The lattice path operad*

Clemens Berger (Nice)
Third Arolla Conference on Algebraic Topology

August 19th, 2008

*joint work with Michael Batanin (Sydney)

Part 1. Iterated loop spaces and E_{n}-operads.

Let $(X, *)$ be a based topological space and $\left(S^{n}, *\right)$ be the n-sphere. Then

$$
\Omega^{n} X=\underline{\operatorname{Top}^{*}} *\left(S^{n}, X\right)
$$

is an algebra over the coendomorphism operad

$$
\operatorname{Coend}\left(S^{n}\right)(k)=\underline{\mathbf{T o p}_{\underline{p}}} *(S^{n}, \overbrace{S^{n} \vee \cdots \vee S^{n}})
$$

where the action is given by composition:

$\underline{\operatorname{Top}}_{*}\left(S^{n},\left(S^{n}\right)^{\vee k}\right) \times \underline{\operatorname{Top}}_{*}\left(\left(S^{n}\right)^{\vee k}, X\right) \longrightarrow \underline{\operatorname{Top}}_{*}\left(S^{n}, X\right)$

The operad $\left(\mathcal{C}_{n}(k)\right)_{k \geq 0}$ of little n-cubes is a suboperad of $\left(\text { Coend }\left(S^{n}\right)(k)\right)_{k \geq 0}$. Therefore any n-fold loop space is a \mathcal{C}_{n}-algebra.

Theorem 1. (Boardman-Vogt, May, Segal) Any \mathcal{C}_{n}-algebra is up to group completion an n-fold loop space. In particular, $\Omega^{n} S^{n} X$ is the group completion of the free C_{n}-algebra on X.

Theorem 2. (F. Cohen) $H_{*}\left(\Omega^{n} S^{n} X, \mathbb{Z} / p \mathbb{Z}\right)$ is a $H_{*}\left(\mathcal{C}_{n}, \mathbb{Z} / p \mathbb{Z}\right)$-algebra on $H_{*}(X, \mathbb{Z} / p \mathbb{Z})$ equipped with certain Dyer-Lashof operations.

For any field k, a $H_{*}\left(\mathcal{C}_{2}, k\right)$-algebra is called a Gerstenhaber k-algebra. The Hochschild cohomology $H H^{*}(A ; A)$ of an associative k-algebra A is a Gerstenhaber algebra, whence Deligne's conjecture: Is this structure induced by a dg-E_{2}-operad action on $C C^{*}(A ; A)$?

Proofs of the Deligne conjecture have been given by Tamarkin, McClure-Smith, KontsevichSoibelman and Berger-Fresse.

Part 2. Enriched categories.

Let $\mathcal{E}=\left(\mathcal{E}, \otimes_{\mathcal{E}}, I_{\mathcal{E}}, \underline{\mathcal{E}}(-,-)\right)$ be a closed symmetric monoidal category, for instance (Top, $\times, *, \operatorname{Top}(-,-))$ or $\left(\operatorname{Ch}(k), \otimes_{k}, k, \operatorname{Hom}_{k}(-,-)\right)$.

Def. 1. An \mathcal{E}-category \mathcal{A} consists of objects $A, A^{\prime}, \cdots \in \mathcal{A}_{0}$ and (for each pair of objects) hom-objects $\mathcal{A}\left(A, A^{\prime}\right) \in \mathcal{E}_{0}$, together with

- units $u_{A}: I_{\mathcal{E}} \rightarrow \underline{\mathcal{A}}(A, A), \quad A \in \mathcal{A}_{0}$,
- compositions $\underline{\mathcal{A}}\left(A^{\prime}, A^{\prime \prime}\right) \otimes_{\mathcal{E}} \mathcal{A}\left(A, A^{\prime}\right) \rightarrow \underline{\mathcal{A}}\left(A, A^{\prime \prime}\right)$
fulfilling unit and associativity axioms.

Any closed symmetric monoidal category \mathcal{E} is an \mathcal{E}-category. There is a 2 -category of \mathcal{E} categories, \mathcal{E}-functors and \mathcal{E}-natural transformations.

Lemma 1. The iterated tensor-product $\otimes_{\mathcal{E}}^{k}$: $\mathcal{E} \times \cdots \times \mathcal{E} \rightarrow \mathcal{E}$ is an \mathcal{E}-functor, i.e. there are canonical maps $\underline{\mathcal{E}}(X, Y)^{\otimes k} \rightarrow \underline{\mathcal{E}}\left(X^{\otimes k}, Y^{\otimes k}\right)$.

The coendomorphism operad of an object X of \mathcal{E} is given by

$$
\operatorname{Coend}(X)(k)=\underline{\mathcal{E}}\left(X, X^{\otimes k}\right), \quad k \geq 0
$$

with the obvious structural maps.
Proposition 1. Let X, Y be two objects of \mathcal{E}. Assume that Y is a commutative monoid in \mathcal{E}. Then $\underline{\mathcal{E}}(X, Y)$ is a Coend (X)-algebra.

The Coend (X)-algebra structure is given by $\operatorname{Coend}(X)(k) \otimes \underline{\mathcal{E}}(X, Y)^{\otimes k} \longrightarrow \underline{\mathcal{E}}(X, Y)$ enrichment multiplication
$\underline{\mathcal{E}}\left(X, X^{\otimes k}\right) \otimes \underline{\mathcal{E}}\left(X^{\otimes k}, Y^{\otimes k}\right) \xrightarrow[\text { composition }]{ } \underline{\mathcal{E}}\left(X, Y^{\otimes k}\right)$.

Part 3. Condensation of coloured operads.

An N-coloured operad in \mathcal{E} is given by a collection of objects $\mathcal{O}\left(n_{1}, \ldots, n_{k} ; n\right)$ of \mathcal{E}, where $\left(n_{1}, \ldots, n_{k}, n\right) \in N^{k+1}$, together with units, $\Sigma_{k^{-}}$ actions and composition maps

$$
\begin{gathered}
\mathcal{O}\left(n_{1}, \ldots, n_{k} ; n\right) \otimes_{\mathcal{E}} \mathcal{O}\left(m_{1}, \ldots, m_{l} ; n_{i}\right) \xrightarrow{\circ_{i}} \\
\mathcal{O}\left(n_{1}, \ldots, n_{i-1}, m_{1}, \ldots, m_{l}, n_{i+1}, \ldots, n_{k} ; n\right),
\end{gathered}
$$

which are unital, associative and equivariant.

If $N=\{*\}$ then $\mathcal{O}(k)=\mathcal{O}(\overbrace{, \ldots, \ldots}^{k} ; *)$ is a symmetric operad in \mathcal{E}.

Each N-coloured operad \mathcal{O} defines a category \mathcal{O}_{u} of unary operations with object-set N :

$$
\mathcal{O}_{u}\left(n, n^{\prime}\right)=\mathcal{O}\left(n ; n^{\prime}\right)
$$

A coloured operad \mathcal{O} in \mathcal{E} can also be presented as a multitensor on \mathcal{O}_{u} with values in \mathcal{E} :

$$
\overbrace{\mathcal{O}_{u}^{\mathrm{OP}} \times \cdots \times \mathcal{O}_{u}^{\mathrm{OP}}}^{k} \times \mathcal{O}_{u} \xrightarrow{\mathcal{O}(-, \ldots,-;-)} \mathcal{E}
$$

This defines a lax symmetric monoidal structure on $\mathcal{E}^{\mathcal{O}_{u}}$ by the coend formula:

$$
\begin{gathered}
\left(X_{1} \otimes_{\mathcal{O}} \cdots \otimes_{\mathcal{O}} X_{k}\right)(n)= \\
\int^{n_{1}, \ldots, n_{k}} \mathcal{O}(-, \cdots,-; n) \otimes_{\mathcal{E}} X_{1}(-) \otimes_{\mathcal{E}} \cdots \otimes_{\mathcal{E}} X_{k}(-)
\end{gathered}
$$

In particular, for each object $\delta \in \mathcal{E}^{\mathcal{O}_{u}}$, we get a coendomorphism operad

$$
\operatorname{Coend}_{\mathcal{O}}(\delta)(k)=\operatorname{Hom}_{\mathcal{O}_{u}}\left(\delta, \delta \otimes_{\mathcal{O}} \cdots \otimes_{\mathcal{O}} \delta\right)
$$

Proposition 2. Let X be an algebra over the coloured operad \mathcal{O} in \mathcal{E}. Let $\delta \in \mathcal{E}^{\mathcal{O}_{u}}$. Then $\operatorname{Hom}_{\mathcal{O}_{u}}(\delta, X)$ is a Coend $\mathcal{O}_{\mathcal{O}}(\delta)$-algebra.
$\mathcal{E}=\operatorname{Top}$ or $\mathcal{E}=\operatorname{Ch}(\mathbb{Z})$ contains Sets as the subcategory of discrete objects via the strong monoidal functor $S \mapsto \sqcup_{S} I_{\mathcal{E}}\left(I_{\mathcal{E}}=\right.$ unit of $\left.\mathcal{E}\right)$.

We shall construct a coloured operad \mathcal{L} in Sets, parametrizing the combinatorial structure of iterated loop spaces in the following sense:

- $\mathcal{L}=\cup_{m \geq 0} \mathcal{L}_{m}$ and $\mathcal{L}_{u}=\Delta=\left(\mathcal{L}_{m}\right)_{u}$;
- For the standard object $\delta: \Delta \rightarrow \mathcal{E}$, Coend $_{\mathcal{L}_{m}}(\delta)$ is an E_{m}-operad in \mathcal{E}.

In particular, any \mathcal{L}_{m}-algebra X in \mathcal{E} gives rise to an E_{m}-algebra $\operatorname{Hom}_{\Delta}(\delta, X)$. Being an $\mathcal{L}_{m^{-}}$ algebra in \mathcal{E} is a combinatorial property !!

Part 4. The lattice path operad.

The funny tensor product of categories $\mathcal{A} \otimes \mathcal{B}$ has $(A, B) \in \mathcal{A}_{0} \times \mathcal{B}_{0}$ as objects, and "free" compositions of $\left(f, 1_{B}\right):(A, B) \rightarrow\left(A^{\prime}, B\right)$ and $\left(1_{A}, g\right):(A, B) \rightarrow\left(A, B^{\prime}\right)$ as morphisms.
Def. 2. The lattice path operad is the \mathbb{N} coloured operad in sets defined by $\mathcal{L}\left(n_{1}, . ., n_{k} ; n\right)=\operatorname{Cat}_{*, *}\left([n+1],\left[n_{1}+1\right] \otimes \cdots \otimes\left[n_{k}+1\right]\right)$.

Example. Let $x \in \mathcal{L}(2,1 ; 3)$ be the lattice path:

The path is determined by the sequence of "directions" and "stops" : $x=1|21| 1 \mid 2$.
$\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right)$ may be identified with the set of finite sequences containing $n_{1}+1$ times 1 , $n_{2}+1$ times $2, \ldots, n_{k}+1$ times k, and n (possibly multiple) stop's. Under this identification, the operad composition map is given by renumbering and substitution:

$$
1||1 \underline{2}| 3| \underline{2} \circ_{2} \underline{1}|\underline{32}=1||1 \underline{2}| 5 \mid \underline{43} .
$$

Lemma 2. $\mathcal{L}_{u}=\Delta$. (Joyal-duality)

$$
\mathcal{L}_{u}\left(n^{\prime}, n\right)=\operatorname{Cat}_{*, *}\left([n+1],\left[n^{\prime}+1\right]\right)=\Delta\left(\left[n^{\prime}\right],[n]\right)
$$

Let $\Delta \Sigma$ be the category of finite sets and finite set mappings equipped with total orderings of the fibers, cf. Feigin-Tsygan, Krasauskas and Fiedorowicz-Loday. (Crossed simplicial group). Proposition 3. (Extended Joyal-duality)

$$
\begin{aligned}
\mathcal{L}\left(n_{1}, \ldots, n_{k} ; n\right)= & \left\{x \in \Delta \Sigma\left(\left[n_{1}\right] * \cdots *\left[n_{k}\right],[n]\right)\right. \\
& \text { sth. } \left.\forall i:\left.x\right|_{\left[n_{i}\right]} \in \Delta\left(\left[n_{i}\right],[n]\right)\right\},
\end{aligned}
$$

where the operad composition is given by join and composition in $\Delta \Sigma$.

Def. 3. (Filtration by complexity)
For $1 \leq i<j \leq k$, let $p_{i j}$ be the projection
$\left[n_{1}+1\right] \otimes \cdots \otimes\left[n_{k}+1\right] \rightarrow\left[n_{i}+1\right] \otimes\left[n_{j}+1\right]$.
Let $a_{i j}(x)$ be the number of angles in the lattice path $p_{i j} \circ x$, and $c(x)=\max _{i<j} a_{i j}(x)$. Then, $\mathcal{L}_{m}\left(n_{1}, . ., n_{k} ; n\right)=\left\{x \in \mathcal{L}\left(n_{1}, . ., n_{k} ; n\right) \mid c(x) \leq m\right\}$ defines a suboperad \mathcal{L}_{m} of \mathcal{L} with $\left(\mathcal{L}_{m}\right)_{u}=\Delta$. Proposition 4. (Batanin) The category of $\mathcal{L}_{1^{-}}$ algebras is isomorphic to the category of cosimplicial \square-monoids (\square is induced by ordinal sum).

Proposition 5. (Tamarkin) The category of \mathcal{L}_{2}-algebras in \mathcal{E} is isomorphic to the category of multiplicative non-symmetric operads in \mathcal{E}.

Example. The Hochschild cochain complex of an associative algebra is an \mathcal{L}_{2}-algebra.

Proposition 6. For each simplicial set X, the norm. cochain complex $N^{*}(X)$ is an \mathcal{L}-algebra.

The dual coaction is given by

$$
\begin{aligned}
& \mathcal{L}\left(n_{1}, \cdots, n_{k} ; n\right) \otimes N_{n}(X) \rightarrow N_{n_{1}}(X) \otimes \cdots \otimes N_{n_{k}}(X) \\
& x \otimes[\alpha] \mapsto\left[x_{1}^{*}(\alpha)\right] \otimes \cdots \otimes\left[x_{k}^{*}(\alpha)\right]
\end{aligned}
$$

where $\left(x_{1}, \ldots, x_{k}\right)$ are the components of x : $\left[n_{1}\right] * \cdots *\left[n_{k}\right] \rightarrow[n]$.

Proposition 7. Let S^{m} be $\Delta[m] / \partial \Delta[m]$ and X be a pointed object of \mathcal{E}. Then, the cosimplicial \mathcal{E}-object $(X, *)^{\left(S^{m}, *\right)}$ is an \mathcal{L}_{m}-algebra.

There is an \mathcal{L}-coaction on S^{m} :

$$
\begin{aligned}
\mathcal{L}\left(n_{1}, \cdots, n_{k} ; n\right) \times\left(S^{m}\right)_{n} & \rightarrow\left(S^{m}\right)_{n_{1}} \times \cdots \times\left(S^{m}\right)_{n_{k}} \\
x \times \alpha & \mapsto\left(x_{1}^{*}(\alpha), \ldots, x_{k}^{*}(\alpha)\right)
\end{aligned}
$$

If $c(x) \leq m$, the image is in $\left(S^{m}\right)_{n_{1}} \vee \cdots \vee\left(S^{m}\right)_{n_{k}}$.

We now consider the case $\mathcal{E}=$ Top. Let δ : $\Delta \rightarrow$ Top be the standard cosimplicial object. $\operatorname{Hom}_{\Delta}\left(\delta,(X, *)^{\left(S^{m}, *\right)}\right) \cong \operatorname{Top}_{*}\left(\left|S^{m}\right|, X\right)=\Omega^{m} X$.

Thus, any m-fold loop space is an algebra over the coendomorphism-operad

$$
\begin{aligned}
\mathcal{D}_{m}(k) & =\operatorname{Hom}_{\Delta}\left(\delta, \delta \otimes_{\mathcal{L}_{m}} \cdots \otimes_{\mathcal{L}_{m}} \delta\right) \\
& =\operatorname{Tot}_{\delta}\left(Y_{m, k}\right), k \geq 0 .
\end{aligned}
$$

Theorem 3. (McClure-Smith) For $1 \leq m \leq \infty$, \mathcal{D}_{m} is a topological E_{m}-operad.
$\operatorname{Tot}_{\delta}\left(Y_{m, k}\right) \cong Y_{m, k}(0) \times \operatorname{Tot}_{\delta}(\delta) \simeq Y_{m, k}(0)$ and $Y_{m, k}(0)$ is the realization of the k-simplicial set $\mathcal{L}_{m}(-, \ldots,-; 0)$ of surjections with codomain $\{1, \ldots, k\}$ and complexity $\leq m$.

We now turn to the case $\mathcal{E}=\operatorname{Ch}(\mathbb{Z})$ with δ : $\Delta \rightarrow \mathrm{Ch}(\mathbb{Z}):[n] \mapsto N_{*}(\Delta[n])$.

Totalization $\underline{H o m}_{\Delta}(\delta,-)$ takes a cosimplicial module to the $d g$-module with differential $d=$ $\sum(-1)^{i} \partial_{i}$. Thus the cochain complex $N^{*}(X)$ is a $\overline{\mathcal{X}}_{\infty}$-algebra, and the Hochschild cochain complex $C C^{*}(A ; A)$ is a $\overline{\mathcal{X}}_{2}$-algebra, where $\overline{\mathcal{X}}_{m}$ is the coendomorphism operad

$$
\overline{\mathcal{X}}_{m}(k)=\underline{\operatorname{Hom}}_{\Delta}\left(\delta, \delta \otimes_{\mathcal{L}_{m}} \cdots \otimes_{\mathcal{L}_{m}} \delta\right), \quad k \geq 0
$$

"Summing up the elements of the fibers" of

$$
\mathcal{L}_{m}(-, \ldots,-; n) \rightarrow \mathcal{L}_{m}(-, \ldots,-; 0)
$$

defines a cosimplicial dg-submodule of

$$
\left|\mathcal{L}_{m}(-, \cdots,-; n)\right|_{\delta \otimes \cdots \otimes \delta}
$$

and by totalization a dg-suboperad \mathcal{X}_{m} of $\overline{\mathcal{X}}_{m}$:

$$
\mathcal{X}_{m}(k)=\left|\mathcal{L}_{m}(-, \cdots,-; 0)\right|_{\delta \otimes \cdots \otimes \delta}, \quad k \geq 0
$$

This suboperad is the m-th filtration stage of the so-called surjection operad \mathcal{X}.

Theorem 4. (McClure-Smith, Berger-Fresse) For $1 \leq m \leq \infty, \mathcal{X}_{m}$ is a $d g$ - E_{m}-operad.

This yields an E_{∞}-structure on $N^{*}(X)$ as well as an E_{2}-structure on $C C^{*}(A ; A)$, solving the Deligne conjecture.

We finally consider the case $\mathcal{E}=\operatorname{Sets}^{\Delta^{\mathrm{op}}}$ with $\delta: \Delta \rightarrow$ Sets $^{\Delta^{\mathrm{OP}}}$ the Yoneda-embedding.

Theorem 5. (Berger-Fresse) The diagonal of the k-simplicial set $\mathcal{L}(-, \cdots,-; 0)$ is the universal $\Sigma(k)$-bundle $E \Sigma(k)$. There is a weak equivalence of filtered dg-operads $N_{*}\left(E_{m} \Sigma\right) \rightarrow \mathcal{X}_{m}$, where $E_{m} \Sigma, m \geq 1$, denotes the Smith filtration of Barratt-Eccles' E_{∞}-operad $E \Sigma$.

Theorem 6. (Kashiwabara, Berger) For $1 \leq$ $m \leq \infty, E_{m} \Sigma$ is a simplicial E_{m}-operad.

The simplicial isomorphism

$$
\alpha: E \Sigma(k)_{d} \cong \mathcal{L}(d, \ldots, d ; 0)
$$

is given by a "shuffle" which increases the filtration degree in a minimal way. For instance,

$$
\alpha((123,213,231,321))=122213333121
$$

For $k=2$, this α is a filtration-preserving equivariant simplicial isomorphism.

The map of filtered dg-operads $N_{*}(E \Sigma) \rightarrow \mathcal{X}$ is induced by Alexander-Whitney maps
$N_{*}\left(\Delta\left[n_{1}\right] \times . . \times \Delta\left[n_{k}\right]\right) \rightarrow N_{*}\left(\Delta\left[n_{1}\right]\right) \otimes \cdots \otimes N_{*}\left(\Delta\left[n_{k}\right]\right)$
via the identifications

$$
\begin{aligned}
N_{*}(E \Sigma(k)) & =|\mathcal{L}(-, \cdots,-; 0)|_{N_{*}(\delta \times \cdots \times \delta)} \\
\mathcal{X}(k) & =|\mathcal{L}(-, \cdots,-; 0)|_{N_{*}(\delta) \otimes \cdots \otimes N_{*}(\delta)}
\end{aligned}
$$

The compatibility with the operad structures and filtrations follows from a cellular decomposition of $E \Sigma(k)$ compatible with these data, which is induced by the complete graph operad $\mathcal{K}(k), k \geq 0$.

Tamarkin's 2-operad action on \mathcal{E} - Cat.

Given two small \mathcal{E}-categories \mathcal{A}, \mathcal{B} and two \mathcal{E} functors $F, G: \mathcal{A} \rightarrow \mathcal{B}$, one defines a cosimplicial object of natural transformations $R^{\bullet}(F, G)$ where $R^{n}(F, G)$ is given by
$\prod \underline{\mathcal{E}}\left(\mathcal{A}\left(x_{0}, x_{1}\right) \otimes \cdots \otimes \mathcal{A}\left(x_{n-1}, x_{n}\right), \underline{\mathcal{B}}\left(F\left(x_{0}\right), G\left(x_{n}\right)\right)\right)$ where the product is over $\left(x_{0}, \ldots, x_{n}\right) \in \mathcal{A}_{0}^{n+1}$.

The derived object is then by definition

$$
R(F, G)=\operatorname{Tot}_{\delta}\left(R^{\bullet}(F, G)\right)
$$

If \mathcal{A} is a one-object dg-category with $\mathcal{A}(\star, \star)=$ A, then $R\left(I d_{\mathcal{A}}\right)=C C^{*}(A ; A)$.

Tamarkin constructs an \mathbb{N}-coloured 2-operad T_{2} whose symmetrization is \mathcal{L}_{2} and whose totalization is a contractible 2-operad in dgMod. He shows that T_{2} acts on dgCat. This yields (by a theorem of Batanin) a "global" proof of the Deligne conjecture.

