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Part 1. Iterated loop spaces and En-operads.

Let (X, ∗) be a based topological space and

(Sn, ∗) be the n-sphere. Then

ΩnX = Top∗(Sn, X)

is an algebra over the coendomorphism operad

Coend(Sn)(k) = Top∗(Sn,

k︷ ︸︸ ︷
Sn ∨ · · · ∨ Sn)

where the action is given by composition :

Coend(Sn)(k)× (ΩnX)k - ΩnX

Top∗(Sn, (Sn)∨k)×Top∗((Sn)∨k, X)

∼=
?

- Top∗(Sn, X)

=

?
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The operad (Cn(k))k≥0 of little n-cubes is a

suboperad of (Coend(Sn)(k))k≥0. Therefore

any n-fold loop space is a Cn-algebra.

Theorem 1. (Boardman-Vogt, May, Segal) Any

Cn-algebra is up to group completion an n-fold

loop space. In particular, ΩnSnX is the group

completion of the free Cn-algebra on X.

Theorem 2. (F. Cohen) H∗(ΩnSnX, Z/pZ) is a

H∗(Cn, Z/pZ)-algebra on H∗(X, Z/pZ) equipped

with certain Dyer-Lashof operations.

For any field k, a H∗(C2, k)-algebra is called a

Gerstenhaber k-algebra. The Hochschild coho-

mology HH∗(A;A) of an associative k-algebra

A is a Gerstenhaber algebra, whence Deligne’s

conjecture: Is this structure induced by a dg-

E2-operad action on CC∗(A;A) ?

Proofs of the Deligne conjecture have been

given by Tamarkin, McClure-Smith, Kontsevich-

Soibelman and Berger-Fresse.
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Part 2. Enriched categories.

Let E = (E,⊗E , IE , E(−,−)) be a closed sym-
metric monoidal category, for instance
(Top,×, ∗,Top(−,−)) or (Ch(k),⊗k, k,Homk(−,−)).

Def. 1. An E-category A consists of objects
A, A′, · · · ∈ A0 and (for each pair of objects)
hom-objects A(A, A′) ∈ E0, together with

• units uA : IE → A(A, A), A ∈ A0,

• compositions A(A′, A′′)⊗EA(A, A′) → A(A, A′′)

fulfilling unit and associativity axioms.

Any closed symmetric monoidal category E is
an E-category. There is a 2-category of E-
categories, E-functors and E-natural transfor-
mations.
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Lemma 1. The iterated tensor-product ⊗k
E :

E × · · · × E → E is an E-functor, i.e. there are

canonical maps E(X, Y )⊗k → E(X⊗k, Y ⊗k).

The coendomorphism operad of an object X

of E is given by

Coend(X)(k) = E(X, X⊗k), k ≥ 0,

with the obvious structural maps.

Proposition 1. Let X, Y be two objects of E.
Assume that Y is a commutative monoid in E.
Then E(X, Y ) is a Coend(X)-algebra.

The Coend(X)-algebra structure is given by

Coend(X)(k)⊗ E(X, Y )⊗k -E(X, Y )

E(X, X⊗k)⊗ E(X⊗k, Y ⊗k)

enrichment

?

composition
-E(X, Y ⊗k).

multiplication

6
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Part 3. Condensation of coloured operads.

An N-coloured operad in E is given by a col-

lection of objects O(n1, . . . , nk;n) of E, where

(n1, . . . , nk, n) ∈ Nk+1, together with units, Σk-

actions and composition maps

O(n1, . . . , nk;n)⊗E O(m1, . . . , ml;ni)
◦i−→

O(n1, . . . , ni−1, m1, . . . , ml, ni+1, . . . , nk;n),

which are unital, associative and equivariant.

If N = {∗} then O(k) = O(
k︷ ︸︸ ︷∗, . . . , ∗; ∗) is a sym-

metric operad in E.

Each N-coloured operad O defines a category

Ou of unary operations with object-set N :

Ou(n, n′) = O(n;n′).
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A coloured operad O in E can also be presented

as a multitensor on Ou with values in E:
k︷ ︸︸ ︷

Oop
u × · · · × Oop

u ×Ou
O(−, . . . ,−;−)

-E

This defines a lax symmetric monoidal struc-

ture on EOu by the coend formula:

(X1 ⊗O · · · ⊗O Xk)(n) =∫ n1,...,nk
O(−, · · · ,−;n)⊗E X1(−)⊗E · · · ⊗E Xk(−).

In particular, for each object δ ∈ EOu, we get a

coendomorphism operad

CoendO(δ)(k) = HomOu(δ, δ ⊗O · · · ⊗O δ).

Proposition 2. Let X be an algebra over the

coloured operad O in E. Let δ ∈ EOu. Then

HomOu(δ, X) is a CoendO(δ)-algebra.
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E = Top or E = Ch(Z) contains Sets as the

subcategory of discrete objects via the strong

monoidal functor S 7→ tSIE (IE = unit of E).

We shall construct a coloured operad L in Sets,

parametrizing the combinatorial structure of it-

erated loop spaces in the following sense:

• L = ∪m≥0Lm and Lu = ∆ = (Lm)u;

• For the standard object δ : ∆ → E,
CoendLm(δ) is an Em-operad in E.

In particular, any Lm-algebra X in E gives rise

to an Em-algebra Hom∆(δ, X). Being an Lm-

algebra in E is a combinatorial property !!
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Part 4. The lattice path operad.

The funny tensor product of categories A⊗ B
has (A, B) ∈ A0 × B0 as objects, and “free”
compositions of (f,1B) : (A, B) → (A′, B) and
(1A, g) : (A, B) → (A, B′) as morphisms.

Def. 2. The lattice path operad is the N-
coloured operad in sets defined by

L(n1, .., nk;n)=Cat∗,∗([n+1], [n1+1]⊗· · ·⊗[nk+1]).

Example. Let x ∈ L(2,1; 3) be the lattice path:

(0,2) (1,2) (2,2) x(4)

(0,1) ·====
1

⇒x(2)===
1
⇒x(3)

2
~wwww

x(0)===
1
⇒x(1)

2
~wwww

(2,0) (3,0)

The path is determined by the sequence of “di-
rections” and “stops”: x = 1|21|1|2.
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L(n1, . . . , nk;n) may be identified with the set
of finite sequences containing n1 + 1 times 1,
n2 + 1 times 2, ... ,nk + 1 times k, and n
(possibly multiple) stop’s. Under this identifi-
cation, the operad composition map is given
by renumbering and substitution:

1||12|3|2 ◦2 1|32 = 1||12|5|43.

Lemma 2. Lu = ∆. (Joyal-duality)

Lu(n′, n) = Cat∗,∗([n+1], [n′+1]) = ∆([n′], [n]).

Let ∆Σ be the category of finite sets and finite
set mappings equipped with total orderings of
the fibers, cf. Feigin-Tsygan, Krasauskas and
Fiedorowicz-Loday. (Crossed simplicial group).

Proposition 3. (Extended Joyal-duality)

L(n1, . . . , nk;n) = {x ∈ ∆Σ([n1] ∗ · · · ∗ [nk], [n])

sth. ∀i : x|[ni]
∈ ∆([ni], [n])},

where the operad composition is given by join
and composition in ∆Σ.
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Def. 3. (Filtration by complexity)

For 1 ≤ i < j ≤ k, let pij be the projection

[n1 + 1]⊗ · · · ⊗ [nk + 1] → [ni + 1]⊗ [nj + 1].

Let aij(x) be the number of angles in the lat-

tice path pij◦x, and c(x) = maxi<j aij(x). Then,

Lm(n1, .., nk;n) = {x ∈ L(n1, .., nk;n) | c(x) ≤ m}

defines a suboperad Lm of L with (Lm)u = ∆.

Proposition 4. (Batanin) The category of L1-

algebras is isomorphic to the category of cosim-

plicial �-monoids (� is induced by ordinal sum).

Proposition 5. (Tamarkin) The category of

L2-algebras in E is isomorphic to the category

of multiplicative non-symmetric operads in E.

Example. The Hochschild cochain complex of

an associative algebra is an L2-algebra.
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Proposition 6. For each simplicial set X, the

norm. cochain complex N∗(X) is an L-algebra.

The dual coaction is given by

L(n1, · · · , nk;n)⊗Nn(X) → Nn1(X)⊗ · · · ⊗Nnk(X)

x⊗ [α] 7→ [x∗1(α)]⊗ · · · ⊗ [x∗k(α)]

where (x1, . . . , xk) are the components of x :

[n1] ∗ · · · ∗ [nk] → [n].

Proposition 7. Let Sm be ∆[m]/∂∆[m] and X

be a pointed object of E. Then, the cosimpli-

cial E-object (X, ∗)(Sm,∗) is an Lm-algebra.

There is an L-coaction on Sm:

L(n1, · · · , nk;n)× (Sm)n → (Sm)n1 × · · · × (Sm)nk

x× α 7→ (x∗1(α), . . . , x∗k(α)).

If c(x) ≤ m, the image is in (Sm)n1∨· · ·∨(Sm)nk.
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We now consider the case E = Top. Let δ :

∆ → Top be the standard cosimplicial object.

Hom∆(δ, (X, ∗)(S
m,∗)) ∼= Top∗(|Sm|, X) = ΩmX.

Thus, any m-fold loop space is an algebra over

the coendomorphism-operad

Dm(k) = Hom∆(δ, δ ⊗Lm · · · ⊗Lm δ)

= Totδ(Ym,k), k ≥ 0.

Theorem 3. (McClure-Smith) For 1 ≤ m ≤ ∞,

Dm is a topological Em-operad.

Totδ(Ym,k)
∼= Ym,k(0) ×Totδ(δ) ' Ym,k(0) and

Ym,k(0) is the realization of the k-simplicial set

Lm(−, . . . ,−; 0) of surjections with codomain

{1, . . . , k} and complexity ≤ m.
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We now turn to the case E = Ch(Z) with δ :
∆ → Ch(Z) : [n] 7→ N∗(∆[n]).

Totalization Hom∆(δ,−) takes a cosimplicial
module to the dg-module with differential d =∑

(−1)i∂i. Thus the cochain complex N∗(X)
is a X̄∞-algebra, and the Hochschild cochain
complex CC∗(A;A) is a X̄2-algebra, where X̄m

is the coendomorphism operad

X̄m(k) = Hom∆(δ, δ ⊗Lm · · · ⊗Lm δ), k ≥ 0.

“Summing up the elements of the fibers” of

Lm(−, . . . ,−;n) → Lm(−, . . . ,−; 0)

defines a cosimplicial dg-submodule of

|Lm(−, · · · ,−;n)|δ⊗···⊗δ,

and by totalization a dg-suboperad Xm of X̄m:

Xm(k) = |Lm(−, · · · ,−; 0)|δ⊗···⊗δ, k ≥ 0.

This suboperad is the m-th filtration stage of
the so-called surjection operad X .
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Theorem 4. (McClure-Smith, Berger-Fresse)

For 1 ≤ m ≤ ∞, Xm is a dg-Em-operad.

This yields an E∞-structure on N∗(X) as well

as an E2-structure on CC∗(A;A), solving the

Deligne conjecture.

We finally consider the case E = Sets∆
op

with

δ : ∆ → Sets∆
op

the Yoneda-embedding.

Theorem 5. (Berger-Fresse) The diagonal of

the k-simplicial set L(−, · · · ,−; 0) is the univer-

sal Σ(k)-bundle EΣ(k). There is a weak equiv-

alence of filtered dg-operads N∗(EmΣ) → Xm,

where EmΣ, m ≥ 1, denotes the Smith filtra-

tion of Barratt-Eccles’ E∞-operad EΣ.

Theorem 6. (Kashiwabara, Berger) For 1 ≤
m ≤ ∞, EmΣ is a simplicial Em-operad.
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The simplicial isomorphism

α : EΣ(k)d
∼= L(d, . . . , d; 0)

is given by a “shuffle” which increases the fil-
tration degree in a minimal way. For instance,

α((123,213,231,321)) = 122213333121.

For k = 2, this α is a filtration-preserving equiv-
ariant simplicial isomorphism.

The map of filtered dg-operads N∗(EΣ) → X
is induced by Alexander-Whitney maps

N∗(∆[n1]×..×∆[nk]) → N∗(∆[n1])⊗· · ·⊗N∗(∆[nk])

via the identifications

N∗(EΣ(k)) = |L(−, · · · ,−; 0)|N∗(δ×···×δ)

X (k) = |L(−, · · · ,−; 0)|N∗(δ)⊗···⊗N∗(δ)

The compatibility with the operad structures
and filtrations follows from a cellular decom-
position of EΣ(k) compatible with these data,
which is induced by the complete graph operad
K(k), k ≥ 0.
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Tamarkin’s 2-operad action on E−Cat.

Given two small E-categories A, B and two E-
functors F, G : A → B, one defines a cosimpli-
cial object of natural transformations R•(F, G)
where Rn(F, G) is given by∏
E(A(x0, x1)⊗· · ·⊗A(xn−1, xn),B(F (x0), G(xn)))

where the product is over (x0, . . . , xn) ∈ An+1
0 .

The derived object is then by definition

R(F, G) = Totδ(R
•(F, G)).

If A is a one-object dg-category with A(?, ?) =
A, then R(IdA) = CC∗(A;A).

Tamarkin constructs an N-coloured 2-operad
T2 whose symmetrization is L2 and whose to-
talization is a contractible 2-operad in dgMod.
He shows that T2 acts on dgCat. This yields
(by a theorem of Batanin) a “global” proof of
the Deligne conjecture.
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