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Hyperplane arrangements

Definition (hyperplane arrangements in Rn)

A linear hyperplane arrangement A = {Hα ⊂ Rn, α ∈ |A|} is

essential iff
⋂
α∈|A|Hα = (0);

Coxeter iff ∀α, β ∈ |A| : sα(Hβ) ∈ A where sα is the
orthogonal reflection with respect to the hyperplane Hα.

Proposition (Coxeter,Tits)

There is a one-to-one correspondence

(essential Coxeter arrangements)
∼=↔ (finite Coxeter groups)

AG
∼=↔ G
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Hyperplane arrangements

Example (symmetric group S3 and its AS3 in R2)

H+
23 [123] H+

12

[132] [213]

H−13 · H+
13

[312] [231]

H−12 [321] H−23

Definition (face poset FA)

FAS3
= {6 facets of dim 2, 6 facets of dim 1, 1 facet of dim 0}
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Hyperplane arrangements

Lemma (face monoid FA with facets x , y , z)

xy = z
def⇐⇒ ∀s ∈ x , t ∈ y : s + ε(t − s) ∈ z for ε > 0 small

(0) is neutral element;

xyx = xy ∀x , y ∈ FA;

x ⊂ ȳ ⇐⇒ xy = y ;

the univ. comm. quotient of FA is a geometric lattice LA.

Definition (k-th complement of an arrangement)

Mk (A) = Rn ⊗ Rk −
⋃
α∈|A|Hα ⊗ Rk

Theorem (Orlik-Solomon, Salvetti)

LA (FA) determines cohomology (homotopy type) of M2(A).



Hyperplane arrangements, graphic monoids and moment categories

Hyperplane arrangements

Lemma (face monoid FA with facets x , y , z)

xy = z
def⇐⇒ ∀s ∈ x , t ∈ y : s + ε(t − s) ∈ z for ε > 0 small

(0) is neutral element;

xyx = xy ∀x , y ∈ FA;
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x ⊂ ȳ ⇐⇒ xy = y ;

the univ. comm. quotient of FA is a geometric lattice LA.

Definition (k-th complement of an arrangement)

Mk (A) = Rn ⊗ Rk −
⋃
α∈|A|Hα ⊗ Rk

Theorem (Orlik-Solomon, Salvetti)

LA (FA) determines cohomology (homotopy type) of M2(A).



Hyperplane arrangements, graphic monoids and moment categories

Hyperplane arrangements

Lemma (face monoid FA with facets x , y , z)

xy = z
def⇐⇒ ∀s ∈ x , t ∈ y : s + ε(t − s) ∈ z for ε > 0 small

(0) is neutral element;

xyx = xy ∀x , y ∈ FA;
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Graphic monoids

Definition (skew lattice, left regular band, graphic monoid)

A monoid (M, ·, 1) is called graphic iff ∀x , y ∈ M : xyx = xy .

Lemma

In any graphic monoid M one has

x2 = x (all elements are idempotent);

x � y
def⇐⇒ yx = x is a partial order (the right Green order);

xy = yx if and only if x ∧ y exists in (M,�);

x ' y
def⇐⇒ xy = x and yx = y is a congruence on (M, ·).

The quotient M/ ' is the universal comm. quotient of M
(the so-called support semi-meet lattice of M).
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Graphic monoids

Example (graphic line L = FAS2
)

The three-element set L = {0,±} is a graphic monoid for
++ = +,−− = −,−+ = −,+− = + with neutral element 0.

Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism M � L.
M is said to have enough hyperplanes if any two elements
x , y ∈ M can be distinguished by their values on hyperplanes.

Lemma (relationship with oriented matroids)

For each hyperplane arrangement A the face monoid FA is a
graphic submonoid of L|A|. More generally, any graphic monoid M
with enough hyperplanes embeds into a product of graphic lines.



Hyperplane arrangements, graphic monoids and moment categories

Graphic monoids

Example (graphic line L = FAS2
)

The three-element set L = {0,±} is a graphic monoid for
++ = +,−− = −,−+ = −,+− = + with neutral element 0.

Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism M � L.
M is said to have enough hyperplanes if any two elements
x , y ∈ M can be distinguished by their values on hyperplanes.

Lemma (relationship with oriented matroids)

For each hyperplane arrangement A the face monoid FA is a
graphic submonoid of L|A|. More generally, any graphic monoid M
with enough hyperplanes embeds into a product of graphic lines.



Hyperplane arrangements, graphic monoids and moment categories

Graphic monoids

Example (graphic line L = FAS2
)

The three-element set L = {0,±} is a graphic monoid for
++ = +,−− = −,−+ = −,+− = + with neutral element 0.

Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism M � L.
M is said to have enough hyperplanes if any two elements
x , y ∈ M can be distinguished by their values on hyperplanes.

Lemma (relationship with oriented matroids)

For each hyperplane arrangement A the face monoid FA is a
graphic submonoid of L|A|. More generally, any graphic monoid M
with enough hyperplanes embeds into a product of graphic lines.



Hyperplane arrangements, graphic monoids and moment categories

Graphic monoids

Example (graphic line L = FAS2
)

The three-element set L = {0,±} is a graphic monoid for
++ = +,−− = −,−+ = −,+− = + with neutral element 0.

Definition (abstract hyperplanes)

A hyperplane of a graphic monoid M is any epimorphism M � L.
M is said to have enough hyperplanes if any two elements
x , y ∈ M can be distinguished by their values on hyperplanes.

Lemma (relationship with oriented matroids)

For each hyperplane arrangement A the face monoid FA is a
graphic submonoid of L|A|. More generally, any graphic monoid M
with enough hyperplanes embeds into a product of graphic lines.



Hyperplane arrangements, graphic monoids and moment categories

Graphic monoids

Definition (centric elements)

An element x ∈ M is said to be centric if x ' y =⇒ x = y .

Lemma

A graphic monoid is commutative iff all its elements are centric.

Remark

There are graphic monoids (e.g. the graphic line) in which the only
centric element is the neutral element. Such graphic monoids will
be called primitive provided they also have non-centric elements.
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Moment categories

Definition (moment structures)

A moment structure on a category M consists of

a set mA of special endo’s (moments) for each object A

an operation f∗ : mA → mB for each f : A→ B such that

1 1A ∈ mA

2 φ∗(ψ) = φψ (∀φ, ψ ∈ mA)

3 (gf )∗ = g∗f∗ (∀A
f→ B

g→ C )

4 f φ = f∗(φ)f (∀φ ∈ mA, f : A→ B)

Axioms 1 and 2 imply: mA is a submonoid of M(A,A).
Axioms 2 and 4 imply: mA is graphic: ψφ = ψ∗(φ)ψ = ψφψ.
Axioms 2, 3, 4 imply: f∗(φψ) = f∗(φ)f∗(ψ).
In general: f∗(1A) 6= 1B .
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Moment categories

Definition (active/inert maps of a moment structure)

A map f : A→ B is called active (resp. inert) if f∗(1A) = 1B (resp.
there exists r : B → A such that rf = 1A and fr ∈ mB).

Lemma

Epimorphisms are active; inert maps have unique retractions;

A map f : A→ B admits a factorization f = finert factive if and
only if the idempotent moment f∗(1A) splits.

Definition (moment categories)

A moment category is a category with an abstract active/inert
factorization system such that

each inert map admits a unique active retraction;

if fi = jg for i , j inert and f , g active, then gr = sf where r , s
are the unique active retractions of i , j .
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Moment categories

Proposition

A category M is a moment category if and only if M admits a
moment structure in which all moments split.

Proof.

⇐ done
⇒ Define mA = {φ ∈M(A,A) |φactφin = 1}.
For f : A→ B define f∗ : mA → mB by

A
f

- B

with f∗(φinφact) = ψinψact .

Aφ

φact +
?
φin
∧

6

+
f ′

- Bψ

ψin
∧

6
+ ψact
?
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Hyperplane arrangements, graphic monoids and moment categories

Moment categories

Example (graphic monoids)

Graphic monoids correspond one-to-one to one-object categories
with moment structure such that all morphisms are moments.

Example (corestriction categories – Cockett-Lack)

Corestriction categories correspond one-to-one to categories with
centric moment structure.

Example (idempotent completion)

Each category with moment structure admits a canonical
idempotent completion into a moment category.

Example (simplex category ∆ and Segal’s category Γ)

[m]
φ→ [n] is active/inert iff φ endpoint/distance -preserving.

m
(n1,...,nm)
−→ n active/inert iff n1 ∪ · · · ∪ nm = n/|ni | = 1∀i .
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Unital moment categories

Lemma

For any object A of a moment category, the poset (mA,�) of
moments of A is isomorphic to the poset of inert subobjets of A.

Definition (unital moment categories, e.g. ∆ and Γ)

A unit of a moment category is an object U such that mU is
primitive, and every active map with target U admits exactly one
inert section.
A moment is elementary if it splits over a unit.
Notation for elementary moments: eα ∈ elA ⊂ mA.
A nilobject N is an object such that elN = ∅.
A moment category is said to be unital if it has units and for every
active map f : A +- B: if A is a nilobject then B as well.
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Unital moment categories

Definition (M-operads for unital moment categories M)

An M-operad O in a symmetric monoidal category (E ,⊗, I )
assigns to each object A ofM an object O(A) of E , equipped with

a unit I → O(U) in E for each unit U in M;

a unital, associative composition O(A)⊗O(f )→ O(B) for
each active f : A +- B, where O(f ) = ⊗eα∈elABf∗(eα).

Definition (wreath product of unital moment categories A,B)

Ob(A o B) = {(A,Beα) |A ∈ Ob(A), eα ∈ elA,Beα ∈ Ob(B)}
(f , f βα ) : (A,Beα) −→ (A′,B ′eβ ) where f βα for each eβ � f∗(eα).

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

∆-operads=nonsymmetric operads; Γ-operads=symmetric operads
Θn-operads=n-operads (cf. Batanin) where Θn = ∆on (cf. Joyal).
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Ob(A o B) = {(A,Beα) |A ∈ Ob(A), eα ∈ elA,Beα ∈ Ob(B)}
(f , f βα ) : (A,Beα) −→ (A′,B ′eβ ) where f βα for each eβ � f∗(eα).

Examples (cf. Haugseng-Gepner, Lurie, Barwick)

∆-operads=nonsymmetric operads; Γ-operads=symmetric operads
Θn-operads=n-operads (cf. Batanin) where Θn = ∆on (cf. Joyal).
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