The lattice path operad*

Clemens Berger (Nice)

Third Arolla Conference on Algebraic Topology August 19th, 2008

*joint work with Michael Batanin (Sydney)

Part 1. Iterated loop spaces and E_n -operads.

Let (X, *) be a based topological space and $(S^n, *)$ be the *n*-sphere. Then

$$\Omega^n X = \operatorname{Top}_*(S^n, X)$$

is an algebra over the coendomorphism operad

$$Coend(S^{n})(k) = \underline{Top}_{*}(S^{n}, \overbrace{S^{n} \vee \cdots \vee S^{n}}^{k})$$

where the action is given by *composition* :

The operad $(\mathcal{C}_n(k))_{k\geq 0}$ of little *n*-cubes is a suboperad of $(\operatorname{Coend}(S^n)(k))_{k\geq 0}$. Therefore any *n*-fold loop space is a \mathcal{C}_n -algebra.

Theorem 1. (Boardman-Vogt, May, Segal) Any C_n -algebra is up to group completion an *n*-fold loop space. In particular, $\Omega^n S^n X$ is the group completion of the free C_n -algebra on X.

Theorem 2. (*F. Cohen*) $H_*(\Omega^n S^n X, \mathbb{Z}/p\mathbb{Z})$ is a $H_*(\mathcal{C}_n, \mathbb{Z}/p\mathbb{Z})$ -algebra on $H_*(X, \mathbb{Z}/p\mathbb{Z})$ equipped with certain Dyer-Lashof operations.

For any field k, a $H_*(\mathcal{C}_2, k)$ -algebra is called a *Gerstenhaber* k-algebra. The Hochschild cohomology $HH^*(A; A)$ of an associative k-algebra A is a Gerstenhaber algebra, whence *Deligne's conjecture*: Is this structure induced by a dg- E_2 -operad action on $CC^*(A; A)$?

Proofs of the Deligne conjecture have been given by Tamarkin, McClure-Smith, Kontsevich-Soibelman and Berger-Fresse.

Part 2. Enriched categories.

Let $\mathcal{E} = (\mathcal{E}, \otimes_{\mathcal{E}}, I_{\mathcal{E}}, \underline{\mathcal{E}}(-, -))$ be a closed symmetric monoidal category, for instance (Top, $\times, *, \underline{\mathrm{Top}}(-, -)$) or (Ch $(k), \otimes_k, k, \underline{\mathrm{Hom}}_k(-, -)$).

Def. 1. An \mathcal{E} -category \mathcal{A} consists of objects $A, A', \dots \in \mathcal{A}_0$ and (for each pair of objects) hom-objects $\underline{\mathcal{A}}(A, A') \in \mathcal{E}_0$, together with

- units $u_A : I_{\mathcal{E}} \to \underline{\mathcal{A}}(A, A), \quad A \in \mathcal{A}_0,$
- compositions $\underline{\mathcal{A}}(A', A'') \otimes_{\mathcal{E}} \underline{\mathcal{A}}(A, A') \to \underline{\mathcal{A}}(A, A'')$

fulfilling unit and associativity axioms.

Any closed symmetric monoidal category \mathcal{E} is an \mathcal{E} -category. There is a 2-category of \mathcal{E} categories, \mathcal{E} -functors and \mathcal{E} -natural transformations. **Lemma 1.** The iterated tensor-product $\otimes_{\mathcal{E}}^k$: $\mathcal{E} \times \cdots \times \mathcal{E} \to \mathcal{E}$ is an \mathcal{E} -functor, i.e. there are canonical maps $\underline{\mathcal{E}}(X,Y)^{\otimes k} \to \underline{\mathcal{E}}(X^{\otimes k},Y^{\otimes k})$.

The coendomorphism operad of an object X of \mathcal{E} is given by

 $\operatorname{Coend}(X)(k) = \underline{\mathcal{E}}(X, X^{\otimes k}), \quad k \ge 0,$

with the obvious structural maps.

Proposition 1. Let X, Y be two objects of \mathcal{E} . Assume that Y is a commutative monoid in \mathcal{E} . Then $\underline{\mathcal{E}}(X,Y)$ is a Coend(X)-algebra.

The Coend(X)-algebra structure is given by Coend(X)(k) $\otimes \underline{\mathcal{E}}(X,Y)^{\otimes k} \longrightarrow \underline{\mathcal{E}}(X,Y)$ $\begin{vmatrix} enrichment & multiplication \end{vmatrix}$ $\underline{\mathcal{E}}(X,X^{\otimes k}) \otimes \underline{\mathcal{E}}(X^{\otimes k},Y^{\otimes k}) \longrightarrow \underline{\mathcal{E}}(X,Y^{\otimes k}).$

Part 3. Condensation of coloured operads.

An *N*-coloured operad in \mathcal{E} is given by a collection of objects $\mathcal{O}(n_1, \ldots, n_k; n)$ of \mathcal{E} , where $(n_1, \ldots, n_k, n) \in N^{k+1}$, together with units, Σ_k -actions and composition maps

$$\mathcal{O}(n_1,\ldots,n_k;n) \otimes_{\mathcal{E}} \mathcal{O}(m_1,\ldots,m_l;n_i) \xrightarrow{\circ_i} \mathcal{O}(n_1,\ldots,n_{i-1},m_1,\ldots,m_l,n_{i+1},\ldots,n_k;n),$$

which are unital, associative and equivariant.

If $N = \{*\}$ then $\mathcal{O}(k) = \mathcal{O}(\underbrace{*, \ldots, *}_{k}; *)$ is a symmetric operad in \mathcal{E} .

Each N-coloured operad \mathcal{O} defines a category \mathcal{O}_u of *unary operations* with object-set N:

$$\mathcal{O}_u(n,n') = \mathcal{O}(n;n').$$

5

A coloured operad \mathcal{O} in \mathcal{E} can also be presented as a *multitensor* on \mathcal{O}_u with values in \mathcal{E} :

$$\underbrace{\mathcal{O}_{u}^{\mathsf{op}} \times \cdots \times \mathcal{O}_{u}^{\mathsf{op}}}_{k} \times \mathcal{O}_{u} \underbrace{\mathcal{O}(-, \dots, -; -)}_{\mathcal{E}} \mathcal{E}$$

This defines a *lax symmetric monoidal structure* on $\mathcal{E}^{\mathcal{O}_u}$ by the coend formula:

$$(X_1 \otimes_{\mathcal{O}} \cdots \otimes_{\mathcal{O}} X_k)(n) = \int^{n_1, \dots, n_k} \mathcal{O}(-, \cdots, -; n) \otimes_{\mathcal{E}} X_1(-) \otimes_{\mathcal{E}} \cdots \otimes_{\mathcal{E}} X_k(-).$$

In particular, for each object $\delta \in \mathcal{E}^{\mathcal{O}_u}$, we get a coendomorphism operad

 $\operatorname{Coend}_{\mathcal{O}}(\delta)(k) = \operatorname{\underline{Hom}}_{\mathcal{O}_u}(\delta, \delta \otimes_{\mathcal{O}} \cdots \otimes_{\mathcal{O}} \delta).$

Proposition 2. Let X be an algebra over the coloured operad \mathcal{O} in \mathcal{E} . Let $\delta \in \mathcal{E}^{\mathcal{O}_u}$. Then $\underline{\mathrm{Hom}}_{\mathcal{O}_u}(\delta, X)$ is a $\mathrm{Coend}_{\mathcal{O}}(\delta)$ -algebra.

 $\mathcal{E} = \text{Top or } \mathcal{E} = \text{Ch}(\mathbb{Z})$ contains Sets as the subcategory of *discrete objects* via the *strong* monoidal functor $S \mapsto \sqcup_S I_{\mathcal{E}}$ ($I_{\mathcal{E}} = \text{unit of } \mathcal{E}$).

We shall construct a *coloured operad* \mathcal{L} in *Sets*, parametrizing the combinatorial structure of *it*-*erated loop spaces* in the following sense:

- $\mathcal{L} = \cup_{m \geq 0} \mathcal{L}_m$ and $\mathcal{L}_u = \Delta = (\mathcal{L}_m)_u$;
- For the standard object $\delta : \Delta \to \mathcal{E}$, Coend_{\mathcal{L}_m}(δ) is an E_m -operad in \mathcal{E} .

In particular, any \mathcal{L}_m -algebra X in \mathcal{E} gives rise to an E_m -algebra $\underline{\text{Hom}}_{\Delta}(\delta, X)$. Being an \mathcal{L}_m algebra in \mathcal{E} is a combinatorial property !!

Part 4. The lattice path operad.

The funny tensor product of categories $\mathcal{A} \otimes \mathcal{B}$ has $(A, B) \in \mathcal{A}_0 \times \mathcal{B}_0$ as objects, and "free" compositions of $(f, 1_B) : (A, B) \to (A', B)$ and $(1_A, g) : (A, B) \to (A, B')$ as morphisms.

Def. 2. The lattice path operad is the \mathbb{N} -coloured operad in sets defined by

 $\mathcal{L}(n_1, ..., n_k; n) = \text{Cat}_{*,*}([n+1], [n_1+1] \otimes \cdots \otimes [n_k+1]).$

Example. Let $x \in \mathcal{L}(2, 1; 3)$ be the lattice path:

The path is determined by the sequence of "directions" and "stops": x = 1|21|1|2.

 $\mathcal{L}(n_1, \ldots, n_k; n)$ may be identified with the set of finite sequences containing $n_1 + 1$ times 1, $n_2 + 1$ times 2, \ldots , $n_k + 1$ times k, and n (possibly multiple) stop's. Under this identification, the operad composition map is given by renumbering and substitution:

 $1||1\underline{2}|3|\underline{2}\circ_{2}\underline{1}|\underline{32} = 1||1\underline{2}|5|\underline{43}.$

Lemma 2. $\mathcal{L}_u = \Delta$. (Joyal-duality)

 $\mathcal{L}_u(n',n) = \operatorname{Cat}_{*,*}([n+1],[n'+1]) = \Delta([n'],[n]).$

Let $\Delta\Sigma$ be the category of finite sets and finite set mappings *equipped with total orderings of the fibers*, cf. Feigin-Tsygan, Krasauskas and Fiedorowicz-Loday. (*Crossed simplicial group*).

Proposition 3. (Extended Joyal-duality)

 $\begin{aligned} \mathcal{L}(n_1, \dots, n_k; n) &= \{ x \in \Delta \Sigma([n_1] * \dots * [n_k], [n]) \\ sth. \ \forall i : x|_{[n_i]} \in \Delta([n_i], [n]) \}, \end{aligned} \\ \ \text{where the operad composition is given by join} \\ and composition in \ \Delta \Sigma. \end{aligned}$

Def. 3. (Filtration by complexity) For $1 \le i < j \le k$, let p_{ij} be the projection $[n_1 + 1] \otimes \cdots \otimes [n_k + 1] \rightarrow [n_i + 1] \otimes [n_j + 1].$ Let $a_{ij}(x)$ be the number of angles in the lattice path $p_{ij} \circ x$, and $c(x) = \max_{i < j} a_{ij}(x)$. Then, $\mathcal{L}_m(n_1, ..., n_k; n) = \{x \in \mathcal{L}(n_1, ..., n_k; n) \mid c(x) \le m\}$

defines a suboperad \mathcal{L}_m of \mathcal{L} with $(\mathcal{L}_m)_u = \Delta$.

Proposition 4. (Batanin) The category of \mathcal{L}_1 -algebras is isomorphic to the category of cosimplicial \Box -monoids (\Box is induced by ordinal sum).

Proposition 5. (Tamarkin) The category of \mathcal{L}_2 -algebras in \mathcal{E} is isomorphic to the category of multiplicative non-symmetric operads in \mathcal{E} .

Example. The Hochschild cochain complex of an associative algebra is an \mathcal{L}_2 -algebra.

Proposition 6. For each simplicial set X, the norm. cochain complex $N^*(X)$ is an \mathcal{L} -algebra.

The dual coaction is given by

 $\mathcal{L}(n_1, \cdots, n_k; n) \otimes N_n(X) \to N_{n_1}(X) \otimes \cdots \otimes N_{n_k}(X)$ $x \otimes [\alpha] \mapsto [x_1^*(\alpha)] \otimes \cdots \otimes [x_k^*(\alpha)]$

where (x_1, \ldots, x_k) are the components of x: $[n_1] * \cdots * [n_k] \rightarrow [n].$

Proposition 7. Let S^m be $\Delta[m]/\partial \Delta[m]$ and X be a pointed object of \mathcal{E} . Then, the cosimplicial \mathcal{E} -object $(X, *)^{(S^m, *)}$ is an \mathcal{L}_m -algebra.

There is an \mathcal{L} -coaction on S^m :

 $\mathcal{L}(n_1, \cdots, n_k; n) \times (S^m)_n \to (S^m)_{n_1} \times \cdots \times (S^m)_{n_k}$ $x \times \alpha \mapsto (x_1^*(\alpha), \dots, x_k^*(\alpha)).$

If $c(x) \leq m$, the image is in $(S^m)_{n_1} \vee \cdots \vee (S^m)_{n_k}$.

We now consider the case $\mathcal{E} = \text{Top.}$ Let δ : $\Delta \to \text{Top}$ be the standard cosimplicial object. $\underline{\text{Hom}}_{\Delta}(\delta, (X, *)^{(S^m, *)}) \cong \underline{\text{Top}}_{*}(|S^m|, X) = \Omega^m X.$ Thus, any m fold loop space is an algebra over

Thus, any m-fold loop space is an algebra over the coendomorphism-operad

$$\mathcal{D}_m(k) = \underline{\operatorname{Hom}}_{\Delta}(\delta, \delta \otimes_{\mathcal{L}_m} \cdots \otimes_{\mathcal{L}_m} \delta)$$

= $\operatorname{Tot}_{\delta}(Y_{m,k}), k \ge 0.$

Theorem 3. (*McClure-Smith*) For $1 \le m \le \infty$, \mathcal{D}_m is a topological E_m -operad.

 $\operatorname{Tot}_{\delta}(Y_{m,k}) \cong Y_{m,k}(0) \times \operatorname{Tot}_{\delta}(\delta) \simeq Y_{m,k}(0)$ and $Y_{m,k}(0)$ is the realization of the *k*-simplicial set $\mathcal{L}_m(-,\ldots,-;0)$ of *surjections* with codomain $\{1,\ldots,k\}$ and complexity $\leq m$.

We now turn to the case $\mathcal{E} = Ch(\mathbb{Z})$ with δ : $\Delta \to Ch(\mathbb{Z}) : [n] \mapsto N_*(\Delta[n]).$

Totalization $\operatorname{Hom}_{\Delta}(\delta, -)$ takes a cosimplicial module to the dg-module with differential $d = \sum (-1)^i \partial_i$. Thus the cochain complex $N^*(X)$ is a \overline{X}_{∞} -algebra, and the Hochschild cochain complex $CC^*(A; A)$ is a \overline{X}_2 -algebra, where \overline{X}_m is the coendomorphism operad

 $\bar{\mathcal{X}}_m(k) = \underline{\operatorname{Hom}}_{\Delta}(\delta, \delta \otimes_{\mathcal{L}_m} \cdots \otimes_{\mathcal{L}_m} \delta), \quad k \geq 0.$

"Summing up the elements of the fibers" of

 $\mathcal{L}_m(-,\ldots,-;n)
ightarrow \mathcal{L}_m(-,\ldots,-;0)$

defines a cosimplicial dg-submodule of

 $|\mathcal{L}_m(-,\cdots,-;n)|_{\delta\otimes\cdots\otimes\delta},$

and by *totalization* a dg-suboperad \mathcal{X}_m of $\overline{\mathcal{X}}_m$:

 $\mathcal{X}_m(k) = |\mathcal{L}_m(-, \cdots, -; 0)|_{\delta \otimes \cdots \otimes \delta}, \quad k \ge 0.$

This suboperad is the m-th filtration stage of the so-called surjection operad \mathcal{X} .

Theorem 4. (*McClure-Smith*, Berger-Fresse) For $1 \le m \le \infty$, \mathcal{X}_m is a dg- E_m -operad.

This yields an E_{∞} -structure on $N^*(X)$ as well as an E_2 -structure on $CC^*(A; A)$, solving the Deligne conjecture.

We finally consider the case $\mathcal{E} = \text{Sets}^{\Delta^{\text{op}}}$ with $\delta : \Delta \to \text{Sets}^{\Delta^{\text{op}}}$ the Yoneda-embedding.

Theorem 5. (Berger-Fresse) The diagonal of the k-simplicial set $\mathcal{L}(-, \dots, -; 0)$ is the universal $\Sigma(k)$ -bundle $E\Sigma(k)$. There is a weak equivalence of filtered dg-operads $N_*(E_m\Sigma) \rightarrow \mathcal{X}_m$, where $E_m\Sigma$, $m \ge 1$, denotes the Smith filtration of Barratt-Eccles' E_{∞} -operad $E\Sigma$.

Theorem 6. (Kashiwabara, Berger) For $1 \le m \le \infty$, $E_m \Sigma$ is a simplicial E_m -operad.

The simplicial isomorphism

$$\alpha: E\Sigma(k)_d \cong \mathcal{L}(d, \ldots, d; 0)$$

is given by a "shuffle" which increases the filtration degree in a minimal way. For instance,

 $\alpha((123, 213, 231, 321)) = 122213333121.$ For k = 2, this α is a filtration-preserving equivariant simplicial isomorphism.

The map of filtered dg-operads $N_*(E\Sigma) \rightarrow \mathcal{X}$ is induced by Alexander-Whitney maps

 $N_*(\Delta[n_1] \times .. \times \Delta[n_k]) \to N_*(\Delta[n_1]) \otimes \cdots \otimes N_*(\Delta[n_k])$ via the identifications

$$N_*(E\Sigma(k)) = |\mathcal{L}(-,\cdots,-;0)|_{N_*(\delta\times\cdots\times\delta)}$$
$$\mathcal{X}(k) = |\mathcal{L}(-,\cdots,-;0)|_{N_*(\delta)\otimes\cdots\otimes N_*(\delta)}$$

The compatibility with the operad structures and filtrations follows from a cellular decomposition of $E\Sigma(k)$ compatible with these data, which is induced by the *complete graph operad* $\mathcal{K}(k), k \geq 0$. Tamarkin's 2-operad action on \mathcal{E} -Cat.

Given two small \mathcal{E} -categories \mathcal{A} , \mathcal{B} and two \mathcal{E} functors $F, G : \mathcal{A} \to \mathcal{B}$, one defines a *cosimplicial object* of natural transformations $R^{\bullet}(F, G)$ where $R^n(F, G)$ is given by

 $\prod \underline{\mathcal{E}}(\underline{\mathcal{A}}(x_0, x_1) \otimes \cdots \otimes \underline{\mathcal{A}}(x_{n-1}, x_n), \underline{\mathcal{B}}(F(x_0), G(x_n)))$ where the product is over $(x_0, \dots, x_n) \in \mathcal{A}_0^{n+1}$.

The *derived object* is then by definition

 $R(F,G) = \operatorname{Tot}_{\delta}(R^{\bullet}(F,G)).$

If \mathcal{A} is a one-object dg-category with $\underline{\mathcal{A}}(\star, \star) = A$, then $R(Id_{\mathcal{A}}) = CC^*(A; A)$.

Tamarkin constructs an N-coloured 2-operad T_2 whose symmetrization is \mathcal{L}_2 and whose totalization is a contractible 2-operad in dgMod. He shows that T_2 acts on dgCat. This yields (by a theorem of Batanin) a "global" proof of the Deligne conjecture.