;
- $x \subset \bar{y} \Longleftrightarrow x y=y$;
- the univ. comm. quotient of $\mathcal{F}_{\mathcal{A}}$ is a geometric lattice $\mathcal{L}_{\mathcal{A}}$.

Definition (k-th complement of an arrangement)

Theorem (Orlik-Solomon, Salvetti)

$\mathcal{L}_{\mathcal{A}}\left(\mathcal{F}_{\mathcal{A}}\right)$ determines cohomology (homotopy type) of $M_{2}(\mathcal{A})$

Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)
$x y=z \stackrel{\text { def }}{\Longleftrightarrow} \forall s \in x, t \in y: s+\epsilon(t-s) \in z$ for $\epsilon>0$ small

- (0) is neutral element;
- $x y x=x y \quad \forall x, y \in \mathcal{F}_{\mathcal{A}}$;
- $x \subset \bar{y} \Longleftrightarrow x y=y$;
- the univ. comm. quotient of $\mathcal{F}_{\mathcal{A}}$ is a geometric lattice $\mathcal{L}_{\mathcal{A}}$.

Definition (k-th complement of an arrangement)

$$
M_{k}(\mathcal{A})=\mathbb{R}^{n} \otimes \mathbb{R}^{k}-\bigcup_{\alpha \in|\mathcal{A}|} H_{\alpha} \otimes \mathbb{R}^{k}
$$

Theorem (Orlik-Solomon, Salvetti)
$\mathcal{L}_{\mathcal{A}}\left(\mathcal{F}_{\mathcal{A}}\right)$ determines cohomology (homotopy type) of $M_{2}(\mathcal{A})$

Lemma (face monoid $\mathcal{F}_{\mathcal{A}}$ with facets x, y, z)

$$
x y=z \stackrel{\text { def }}{\Longleftrightarrow} \forall s \in x, t \in y: s+\epsilon(t-s) \in z \text { for } \epsilon>0 \text { small }
$$

- (0) is neutral element;
- $x y x=x y \quad \forall x, y \in \mathcal{F}_{\mathcal{A}}$;
- $x \subset \bar{y} \Longleftrightarrow x y=y$;
- the univ. comm. quotient of $\mathcal{F}_{\mathcal{A}}$ is a geometric lattice $\mathcal{L}_{\mathcal{A}}$.

Definition (k-th complement of an arrangement)

$$
M_{k}(\mathcal{A})=\mathbb{R}^{n} \otimes \mathbb{R}^{k}-\bigcup_{\alpha \in|\mathcal{A}|} H_{\alpha} \otimes \mathbb{R}^{k}
$$

Theorem (Orlik-Solomon, Salvetti)

$\mathcal{L}_{\mathcal{A}}\left(\mathcal{F}_{\mathcal{A}}\right)$ determines cohomology (homotopy type) of $M_{2}(\mathcal{A})$.

Definition (skew lattice, left regular band, graphic monoid)

A monoid $(M, \cdot, 1)$ is called graphic iff $\forall x, y \in M: x y x=x y$.

Lemma
In any graphic monoid M one has

Definition (skew lattice, left regular band, graphic monoid)

A monoid $(M, \cdot, 1)$ is called graphic iff $\forall x, y \in M: x y x=x y$.

Lemma
In any graphic monoid M one has

Definition (skew lattice, left regular band, graphic monoid)

A monoid $(M, \cdot, 1)$ is called graphic iff $\forall x, y \in M: x y x=x y$.

Lemma

In any graphic monoid M one has

- $x^{2}=x$ (all elements are idempotent):
- $x \preceq y \stackrel{\text { def }}{\Longleftrightarrow} y x=x$ is a partial order (the right Green order);
- $x y=y x$ if and only if $x \wedge y$ exists in (M, \preceq);
- $x \simeq y \stackrel{\text { def }}{\Longleftrightarrow} x y=x$ and $y x=y$ is a congruence on (M, \cdot) The quotient M / \simeq is the universal comm. quotient of M (the so-called support semi-meet lattice of M).

Definition (skew lattice, left regular band, graphic monoid)
A monoid $(M, \cdot, 1)$ is called graphic iff $\forall x, y \in M: x y x=x y$.

Lemma

In any graphic monoid M one has

- $x^{2}=x$ (all elements are idempotent);
- $x \preceq y \stackrel{\text { def }}{\Longleftrightarrow} y x=x$ is a partial order (the right Green order);
- $x y=y x$ if and only if $x \wedge y$ exists in (M, \preceq);
$\cdots \sim y \stackrel{\text { def }}{\longleftrightarrow} x y=x$ and $y x=y$ is a congruence on $(M$,$) .$ The quotient M / \simeq is the universal comm. quotient of M (the so-called support semi-meet lattice of M).

Definition (skew lattice, left regular band, graphic monoid)

A monoid $(M, \cdot, 1)$ is called graphic iff $\forall x, y \in M: x y x=x y$.

Lemma

In any graphic monoid M one has

- $x^{2}=x$ (all elements are idempotent);
- $x \preceq y \stackrel{\text { def }}{\Longleftrightarrow} y x=x$ is a partial order (the right Green order);
- $x y=y x$ if and only if $x \wedge y$ exists in (M, \preceq);
- $x \simeq y \stackrel{\text { def }}{\Longleftrightarrow} x y=x$ and $y x=y$ is a congruence on (M, \cdot) The quotient M / \simeq is the universal comm. quotient of M (the so-called support semi-meet lattice of M)

Definition (skew lattice, left regular band, graphic monoid)

A monoid $(M, \cdot, 1)$ is called graphic iff $\forall x, y \in M: x y x=x y$.

Lemma

In any graphic monoid M one has

- $x^{2}=x$ (all elements are idempotent);
- $x \preceq y \stackrel{\text { def }}{\Longleftrightarrow} y x=x$ is a partial order (the right Green order);
- $x y=y x$ if and only if $x \wedge y$ exists in (M, \preceq);
 (the so-called support semi-meet lattice of M)

Definition (skew lattice, left regular band, graphic monoid)

A monoid $(M, \cdot, 1)$ is called graphic iff $\forall x, y \in M: x y x=x y$.

Lemma

In any graphic monoid M one has

- $x^{2}=x$ (all elements are idempotent);
- $x \preceq y \stackrel{\text { def }}{\Longleftrightarrow} y x=x$ is a partial order (the right Green order);
- $x y=y x$ if and only if $x \wedge y$ exists in (M, \preceq);
- $x \simeq y \stackrel{\text { def }}{\Longleftrightarrow} x y=x$ and $y x=y$ is a congruence on (M, \cdot). The quotient M / \simeq is the universal comm. quotient of M (the so-called support semi-meet lattice of M).

Example (graphic line $L=\mathcal{F}_{\mathcal{A}_{\mathscr{E}_{2}}}$)

The three-element set $L=\{0, \pm\}$ is a graphic monoid for $++=+,--=-,-+=-,+-=+$ with neutral element 0 .

Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism $M \rightarrow L$. M is said to have enough hyperplanes if any two elements $x, y \in M$ can be distinguished by their values on hyperplanes.

Lemma (relationship with oriented matroids)

For each hyperplane arrangement \mathcal{A} the face monoid $\mathcal{F}_{\mathcal{A}}$ is a graphic submonoid of $L^{|\mathcal{A}|}$. More generally, any graphic monoid M with enough hyperplanes embeds into a product of graphic lines.

Example (graphic line $L=\mathcal{F}_{\mathcal{A}_{\tilde{E}_{2}}}$)

The three-element set $L=\{0, \pm\}$ is a graphic monoid for $++=+,--=-,-+=-,+-=+$ with neutral element 0 .

Definition (abstract hyperplanes)
A hyperplane of a graphic monoid M is any epimorphism $M \rightarrow L$. M is said to have enough hyperplanes if any two elements $x, y \in M$ can be distinguished by their values on hyperplanes.

Lemma (relationship with oriented matroids)

For each hyperplane arrangement \mathcal{A} the face monoid $\mathcal{F}_{\mathcal{A}}$ is a graphic submonoid of $L^{|\mathcal{A}|}$. More generally, any graphic monoid M with enough hyperplanes embeds into a product of graphic lines

Example (graphic line $L=\mathcal{F}_{\mathcal{A}_{\mathfrak{G}_{2}}}$)

The three-element set $L=\{0, \pm\}$ is a graphic monoid for $++=+,--=-,-+=-,+-=+$ with neutral element 0 .

Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism $M \rightarrow L$. M is said to have enough hyperplanes if any two elements $x, y \in M$ can be distinguished by their values on hyperplanes.

Lemma (relationship with oriented matroids)
For each hyperplane arrangement \mathcal{A} the face monoid $\mathcal{F}_{\mathcal{A}}$ is a graphic submonoid of $L^{|\mathcal{A}|}$. More generally, any graphic monoid M with enough hyperplanes embeds into a product of graphic lines

Example (graphic line $L=\mathcal{F}_{\mathcal{A}_{\mathcal{G}_{2}}}$)

The three-element set $L=\{0, \pm\}$ is a graphic monoid for $++=+,--=-,-+=-,+-=+$ with neutral element 0 .

Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism $M \rightarrow L$. M is said to have enough hyperplanes if any two elements $x, y \in M$ can be distinguished by their values on hyperplanes.

Lemma (relationship with oriented matroids)

For each hyperplane arrangement \mathcal{A} the face monoid $\mathcal{F}_{\mathcal{A}}$ is a graphic submonoid of $L^{|\mathcal{A}|}$. More generally, any graphic monoid M with enough hyperplanes embeds into a product of graphic lines.

Definition (centric elements)
 An element $x \in M$ is said to be centric if $x \simeq y \Longrightarrow x=y$.

Lemma
A graphic monoid is commutative iff all its elements are centric.

Remark

There are graphic monoids (e.g. the graphic line) in which the only centric element is the neutral element.

Definition (centric elements)
 An element $x \in M$ is said to be centric if $x \simeq y \Longrightarrow x=y$.
 Lemma
 A graphic monoid is commutative iff all its elements are centric.
 Remark
 There are sraphic monoids (e.g. the graphic line) in which the only centric element is the neutral element.

Definition (centric elements)

An element $x \in M$ is said to be centric if $x \simeq y \Longrightarrow x=y$.

Lemma

A graphic monoid is commutative iff all its elements are centric.

Remark

There are graphic monoids (e.g. the graphic line) in which the only centric element is the neutral element.

Definition (centric elements)

An element $x \in M$ is said to be centric if $x \simeq y \Longrightarrow x=y$.

Lemma

A graphic monoid is commutative iff all its elements are centric.

Remark

There are graphic monoids (e.g. the graphic line) in which the only centric element is the neutral element. Such graphic monoids will be called primitive provided they also have non-centric elements.

Definition (centric elements)

An element $x \in M$ is said to be centric if $x \simeq y \Longrightarrow x=y$.

Lemma

A graphic monoid is commutative iff all its elements are centric.

Remark

There are graphic monoids (e.g. the graphic line) in which the only centric element is the neutral element. Such graphic monoids will be called primitive provided they also have non-centric elements.

Definition (moment structures)

A moment structure on a category \mathcal{M} consists of

- a set m_{A} of special endo's (moments) for each object A
- an oneration $f: m_{A} \rightarrow m_{B}$ for each $f: A \rightarrow B$ such that
(1) $1_{A} \in m_{A}$
(2) $\phi(a / n)-\phi a \quad\left(\forall \phi, \psi \in m_{A}\right)$
(3) $(g f)_{*}=g_{*} f_{*} \quad(\forall A \xrightarrow{f} B \xrightarrow{g} C)$
(4) $f \phi=f_{*}(\phi) f \quad\left(\forall \phi \in m_{A}, f: A \rightarrow B\right)$

Axioms 1 and 2 imply: m_{A} is a submonoid of $\mathcal{M}(A, A)$.
Axioms 2 and 4 imply: m_{A} is graphic: $\psi \phi=\psi_{*}(\phi) \psi=\psi \phi \psi$.
Axioms 2, 3, 4 imply: $f_{*}(\phi \psi)=f_{*}(\phi) f_{*}(\psi)$.
In general: $f_{*}\left(1_{A}\right) \neq 1_{B}$

Definition (moment structures)

A moment structure on a category \mathcal{M} consists of

- a set m_{A} of special endo's (moments) for each object A
- an operation $f_{*}: m_{A} \rightarrow m_{B}$ for each $f: A \rightarrow B$ such that
(1) $1_{A} \in m_{A}$
(2) $\phi_{*}(\psi)=\phi \psi \quad\left(\forall \phi, \psi \in m_{A}\right)$

(0) $f \phi=f_{*}(\phi) f \quad\left(\forall \phi \in m_{A}, f: A \rightarrow B\right)$

Axioms 1 and 2 imply: m_{A} is a submonoid of $\mathcal{M}(A, A)$
Axioms 2 and 4 imply: m_{A} is graphic: $\psi \phi=\psi_{*}(\phi) \psi=\psi \phi \psi$
Axioms 2, 3, 4 imply: $f_{*}(\phi \psi)=f_{*}(\phi) f_{*}(\psi)$.
In general: $f_{*}\left(1_{A}\right) \neq 1_{B}$

Definition (moment structures)

A moment structure on a category \mathcal{M} consists of

- a set m_{A} of special endo's (moments) for each object A
- an operation $f_{*}: m_{A} \rightarrow m_{B}$ for each $f: A \rightarrow B$ such that
(1) $1_{A} \in m_{A}$
(2) $\phi_{*}(\psi)=\phi \psi \quad\left(\forall \phi, \psi \in m_{A}\right)$

(1) $f \phi=f_{*}(\phi) f \quad\left(\forall \phi \in m_{A}, f: A \rightarrow B\right)$

Axioms 1 and 2 imply: m_{A} is a submonoid of $\mathcal{M}(A, A)$
Axioms 2 and 4 imply: m_{A} is graphic: $\psi \phi=\psi_{*}(\phi) \psi=\psi \phi \psi$
Axioms 2, 3, 4 imply: $f_{*}(\phi \psi)=f_{*}(\phi) f_{*}(\psi)$
In general: $f_{*}\left(1_{A}\right) \neq 1_{B}$

Definition (moment structures)

A moment structure on a category \mathcal{M} consists of

- a set m_{A} of special endo's (moments) for each object A
- an operation $f_{*}: m_{A} \rightarrow m_{B}$ for each $f: A \rightarrow B$ such that
(1) $1_{A} \in m_{A}$
(2) $\phi_{*}(\psi)=\phi \psi \quad\left(\forall \phi, \psi \in m_{A}\right)$
(3) $(g f)_{*}=g_{*} f_{*} \quad(\forall A \xrightarrow{f} B \xrightarrow{g} C)$
(1) $f \phi=f_{*}(\phi) f \quad\left(\forall \phi \in m_{A}, f: A \rightarrow B\right)$

Axioms 1 and 2 imply: m_{A} is a submonoid of $\mathcal{M}(A, A)$
Axioms 2 and 4 imply: m_{A} is graphic: $\psi \phi=\psi_{*}(\phi) \psi=\psi \phi \psi$
Axioms 2, 3, 4 imply: $f_{*}(\phi \psi)=f_{*}(\phi) f_{*}(\psi)$.
In general: $f_{*}\left(1_{A}\right) \neq 1_{B}$

Definition (moment structures)

A moment structure on a category \mathcal{M} consists of

- a set m_{A} of special endo's (moments) for each object A
- an operation $f_{*}: m_{A} \rightarrow m_{B}$ for each $f: A \rightarrow B$ such that
(1) $1_{A} \in m_{A}$
(2) $\phi_{*}(\psi)=\phi \psi \quad\left(\forall \phi, \psi \in m_{A}\right)$
(3) $(g f)_{*}=g_{*} f_{*} \quad(\forall A \xrightarrow{f} B \xrightarrow{g} C)$
(0) $f \phi=f_{*}(\phi) f \quad\left(\forall \phi \in m_{A}, f: A \rightarrow B\right)$

Axioms 1 and 2 imply: m_{A} is a submonoid of $\mathcal{M}(A, A)$
Axioms 2 and 4 imply: m_{A} is graphic: $\psi \phi=\psi_{*}(\phi) \psi=\psi \phi \psi$
Axioms 2, 3, 4 imply: $f_{*}(\phi \psi)=f_{*}(\phi) f_{*}(\psi)$.
In general: $f_{*}\left(1_{A}\right) \neq 1_{B}$

Definition (moment structures)

A moment structure on a category \mathcal{M} consists of

- a set m_{A} of special endo's (moments) for each object A
- an operation $f_{*}: m_{A} \rightarrow m_{B}$ for each $f: A \rightarrow B$ such that
(1) $1_{A} \in m_{A}$
(2) $\phi_{*}(\psi)=\phi \psi \quad\left(\forall \phi, \psi \in m_{A}\right)$
(3) $(g f)_{*}=g_{*} f_{*} \quad(\forall A \xrightarrow{f} B \xrightarrow{g} C)$
(1) $f \phi=f_{*}(\phi) f \quad\left(\forall \phi \in m_{A}, f: A \rightarrow B\right)$

Axioms 1 and 2 imply: m_{A} is a submonoid of $\mathcal{M}(A, A)$
Axioms 2 and 4 imply: m_{A} is graphic: $\psi \phi=\psi_{*}(\phi) \psi=\psi \phi \psi$
Axioms 2, 3, 4 imply: $f_{*}(\phi \psi)=f_{*}(\phi) f_{*}(\psi)$.
In general: $f_{*}\left(1_{A}\right) \neq 1_{B}$

Definition (moment structures)

A moment structure on a category \mathcal{M} consists of

- a set m_{A} of special endo's (moments) for each object A
- an operation $f_{*}: m_{A} \rightarrow m_{B}$ for each $f: A \rightarrow B$ such that
(1) $1_{A} \in m_{A}$
(2) $\phi_{*}(\psi)=\phi \psi \quad\left(\forall \phi, \psi \in m_{A}\right)$
(3) $(g f)_{*}=g_{*} f_{*} \quad(\forall A \xrightarrow{f} B \xrightarrow{g} C)$
(9) $f \phi=f_{*}(\phi) f \quad\left(\forall \phi \in m_{A}, f: A \rightarrow B\right)$

Axioms 1 and 2 imply: m_{A} is a submonoid of $\mathcal{M}(A, A)$. Axioms 2 and 4 imply: m_{A} is graphic: $\psi \phi=\psi_{*}(\phi) \psi=\psi \phi \psi$. Axioms 2, 3, 4 imply: $f_{*}(\phi \psi)=f_{*}(\phi) f_{*}(\psi)$.

Definition (moment structures)

A moment structure on a category \mathcal{M} consists of

- a set m_{A} of special endo's (moments) for each object A
- an operation $f_{*}: m_{A} \rightarrow m_{B}$ for each $f: A \rightarrow B$ such that
(1) $1_{A} \in m_{A}$
(2) $\phi_{*}(\psi)=\phi \psi \quad\left(\forall \phi, \psi \in m_{A}\right)$
(3) $(g f)_{*}=g_{*} f_{*} \quad(\forall A \xrightarrow{f} B \xrightarrow{g} C)$
(9) $f \phi=f_{*}(\phi) f \quad\left(\forall \phi \in m_{A}, f: A \rightarrow B\right)$

Axioms 1 and 2 imply: m_{A} is a submonoid of $\mathcal{M}(A, A)$. Axioms 2 and 4 imply: m_{A} is graphic: $\psi \phi=\psi_{*}(\phi) \psi=\psi \phi \psi$. Axioms 2, 3, 4 imply: $f_{*}(\phi \psi)=f_{*}(\phi) f_{*}(\psi)$. In general: $f_{*}\left(1_{A}\right) \neq 1_{B}$.

Definition (active/inert maps of a moment structure)
 A map $f: A \rightarrow B$ is called active (resp. inert) if $f_{*}\left(1_{A}\right)=1_{B}$ (resp. there exists $r: B \rightarrow A$ such that $r f=1_{A}$ and $\left.f r \in m_{B}\right)$.

Lemma

Definition (moment categories)
 A moment category is a category with an abstract active/inert factorization system such that

Definition (active/inert maps of a moment structure)

A map $f: A \rightarrow B$ is called active (resp. inert) if $f_{*}\left(1_{A}\right)=1_{B}$ (resp. there exists $r: B \rightarrow A$ such that $r f=1_{A}$ and $\left.f r \in m_{B}\right)$.

Lemma

Definition (moment categories)

A moment category is a category with an abstract active/inert factorization system such that

Definition (active/inert maps of a moment structure)

A map $f: A \rightarrow B$ is called active (resp. inert) if $f_{*}\left(1_{A}\right)=1_{B}$ (resp. there exists $r: B \rightarrow A$ such that $r f=1_{A}$ and $\left.f r \in m_{B}\right)$.

Lemma

- Epimorphisms are active; inert maps have unique retractions; - A map $f: A \rightarrow B$ admits a factorization $f=f_{\text {inert }} f_{\text {active }}$ if and only if the idempotent moment $f_{*}\left(1_{A}\right)$ splits.

Definition (moment categories)

A moment category is a category with an abstract active/inert factorization system such that

Definition (active/inert maps of a moment structure)

A map $f: A \rightarrow B$ is called active (resp. inert) if $f_{*}\left(1_{A}\right)=1_{B}$ (resp. there exists $r: B \rightarrow A$ such that $r f=1_{A}$ and $\left.f r \in m_{B}\right)$.

Lemma

- Epimorphisms are active; inert maps have unique retractions;
 only if the idempotent moment $f_{*}\left(1_{A}\right)$ splits.

Definition (moment categories)

A moment category is a category with an abstract active/inert factorization system such that

Definition (active/inert maps of a moment structure)

A map $f: A \rightarrow B$ is called active (resp. inert) if $f_{*}\left(1_{A}\right)=1_{B}$ (resp. there exists $r: B \rightarrow A$ such that $r f=1_{A}$ and $\left.f r \in m_{B}\right)$.

Lemma

- Epimorphisms are active; inert maps have unique retractions;
- A map $f: A \rightarrow B$ admits a factorization $f=f_{\text {inert }} f_{\text {active }}$ if and only if the idempotent moment $f_{*}\left(1_{A}\right)$ splits.

Definition (moment categories)

A moment category is a category with an abstract active/inert factorization system such that

Definition (active/inert maps of a moment structure)

A map $f: A \rightarrow B$ is called active (resp. inert) if $f_{*}\left(1_{A}\right)=1_{B}$ (resp. there exists $r: B \rightarrow A$ such that $r f=1_{A}$ and $\left.f r \in m_{B}\right)$.

Lemma

- Epimorphisms are active; inert maps have unique retractions;
- A map $f: A \rightarrow B$ admits a factorization $f=f_{\text {inert }} f_{\text {active }}$ if and only if the idempotent moment $f_{*}\left(1_{A}\right)$ splits.

Definition (moment categories)

A moment category is a category with an abstract active/inert factorization system such that

- each inert map admits a unique active retraction;
- if $f i=j g$ for i, j inert and f, g active, then $g r=s f$ where r, s
are the unique active retractions of i, j.

Definition (active/inert maps of a moment structure)

A map $f: A \rightarrow B$ is called active (resp. inert) if $f_{*}\left(1_{A}\right)=1_{B}$ (resp. there exists $r: B \rightarrow A$ such that $r f=1_{A}$ and $\left.f r \in m_{B}\right)$.

Lemma

- Epimorphisms are active; inert maps have unique retractions;
- A map $f: A \rightarrow B$ admits a factorization $f=f_{\text {inert }} f_{\text {active }}$ if and only if the idempotent moment $f_{*}\left(1_{A}\right)$ splits.

Definition (moment categories)

A moment category is a category with an abstract active/inert factorization system such that

- each inert map admits a unique active retraction;

Definition (active/inert maps of a moment structure)

A map $f: A \rightarrow B$ is called active (resp. inert) if $f_{*}\left(1_{A}\right)=1_{B}$ (resp. there exists $r: B \rightarrow A$ such that $r f=1_{A}$ and $\left.f r \in m_{B}\right)$.

Lemma

- Epimorphisms are active; inert maps have unique retractions;
- A map $f: A \rightarrow B$ admits a factorization $f=f_{\text {inert }} f_{\text {active }}$ if and only if the idempotent moment $f_{*}\left(1_{A}\right)$ splits.

Definition (moment categories)

A moment category is a category with an abstract active/inert factorization system such that

- each inert map admits a unique active retraction;
- if $f i=j g$ for i, j inert and f, g active, then $g r=s f$ where r, s are the unique active retractions of i, j.

Proposition

A category \mathcal{M} is a moment category if and only if \mathcal{M} admits a moment structure in which all moments split.

Proof.
\Leftarrow done

Proposition

A category \mathcal{M} is a moment category if and only if \mathcal{M} admits a moment structure in which all moments split.

Proof.

\Leftarrow done
\Rightarrow Define $m_{A}=\left\{\phi \in \mathcal{M}(A, A) \mid \phi_{\text {act }} \phi_{\text {in }}=1\right\}$
For $f: A \rightarrow B$ define $f_{*}: m_{A} \rightarrow m_{B}$ by

Proposition

A category \mathcal{M} is a moment category if and only if \mathcal{M} admits a moment structure in which all moments split.

Proof.

\Leftarrow done
\Rightarrow Define $m_{A}=\left\{\phi \in \mathcal{M}(A, A) \mid \phi_{\text {act }} \phi_{\text {in }}=1\right\}$.
For $f: A \rightarrow B$ define $f_{*}: m_{A} \rightarrow m_{B}$ by

$$
\begin{aligned}
& A \longrightarrow B \\
& \phi_{a c t} \nmid \downarrow_{i n} \phi_{i n} \quad \psi_{i n} \dagger \downarrow \psi_{\text {act }} \quad \text { with } \quad f_{*}\left(\phi_{i n} \phi_{a c t}\right)=\psi_{i n} \psi_{a c t} . \\
& A_{\phi} \longrightarrow \underset{f^{\prime}}{\longrightarrow} B_{\psi}
\end{aligned}
$$

Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

Example (corestriction categories - Cockett-Lack)

Corestriction categories correspond one-to-one to categories with
centric moment structure.

Example (idempotent completion)

Each category with moment structure admits a canonica
idempotent completion into a moment category

Example (simplex category \triangle and Segal's category Γ)

Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

Example (corestriction categories - Cockett-Lack)

Corestriction categories correspond one-to-one to categories with centric moment structure.

> Example (idempotent completion)
> Each category with moment structure admits a canonical
> idempotent completion into a moment category.

Example (simplex category

Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

Example (corestriction categories - Cockett-Lack)

Corestriction categories correspond one-to-one to categories with centric moment structure.

Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

Example (corestriction categories - Cockett-Lack)

Corestriction categories correspond one-to-one to categories with centric moment structure.

Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

Example (simplex category Δ and Segal's category 「)

Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

Example (corestriction categories - Cockett-Lack)

Corestriction categories correspond one-to-one to categories with centric moment structure.

Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

Example (simplex category Δ and Segal's category 「)

- $[m] \xrightarrow{\phi}[n]$ is active/inert iff ϕ endpoint/distance -preserving.

Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories with moment structure such that all morphisms are moments.

Example (corestriction categories - Cockett-Lack)

Corestriction categories correspond one-to-one to categories with centric moment structure.

Example (idempotent completion)

Each category with moment structure admits a canonical idempotent completion into a moment category.

Example (simplex category Δ and Segal's category 「)

- $[m] \xrightarrow{\phi}[n]$ is active/inert iff ϕ endpoint/distance -preserving.
- $\underline{m} \xrightarrow{\left(\underline{n}_{1}, \ldots, n_{m}\right)} \underline{n}$ active/inert iff $\underline{n}_{1} \cup \cdots \cup \underline{n}_{m}=\underline{n} /\left|\underline{n}_{i}\right|=1 \forall i$.

Lemma

For any object A of a moment category, the poset (m_{A}, \preceq) of moments of A is isomorphic to the poset of inert subobjets of A.

Definition (unital moment categories, e.g. Δ and Γ)

Lemma

For any object A of a moment category, the poset (m_{A}, \preceq) of moments of A is isomorphic to the poset of inert subobjets of A.

> Definition (unital moment categories, e.g. Δ and Γ)
> A unit of a moment category is an object U such that m_{U} is primitive, and every active map with target U admits exactly one inert section
> A moment is elementary if it splits over a unit. NOTATION FOR ELEMENTARY MOMENTS: $e_{\alpha} \in e l_{A} \subset m_{A}$ A nilobject N is an object such that $e l_{N}=\emptyset$ A moment category is said to be unital if it has units and for every active map $f: A \longrightarrow B$: if A is a nilobject then B as well.

Lemma

For any object A of a moment category, the poset (m_{A}, \preceq) of moments of A is isomorphic to the poset of inert subobjets of A.

Definition (unital moment categories, e.g. \triangle and Γ)

A unit of a moment category is an object U such that m_{U} is primitive, and every active map with target U admits exactly one inert section.
A moment is elementary if it splits over a unit. NOTATION FOR ELEMENTARY MOMENTS: $e_{\alpha} \in e l_{A} \subset m_{A}$ A nilobject N is an object such that $e l_{N}=\emptyset$ A moment category is said to be unital if it has units and for every active map $f: A \longrightarrow B$: if A is a nilobject then B as well.

Lemma

For any object A of a moment category, the poset (m_{A}, \preceq) of moments of A is isomorphic to the poset of inert subobjets of A.

Definition (unital moment categories, e.g. \triangle and Γ)

A unit of a moment category is an object U such that m_{U} is primitive, and every active map with target U admits exactly one inert section.
A moment is elementary if it splits over a unit.

Lemma

For any object A of a moment category, the poset (m_{A}, \preceq) of moments of A is isomorphic to the poset of inert subobjets of A.

Definition (unital moment categories, e.g. \triangle and Γ)

A unit of a moment category is an object U such that m_{U} is primitive, and every active map with target U admits exactly one inert section.
A moment is elementary if it splits over a unit. NOTATION FOR ELEMENTARY MOMENTS: $e_{\alpha} \in e l_{A} \subset m_{A}$. A moment category is said to be unital if it has units and for every active map $f: A \longrightarrow B$: if A is a nilobject then B as well.

Lemma

For any object A of a moment category, the poset (m_{A}, \preceq) of moments of A is isomorphic to the poset of inert subobjets of A.

Definition (unital moment categories, e.g. \triangle and Γ)

A unit of a moment category is an object U such that m_{U} is primitive, and every active map with target U admits exactly one inert section.
A moment is elementary if it splits over a unit.
Notation for elementary moments: $e_{\alpha} \in e l_{A} \subset m_{A}$.
A nilobject N is an object such that $e_{N}=\emptyset$.
A moment category is said to be unital if it has units and for every active map $f: A \longrightarrow B$: if A is a nilobject then B as well

Lemma

For any object A of a moment category, the poset (m_{A}, \preceq) of moments of A is isomorphic to the poset of inert subobjets of A.

Definition (unital moment categories, e.g. \triangle and Γ)

A unit of a moment category is an object U such that m_{U} is primitive, and every active map with target U admits exactly one inert section.
A moment is elementary if it splits over a unit.
Notation for elementary moments: $e_{\alpha} \in e l_{A} \subset m_{A}$.
A nilobject N is an object such that $e l_{N}=\emptyset$.
A moment category is said to be unital if it has units and for every active map $f: A \longrightarrow B$: if A is a nilobject then B as well.

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, I)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, I)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

- a unit $I \rightarrow \mathcal{O}(U)$ in \mathcal{E} for each unit U in \mathcal{M};
- a unital, associative composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \longrightarrow B$, where $\mathcal{O}(f)=\otimes_{e_{\alpha} \in e I_{A}} B_{f_{*}\left(e_{\alpha}\right)}$.

Definition (wreath product of unital moment categories A, B)

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, /)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

- a unit $I \rightarrow \mathcal{O}(U)$ in \mathcal{E} for each unit U in \mathcal{M};
- a unital, associative composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \longrightarrow B$, where $\mathcal{O}(f)=\otimes_{e_{\alpha} \in e_{A}} B_{f_{*}\left(e_{\alpha}\right)}$.

Definition (wreath product of unital moment categories A, B)

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, I)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

- a unit $I \rightarrow \mathcal{O}(U)$ in \mathcal{E} for each unit U in \mathcal{M};
- a unital, associative composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \longrightarrow B$, where $\mathcal{O}(f)=\otimes_{e_{\alpha} \in e_{A}} B_{f_{*}\left(e_{\alpha}\right)}$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, I)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

- a unit $I \rightarrow \mathcal{O}(U)$ in \mathcal{E} for each unit U in \mathcal{M};
- a unital, associative composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \longrightarrow B$, where $\mathcal{O}(f)=\otimes_{e_{\alpha} \in e_{A}} B_{f_{*}\left(e_{\alpha}\right)}$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})
$\operatorname{Ob}(\mathcal{A} \backslash \mathcal{B})=\left\{\left(A, B_{e_{\alpha}}\right) \mid A \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{A}, B_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B})\right\}$

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, I)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

- a unit $I \rightarrow \mathcal{O}(U)$ in \mathcal{E} for each unit U in \mathcal{M};
- a unital, associative composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \longrightarrow B$, where $\mathcal{O}(f)=\otimes_{e_{\alpha} \in e_{A}} B_{f_{*}\left(e_{\alpha}\right)}$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})
$\operatorname{Ob}(\mathcal{A} \backslash \mathcal{B})=\left\{\left(A, B_{e_{\alpha}}\right) \mid A \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{A}, B_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B})\right\}$ $\left(f, f_{\alpha}^{\beta}\right):\left(A, B_{e_{\alpha}}\right) \longrightarrow\left(A^{\prime}, B_{e_{\beta}}^{\prime}\right)$ where f_{α}^{β} for each $e_{\beta} \preceq f_{*}\left(e_{\alpha}\right)$.

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, I)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

- a unit $I \rightarrow \mathcal{O}(U)$ in \mathcal{E} for each unit U in \mathcal{M};
- a unital, associative composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \longrightarrow B$, where $\mathcal{O}(f)=\otimes_{e_{\alpha} \in e_{A}} B_{f_{*}\left(e_{\alpha}\right)}$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})
$\operatorname{Ob}(\mathcal{A} \backslash \mathcal{B})=\left\{\left(A, B_{e_{\alpha}}\right) \mid A \in \operatorname{Ob}(\mathcal{A}), e_{\alpha} \in e_{A}, B_{e_{\alpha}} \in \operatorname{Ob}(\mathcal{B})\right\}$ $\left(f, f_{\alpha}^{\beta}\right):\left(A, B_{e_{\alpha}}\right) \longrightarrow\left(A^{\prime}, B_{e_{\beta}}^{\prime}\right)$ where f_{α}^{β} for each $e_{\beta} \preceq f_{*}\left(e_{\alpha}\right)$.

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Δ-operads=nonsymmetric operads; Γ-operads $=$ symmetric operads Θ_{n}-operads $=n$-operads (cf. Batanin) where $\Theta_{n}=\Delta^{2 n}$ (cf. Joyal)

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, I)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

- a unit $I \rightarrow \mathcal{O}(U)$ in \mathcal{E} for each unit U in \mathcal{M};
- a unital, associative composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \longrightarrow B$, where $\mathcal{O}(f)=\otimes_{e_{\alpha} \in e_{A}} B_{f_{*}\left(e_{\alpha}\right)}$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})
$\mathrm{Ob}(\mathcal{A} \backslash \mathcal{B})=\left\{\left(A, B_{e_{\alpha}}\right) \mid A \in \mathrm{Ob}(\mathcal{A}), e_{\alpha} \in e_{A}, B_{e_{\alpha}} \in \mathrm{Ob}(\mathcal{B})\right\}$ $\left(f, f_{\alpha}^{\beta}\right):\left(A, B_{e_{\alpha}}\right) \longrightarrow\left(A^{\prime}, B_{e_{\beta}}^{\prime}\right)$ where f_{α}^{β} for each $e_{\beta} \preceq f_{*}\left(e_{\alpha}\right)$.

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Δ-operads=nonsymmetric operads;

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, I)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

- a unit $I \rightarrow \mathcal{O}(U)$ in \mathcal{E} for each unit U in \mathcal{M};
- a unital, associative composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \longrightarrow B$, where $\mathcal{O}(f)=\otimes_{e_{\alpha} \in e_{A}} B_{f_{*}\left(e_{\alpha}\right)}$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})
$\mathrm{Ob}(\mathcal{A} \backslash \mathcal{B})=\left\{\left(A, B_{e_{\alpha}}\right) \mid A \in \mathrm{Ob}(\mathcal{A}), e_{\alpha} \in e_{A}, B_{e_{\alpha}} \in \mathrm{Ob}(\mathcal{B})\right\}$ $\left(f, f_{\alpha}^{\beta}\right):\left(A, B_{e_{\alpha}}\right) \longrightarrow\left(A^{\prime}, B_{e_{\beta}}^{\prime}\right)$ where f_{α}^{β} for each $e_{\beta} \preceq f_{*}\left(e_{\alpha}\right)$.

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Δ-operads $=$ nonsymmetric operads; Γ-operads $=$ symmetric operads Θ_{n}-operads=n-operads (cf. Batanin) where Θ_{n}

Definition (\mathcal{M}-operads for unital moment categories \mathcal{M})

An \mathcal{M}-operad \mathcal{O} in a symmetric monoidal category $(\mathcal{E}, \otimes, I)$ assigns to each object A of \mathcal{M} an object $\mathcal{O}(A)$ of \mathcal{E}, equipped with

- a unit $I \rightarrow \mathcal{O}(U)$ in \mathcal{E} for each unit U in \mathcal{M};
- a unital, associative composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f: A \longrightarrow B$, where $\mathcal{O}(f)=\otimes_{e_{\alpha} \in e_{A}} B_{f_{*}\left(e_{\alpha}\right)}$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})
$\mathrm{Ob}(\mathcal{A} \backslash \mathcal{B})=\left\{\left(A, B_{e_{\alpha}}\right) \mid A \in \mathrm{Ob}(\mathcal{A}), e_{\alpha} \in e_{A}, B_{e_{\alpha}} \in \mathrm{Ob}(\mathcal{B})\right\}$ $\left(f, f_{\alpha}^{\beta}\right):\left(A, B_{e_{\alpha}}\right) \longrightarrow\left(A^{\prime}, B_{e_{\beta}}^{\prime}\right)$ where f_{α}^{β} for each $e_{\beta} \preceq f_{*}\left(e_{\alpha}\right)$.

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

Δ-operads=nonsymmetric operads; Γ-operads $=$ symmetric operads Θ_{n}-operads $=n$-operads (cf. Batanin) where $\Theta_{n}=\Delta^{2 n}$ (cf. Joyal).

