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We describe the main characteristics of the mortar element method, together with the usual
arguments for its numerical analysis in an abstract framework. We illustrate this presentation
by describing mortar spectral element and mortar finite element methods. We give three
examples of recent applications, concerning the treatment of non homogeneous media, eddy
currents in moving conductors, and finite element mesh adaptivity.
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1 Introduction

The mortar element method [38, 39] is a domain decomposition technique that allows to take
benefit of the presence of the subdomains in order to choose the discretization method the best
adapted to the local behavior of the solution of the partial differential equation which must be
approximated. This choice can be done a priori or a posteriori regardless of the discretization
that is chosen on the adjacent subdomains. Indeed one of the key advantages of the mortar
element method when compared with other domain decomposition techniques is that it allows
to handle various types of nonconformities with great flexibility:

e Functional nonconformity, i.e., nonconformity in the Hodge sense: The mortar element
method relies on variational type discretizations, such as finite elements, spectral methods
and wavelets. As a consequence, the discrete problem is constructed via the Galerkin process
applied to the variational formulation of the partial differential equations. However, even if
the local discrete spaces, i.e., the discrete spaces on each subdomain, are included in the local
variational spaces, this is usually no longer the case for the global space since the matching
conditions that are enforced on the interfaces between the subdomains are too weak to ensure
the conformity. This is specially valid when different discretization methods are used on the
subdomains, for instance for the coupling of finite elements and spectral methods, or in the
case of sliding meshes.
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e Geometrical nonconformity: An efficient way for handling two- or three-dimensional com-
plex geometries is that the less possible restrictions are enforced on the decomposition into
subdomains. The mortar element method allows for handling decompositions of any type,
with the only unavoidable condition that, when spectral discretization is used in one subdo-
main, the intersection of the boundary of this subdomain with the boundary of the computa-
tional domain is made of full edges or faces of the subdomain. Even if the numerical analysis
of the method is more complex for nonconforming decompositions, this flexibility is a key
argument for using the mortar element method.

e Overlapping nonconformity [52, 4]: Here the domain decomposition is chosen with overlap
and again different discretizations are chosen over each subdomain. The matching condition
in order to transfer the information from one subdomain to the others is done at an interface
that lies inside the other subdomains and may even lie inside the discretization pattern of these
subdomains. This is particularly attractive to handle complex or even unsteady geometries.
However this extension is recent and will only be presented in an example in what follows.

The philosophy of the mortar element method relies on the definition and properties of
the functional spaces well-suited for the analysis of the partial differential equation more
than on the exact form of the operators. So, we have chosen to present the mortar element
methods for the Laplace equation, where the functional space is the Sobolev space of order
1, since the basic arguments for its analysis already exist for this academic problem. We
refer to [11, 12] for the treatment of fourth-order problems, the functional space being there
the Sobolev space of order 2, and to [8, 58, 80] for problems set in the domains of the curl
and divergence operators such as Maxwell’s system and Darcy’s equations. In Section 2,
we describe the discretization of the Laplace equation with Dirichlet boundary conditions
in an abstract framework and exhibit the sufficient conditions for the discrete problem to be
well-posed. We illustrate this by applications to the finite element discretization, the spectral
element discretization and the coupling of both methods. We refer to [42] and [43] for a very
interesting work concerning the mortar element method for wavelets, also to [22] and [29]
for the use of the mortar element method in the framework of the hp version of the finite
element method that we do not consider here and to [3] for mortar finite volumes. Section
3 is devoted to the derivation of a priori error estimates. A key argument is that the choice
of integral type matching conditions on the interfaces leads to an optimal evaluation of the
consistency error issued from the nonconformity of the discretization. The recent results
concerning finite elements and spectral methods are recalled. In Section 4, we explain how
the mortar discrete problem can be implemented and solved. In the last section, we present
three basic applications of the mortar element method: the spectral element discretization of
elliptic equations with discontinuous coefficients, the use of sliding meshes for handling eddy
currents in a rotating conductor and also the application of the mortar element method to finite
element mesh adaptivity in order to increase the efficiency of the adaptivity. As a conclusion,
we give some hints and references for other recent applications.
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2 Description of the mortar element method

Let ©2 be a bounded connected domain in R?, d = 2 or 3, with a Lipschitz—continuous bound-
ary 012. We consider the Laplace equation in 2 with homogeneous Dirichlet boundary condi-
tions on 0N2

—Au=f in Q,

()
u=0 on 012,

and we recall that, for any data f in H ~1(Q), it admits the equivalent variational formulation
Findw in Hg () such that

Yo € Hy(Q), /g;(grad u)(x) - (gradv)(x)de :/Qf(m)v(a:) dx. (2

For the construction of a family of finite-dimensional discrete spaces which approximate
H{(£2), the mortar element method mainly relies on a decomposition of the domain €2 into
subdomains without overlap

Q=UE Q4 and QN =0, 1<k<k <K, 3)

where each Q. is a connected domain in R? with a Lipschitz—continuous boundary. In general
the Q) are polygons or polyhedra, and the decomposition is said to be geometrically conform-
ing if the intersection of two different subdomains €2, is either empty or a vertex or a whole
edge or a whole face of both of them. However neither this restriction nor other ones are a
priori enforced on the decomposition.

The skeleton S of the decomposition, equal to UX_ €2, \ 02, admits a partition without
overlap into mortars

S = i and Yo VY =0, 1<m<m' <M~ 4)
1

=

m

where each ;. is a whole edge (d = 2) or face (d = 3) of one of the Q, which is then
denoted by Q. Note that the choice of this decomposition is not unique, however it is
decided a priori for all the discretizations we work with. Once it is fixed, we have another
partition of the skeleton into non-mortars

rt+

S= 5.F and YENyE =0, 1<m<m' <MT, 5)
1

S

m

where each ~; is a whole edge or face of one of the Q;,, here denoted by Q.}, and either ~.
does not coincide with any ~,, or, if %, is equal to a ~,,, Q. is different from Q2 ,. Note
that, even for simple decompositions, M~ is most often different from M+ (for instance,
in the case of the three rectangular subdomains ©Q; =] — 1,0[x]0, 1], 22 =]0,1[x]0,1[ and
Q3 =] —1,1[x] —1,0][, the pair (M ~, M) is either equal to (2, 3) or (3, 2), according to the
choice of the mortar(s) on the line y = 0).
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Leté = (41, ...,dk) be a K—tuple of discretization parameters, one per subdomain. From
now on, ¢ stands for a generic constant always independent of the §;. Foreach k,1 < k < K,
we are given a finite-dimensional space Xy, of functions defined on €, and, only for brevity
of the presentation, we assume that X s, is contained in H1(€;,) (even if it is no longer the case
when nonconforming finite elements are used on some (), see [75, 79, 83, 89] for instance).
When an edge of Q. is a non-mortar ', the space of traces of functions of X4, on ;% is

denoted by W} . We also introduce a subspace Wgrm of W', usually of the same dimension

om?

1
as Wb N Hg)(~,;). Finally, we consider the mortar operator ® which associates with any
function v whose restriction to each €2, belongs to H!(Q) the function in L?(S) defined by

(I)(’U)M;L = Tr;(v‘Q;L), 1<m<M™, (6)

where Tr: denotes the trace operator from H'(Q%) onto Hz ().
We are now in a position to define the mortar element discrete space. It is the space X; of
functions vs such that
o their restrictions to each Q, 1 < k < K, belong to Xy,
e they vanish on 09,
o the following matching conditions hold on each non-mortar ;5,1 <m < M,

Vips € Wit /+ (T (vs 1) — @(v6)) (7)hs () d = 0. @)

Tm

Remark: The fact that the space W(;rm is a subspace of ;" is one of the main characteristics
of the mortar element method. Other types of spaces are also encountered, for instance in the
case of hybrid methods, see [67], or in the so called “Bavarian” mortar element method, see
[86]. Moreover, f/IV/(;Lm is usually chosen as a subspace of W with positive codimension, in
order not to enforce more matching conditions than degrees of freedom (think of an edge %,
such that its two endpoints belong to 952).

Example 1: Mortar spectral elements

We assume for simplicity that the 2, are rectangles or rectangular parallelepipeds (more com-
plex geometries are handled for instance in [74]) such that the intersection of the boundary
of each Q;, with 992 is either empty or a corner or a whole edge or a whole face of Q. For
each subdomain €2y, we fix an integer N, take the discretization parameter &, equal to Nk_1
and choose X, as the space of restrictions to €2, of polynomials with d variables and degree
< Nj with respect to each variable. The space W, is then the set P i+ (7,5, of restrictions
to ~;5 of polynomials with d — 1 variables and degree < N, with respect to each tangential
variable (I, stands for the IVj such that Q;f is equal to ). The usual choice for W;m is
then the space P+ _,(7;1,)-

Example 2: Mortar finite elements

We assume that the €, are polygons or polyhedra and we introduce a regular family of trian-
gulations (7, )p, of each Q, by triangles or tetrahedra, in the usual sense that

e the union of all elements K of 7y, is equal to Q,

o the intersection of two elements K and K’ of 7y, if not empty, is a corner or a whole edge
or a whole face of both K and K,

o the ratio of the diameter of an element K to the diameter of its inscribed circle or sphere is
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bounded by a constant o independent of K and h.
The parameter §; now denotes the maximal diameter of the elements of 7;. For a fixed
integer ¢ > 1, the space Xy, is then the basic finite element space

Xk:{’l}hEHl(Qk); VK € Ty, ’Uh|KE7)g(K)}, (8)

where as usual P, (K') denotes the space of restrictions to K of polynomials with d variables
and total degree < ¢ (different degrees ¢, of polynomials can be used according to the Q, we
take all the ¢;, equal to the same value for simplicity). With obvious notations, the space W
is then given by

Wzsm {(Ph € H (/Ym) VK € Tmh’ (ph\Kﬂ'y$ € PZ(KQ’Y';;)} (9)
In dimension d = 2, the space Wg“m is usually defined by
Wi, ={on € Wi VK € TS, 0 knns € Pea(K 03}, (10)

where ﬁfh denotes the set of the two triangles that contain the endpoints of ~;}. The choice
is less standard in dimension d = 3 and we refer to [27] for an example where, as in (10),
the degrees of freedom for the functions in W; are the values at the nodes of the principal
lattices of order ¢ of the faces K N ~,!, of elements K of 7,F, that do not belong to d,,.
Remark: A further condition sometimes appears in the deflnltlon of the mortar space Xs:
The functions in X are enforced to be continuous at the vertices in dimension d = 2, on the
edges in dimension d = 3, of the Q, (the very first definition of the mortar space involved
this condition, see [38]). It can be noted that this more stringent definition does not induce
any modification in the proofs below. On the other hand, the ~, and ;,,, can be only parts of
edges or faces of the Q. , with the only restriction that they are the union of whole edges or
faces of the elements of the triangulations 7,5, .
Example 3: Coupling spectral and finite elements
Assume that spectral discretizations are used on part of the subdomains, say on the Qg, 1 <
k < Ky, and that finite elements are used on the other subdomains €, Ko +1 < k < K.
Then, the discrete spaces X, are those of Example 1for1 < k < Kj and those of Example
2 for Ky + 1 < k < K. The non-mortars +,}, are chosen
e as spectral ones, in the sense that W(;L is chosen as described in Example 1, if ~,% is an
edge or a face of a “spectral” subdomain Q, 1 < k < Ky,
e as finite element ones, in the sense thatWa is chosen as described in Example 2, if ~,% is
an edge or a face of a “finite element” subdomain €, Ko +1 < k < K,
o either as spectral or finite element ones if ~ is an edge or a face of both a spectral and a
finite element subdomains.
The main interest of this coupling is that the advantages of both types of discretizations can be
taken into account such as the high accuracy of spectral methods where the solution is smooth
or the treatment of complex boundaries by finite elements.

For any data f in L?(2), the discrete problem can be written as follows:

Find us inXs such that

Yus € Xs, Z/ (grad us)(x) - (gradvs)(x) de = 5.1 f@)vs(x)de. (11)
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Remark: In the case of spectral discretizations, the integrals which appear in the previous
problem (11) are replaced by appropriate Gauss—Lobatto type quadrature formulas. Since this
only adds technical arguments to the numerical analysis of the problem (in fact, the same ar-
guments as for spectral methods without domain decomposition), we prefer not to introduce
this numerical integration in the discrete problem for simplicity. Note also that a quadrature
formula can be used to replace the integral that appears in condition (7), but it must be care-
fully chosen since, e.g., the Gauss—Lobatto formula yields matching conditions of pointwise
(interpolation) type which are not at all optimal. We refer to [73] for a comparative study of
the two approaches.

Remark: The mortar element method can also be seen as a special case of the three—field
domain decomposition method, see [41], [49] and [78, §1.7] for instance.

The well-posedness of problem (11) relies on the ellipticity of the bilinear form

a(u,v) = ;/ﬂk (grad u)(x) - (gradv)(x) de, (12)

on the discrete space Xs. Moreover, in order to check the stability of the discrete solution, we
wish to prove that the ellipticity constant is independent of 4. To this aim, for a given set of
subspaces W; of Hz (), we introduce the space X of functions v such that

o their restrictions to each Q, 1 < k < K, belong to H'(Qy),

e they vanish on 092,

o the following matching conditions hold on each non-mortar ;5,1 <m < M+,

Vi € W, /+ (T (v05) — @) (7)¢b(7) dr = 0. (13)

m

Note that the ’vﬁ are not a priori discrete spaces, so that the space X is independent of 6.
Its main advantage is that it contains both the space H} () and all spaces X such that each
W(;Lm contains W;, 1 <m < M™. We are led to make the following assumption.
Assumption Al: The set of functions v of X such that a(v, v) is zero is reduced to {0}.

We also introduce the decomposition-dependent norm

K 1
2
el oo = (3 1013, (14)
k=1

Proposition 2.1 If Assumption A1 holds, there exists a constant o > 0 such that
Y eX, alv,v)>a H/U”%_Il(UQk). (15)

Proof: It can be noted that
1

2
ol wan = (a(,0) + [vl3a)

Thank to Assumption A1, the kernel of the first term in the right-hand side is {0}. Moreover,
since the embedding of each H!(Q,) into L?(Q) is compact, so is the embedding of X into
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L?(2). Thus, the desired property is an easy consequence of the Peetre-Tartar lemma, see
[62, Chap. I, Thm 2.1].

In order to check that Assumption Al holds, let us consider a function v in X such that
a(v,v) is equal to zero. Thus v is a constant ¢, on each Q. On the domains €2, such that
0, N O has a positive measure, the constants ¢y, are zero, thanks to the boundary conditions
in X. So Assumption Al is satisfied if there are enough matching conditions in (13) for all the
¢y, to be equal. For geometrically conforming decompositions, i.e., if each !, isalsoa~,,,,
it suffices thatW/,j; contains the constants. Otherwise:

o In the spectral element case of Example 1, the following results are proved in [38, §A.1]:

In dimension d = 2, it suffices that ¥/, contains P+ (5), where n;f, denotes the number of

corners of the Q;, which are inside ~;%,. Unfortunately, the result is not so precise in dimension

d = 3, see [25] and [34, Chap. 1V] : There exist nonnegative integers n;}, only depending on

the decomposition such that Assumption Al is satisfied. This result is a little disappointing,
even if it can be improved for all the decompositions that we have in mind.

o In the finite element case of Example 2, the sufficient conditions are described in [47] in a
more general framework, both in dimensions d = 2 and d = 3 (see [38, §A.2] and [27] for

the first results). It suffices for instance thatW;g contains a function with a compact support

and non zero integral in each intersection .. N A€, which has a positive measure in ;.

o In the coupling case of Example 3, it suffices thatWT;t contains the spaces described in the

lines above, depending on whether ;! is of spectral type or of finite element type.

Remark: The constant « in estimate (15) depends only on the decomposition. In some
cases, this decomposition is deeply linked to the discretization, see [36] for instance, so that
different arguments are needed to prove the uniform ellipticity. On the other hand, note that
the ellipticity property is much more difficult to establish for fourth-order problems since the
kernel of the bilinear form depends not only on the decomposition but also on the discrete
spaces (think of harmonic polynomials for instance!). We refer to [11, 12] for the first results
concerning these problems in the spectral case and also to [48] for a more general statement
in the finite element case.

Theorem 2.2 If Assumption A1 holds and if each W(;Lm, 1 <m < MT, contains Wg, for
any data f in L2(2), problem (11) has a unique solution us in Xs. Moreover this solution
satisfies

llus|l 1 uowy < o™ N Fllpz)- (16)

Remark: Inthe case of saddle-point problems such as Stokes and Darcy’s system (see Section
5.1), the ellipticity property (15) is not sufficient to prove the well-posedness of the discrete
problem. In the mortar spectral element case, a further inf-sup condition is proved in [20]
for the Stokes problem and in [8] for the Darcy problem. For the Stokes and Navier-Stokes
equations, we also refer to [55] for a pioneering work concerning the coupling of finite el-
ements with spectral discretizations in the mortar framework and to [1, 77] for more recent
results in the finite element case. Note to conclude that the Boland and Nicolaides argument
[44] provides an efficient tool for these results, since it allows for deriving the global inf-sup
condition from the local ones on each subdomain.
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3 Numerical analysis

We now wish to prove an a priori error estimate between the solution « of problem (1) and
the discrete solution us. When multiplying the first line in (1) by a function s in Xy and
integrating by parts on each 2, we observe that

a(uws) = | fla)ws(e)de — / (One) (1) 5] () d, 17)
Q S

where, if n denotes the unit normal vector going from one Q;, to another Q;, [ws] denotes
the jump ws|q,, — ws |, - Next, if Assumption A1 holds and if each Wgrm, 1<m<MT,
contains W}, we deduce from Proposition 2.1 that

llu — u(sH%{l(UQk) <a la(u— us,u— ug).

Adding (17) and subtracting problem (11) then gives, for any vs in X,

= sl un, < " (alu—usou—us) + [ @u)(r)lus - vs)(r) dr).

S

Using the continuity of the form a(-, -) leads to the following version of the Second Strang’s
lemma, see [31],

[|u _u5||H1(qu)

. (Onu)(7)[ws](7) dr
<c ( inf |Ju— ’U5||H1(ng) + sup fs
v5€X5 ws€Xs lwsl| z1 (wa)

). (18)

Note that the first term on the right-hand side represents the approximation error while the
second term is the consistency error.

In order to evaluate the consistency error, we introduce the orthogonal projection operator
w3 from L?(~;}) onto W(;rm. We recall the following properties of this operator in both cases
of Examples 1 and 2: For any nonnegative real numbers s and ¢, with the further restriction
s < ¢andt < ¢in the finite element case, and for any function ¢ in F*(T;},),

e — W&%‘PHH%@;) < (o) H‘P”Hs@;y (19)

Proposition 3.1 Let the solution « of problem (2) be such that each uq, belongs to
H5k+1(Qk),
(i) with s, > % for all k&, 1 < k < K, in the case of Example 1 and for the k such that
1 < k < Ky, in the case of Example 3,
(iiywith 1 < s, < ¢forall k, 1 <k < K, in the case of Example 2 and for the k such that
Ko+ 1 < k < K, inthe case of Example 3.
The following bound holds for the consistency error issued from problem (11)

Onu)(Dws](T)dr
sup Js <c Z 05" [1og Ok [* [[ull s+ () (20)
wsEXy ||w5HH1(UQk) k=1

where py, is equal to 1 if one of the edges of €2 is a v} and intersects at least two subdomains
Qur, k' # k, to zero otherwise.
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Proof: Oneachv;t, 1 <m < M, thanks to condition (7), we have

/.

m

(Onu)(T)ws)(T) dT = / (Onu — ﬂgrmanu)(r)[w(;](T) dr.

Yo

Note that [w;] belongs to H z (+;) when ~;% intersects at most another €2;.,. Otherwise it only
belongs to Hz~¢(~;") forany e > 0. So, we have

[ @iy ar

m

< |00t — 75, Onu [ Try, (ws) | + [ @(ws)|

bt ( HY=*(37) i)
We recall from [43, Rem. 2.10] that, for ¢ > 0 and for any part v of .}, the extension by
zero is continuous from Hz~<(~) into H=~¢(~;") and its norm is bounded by ce~!. When

combining this with the trace theorem and using a Cauchy—Schwartz inequality, we obtain

1
[ O @uslirar < (14 ee™) 1onn = w2 (3 Taslga, )’
Ym ke&d

where & denotes the set of indices k, 1 < k < K, such that ~;; N9, has a positive measure
in ;. Thus, the desired bound follows by applying (19), choosing ¢ equal to |log§,} |71,
when it is not zero, and summing over m.

Note that the | log d,| are most often negligible (moreover they can be replaced by | log d. |%
according to a recent result [54] and by 1 in the finite element case of Example 2) and that
they disappear in the case of a geometrically conforming decomposition. Evaluating the ap-
proximation error is much more complex, specially in dimension d = 3, so we only give the
main ideas of the proof. In dimension d = 2, it relies on the following argument:

—taking v} equal, on each €, to the interpolate of  at the Gauss-Lobatto nodes in the case of
Example 1, to the Lagrange interpolate of « on the principal lattice of order ¢ associated with
each element of 7, in the case of Example 2, with obvious extension to the case of Example
3 (note that each vj |, belongs to Xs),
— lifting on each ©;,, the jump of v} at each corner of an 2, which is inside ~,,, by multiplying
it by a quadratic or piecewise affine function which vanishes on 9€,, \ ~,, and denoting by
v? the sum of v} and of these liftings,
— taking v} equal to

’Ug’ = E}_m ° ﬁ-;_m ((I)(Ug) - TI.::L(’U?‘Q%)))
where £ is a continuous lifting operator from W N Hoéo(yj,;) into the space of functions
in X vanishing on 9Q;f, \ ~,% (the existence of such an operator and its properties are stated
in [40, §111.3] in the case of Example 1 and in [40, §1X.4] in the case of Example 2), while

1
the operator 7, takes its values in W} N HE () and is defined, for any smooth enough
function v, by

Vips € W(;rm, /+ (v — ﬁ;mv) (T)s(T)dT = 0.
Yo
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Indeed, thanks to this choice, it is readily checked that the function vs = v} + v now be-
longs to Xs5. We refer to [39, §4] for the details of this proof and to [34, Chap. V] for the
improvement in the case of a geometrically conforming decomposition.

Proposition 3.2 If the assumptions of Proposition 3.1 are satisfied, the following bound
holds for the approximation error issued from problem (11) in the case of dimension d = 2

it Ju = vslln ) < (14 A Za el (21)

where \s is equal

(i) to 0 in the case of a geometrically conforming decomposition, in the finite element case of
Example 2 or if all non-mortars ;% are of finite element type in the case of Example 3,

(ii) otherwise, to the maximum of the A}, 1 < m < M, in the case of Example 1 or such
that ;% is of spectral type in the case of Example 3, with each A}, equal to the maximum of
the Vi /Nt for all 0, such that 9, N~ has a positive measure in ;.

This estimate is optimal since s is most often bounded independently of § in practical
situations. However the analysis is much more complex in the case of dimension d = 3. We
refer to [18, 25, 27, 28, 46] for several results in this direction, however we only consider the
case of a geometrically conforming decomposition for brevity. The next result is proved in
[34, Chap. IV] in the spectral case.

Proposition 3.3 If the assumptions of Proposition 3.1 are satisfied, the following bound
holds for the approximation error issued from problem (11) in the case of dimension d = 3,
when the decomposition is geometrically conforming and in the spectral case of Example 1

K
inf ||U —vsl e < e D0 [l o) (22)

vaEX k=1
Combining the results of Propositions 3.1 to 3.3 with (18) leads to the final error estimate.

Theorem 3.4 If the assumptions of Proposition 3.1 are satisfied, the following a priori
error estimate holds between the solution « of problem (2) and the solution us of problem
(11) either in dimension d = 2 or in the case of a geometrically conforming decomposition
and in the spectral case of Example 1 in dimension d = 3

K
1 Sk
Hu — U5||H1(ng) <c(l14X5)2 Zékk |10g(5k|pk H’LLHHsk.Jrl(Qk), (23)
k=1

where the quantities pi and As are introduced in Propositions 3.1 and 3.2, respectively.
Estimate (23) gives a good idea of the interest of the mortar element method in a large

number of situations.
4 Numerical implementation

The linear system associated with problem (11) is usually implemented via one of the two
following techniques: the construction of a basis of the constrained spaces or the introduction
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of a Lagrange multiplier to handle the matching conditions. We successively describe these
implementation techniques. Next, we briefly explain how they can be combined with more
standard domain decomposition algorithms and give some references for that. Further algo-
rithms and many more details on those which are described here can be found, e.g., in [88]
and the references therein.

4.1 Construction of a basis of the constrained spaces

The main idea, due to [72] (see also [80, Chap. 6]), consists in extracting from a basis of all
X5k a basis of X;5. We describe it in the case of two subdomains 2; and €5 for simplicity,
and we assume that there exists only one non-mortar ~;", with Q" equal to ;.

We introduce the Lagrange basis functions gpé?, 1 < j < JF, which are
e in the spectral case of Example 1, associated with the nodes of the Gauss—Lobatto formula
on €2, (so that J¥ is equal to (N + 1)%),
o in the finite element case of Example 2, associated with the nodes of the principal lattices
of order ¢ of all elements K of 7.
Among them, we denote by cpé?, 1 < j < Jk those associated with nodes inside 2, and by
of, JF +1 < j < J§,, those associated with the nodes belonging to S but not to 9.

The basis 3 is built as the union of three disjoint sets B, B2 and B, where
e Bl is the set of the go;, 1 < j < Jj3,, extended by zero to Q,,
o B?isthesetof the 7, 1 < j < J§, extended by zero to ;.
The construction of B is a little more complex. With each function ¢}, J3; + 1 < j < Jj},,
we associate the function gpf equal to ga; on §2; and to the linear combination Zﬁ*«’?ﬁl Qij P2
on €, where the ¢;; are such that

I

vis €W [ (el Y aued)mus(r)dr —o. (24)
71

i=J3+1

It can be checked from the definition ofW}l that system (24) defines the ¢; in a unique way.
The basis 39 is then the set of the 5, J}; +1 < j < J§,.

Let @ be the rectangular matrix with coefficients equal to the g;, JZ, +1 < i < JZ,,
J} +1 < j < JL,. The discrete solution us admits the following expansion in the basis B

50 I3 I3
_ 1 1 2 2 S S
Us = E uj @5 + g uj o+ E Ui Py (25)
J=1 J=1 J=J50+1
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S

so that the vector U of unknowns is made of the ujl uf and uj. Moreover, the function ug

can be written on each €,

Tk I,

_ 1,1 S 1

Us|0, = E u; @; + E Uj Py
J=1 j=J3+1

2 2 1
Jso ‘]6* JS*

us|Q, = Zuf 5+ Z Z uf qij o7 (26)
j=1

i=J3+1j=J5,+1

Hence the vector made by these new coefficients on each ), are equal to @U, where (2 is
block diagonal, with two blocks equal to the identity and the last one equal to the rectangular
matrix Q. As a consequence, problem (11) results into the square linear system

QTAQU =Q"F, (27)

where

(i) the matrix A is symmetric and block-diagonal, one block per subdomain €2, and each block
corresponding to a discrete Laplace equation on an €2 with Dirichlet boundary conditions on
0, N 092 and Neumann boundary conditions on 9 N S,

(i) QT denotes the transposed matrix of @, so that the matrix Q7 AQ is symmetric.

Only the dimension of the vector U is equal to the dimension of X;. Indeed, the vector F
and the square matrix Aare larger, which seems necessary in order to enforce that Aiis block
diagonal.

The integrals in the matching conditions involve discrete functions defined on different
non-matching grids and, as a consequence, the computation goes through the intersection
of two different meshes on §. In dimension d = 2, this is rather easy [50] since S is a
one-dimensional curve. In dimension d = 3, finding this intersection becomes a hard task.
The use of quadrature formulas to evaluate these integrals highly increases the efficiency of
the implementation. However, using a standard Galerkin approximation and replacing the
exact integration by a quadrature formula based only on the mortar or non-mortar side does
not yield optimal results [73]. The best approximation error requires a quadrature formula
based on the mortar side and the consistency error requires one on the non-mortar side. As a
consequence, we are led to work with different test and trial spaces, resulting into a Petrov-
Galerkin approach. A different but symmetric approach relies on the introduction of a third
discretization on the skeleton, totally independent of those on the mortar and non-mortar sides.
A quadrature formula is then defined on the mesh triangles of this third mesh and projected on
those of the mortar and non-mortar sides (see [81] for a concrete application of this approach
in three dimensions). We refer to [80] for a detailed analysis of the discretization relying on
the previous considerations.

4.2 Introduction of a Lagrange multiplier

. = + = S .
We introduce the space W5 = [TY_, W+ | and the space X of functions v; such that
o their restrictions to each 0, 1 < k < K, belong to X,
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o they vanish on 092.
We also define the bilinear form

Mt

clwsths) = 3 [ (X705 p) = @(0s)) () () .
with s = (¢1,....¢p+). (28)

So X; is the space of all functions in X5 such that c(vs, ) is zero for all 45 in Ws. We now
consider the discrete problem
Find (u(;, )\5) inXs x Ws such that

N K
Vos € X5, Y / (grad us)(x) - (grad vs)(z) dz + c(vs, As)
k=1

= . f(@)vs(x) de,
Q

Vaps € Wy, c(us, ps) = 0. (29)

The next statement is classical, and we refer to [18] for its detailed proof.

Proposition 4.1 If Assumption A1 holds and if each W(;Fm, 1 <m < MT, contains Wn’;,
for any data f in L2(£2), problem (29) has a unique solution (us, As) in X x W(;. Moreover,
problems (11) and (29) are equivalent, in the sense that
(i) for each solution (us, As) of problem (29), the function w; is a solution of problem (11),
(ii) for each solution us of problem (11), there exists a As in WS such that (us, As) is a
solution of problem (29).

According to the arguments in [18], it can also be checked that A; is an approximation of
Onu, Where v is the solution of problem (2). The main interest of problem (29) is that it results
into a square linear system of type

A ¢\ (U\ _(F
(e ) ()= () o
where the matrix A and the vector £ are the same as in system (27). System (30) can be

solved via an Uzawa algorithm for instance. We refer to [78, Chap. 3] for more details on the
way of solving it.

4.3 Solution algorithms

The simplest approach for solving the mortar element discretization is to consider the first
representation of the space with “constrained” basis. Indeed under the formulation (27) a
global conjugate gradient method can be designed that consists in computing from a current
approximation UP at iteration p, the residual R? = @Tﬁ - @TEQUP. This is particularly
well suited for parallel implementation since the matrix A is block diagonal, see [1, 26, 68].
From the degrees of freedom U? we derive the nodal values over each subdomain. The com-
plexity is very low since
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e the matrix @ is nontrivial only on a set of dimension equal to the number of degrees of
freedom on the skeleton, N
o the expensive part, i.e., the multiplication by the matrix A is done independently over each
subdomain, _
o the residuals are finally added through the multiplication by Q7.
The implementation is thus very natural and “embarrassingly parallel”, the convergence rate
is the same as the one of the conjugate gradient method for solving the mono-domain dis-
cretization. In order to accelerate the convergence, preconditioners can be proposed based
on incomplete factorization, but a better way is to combine the standard techniques that have
proved their efficiency on conforming domain decompositions, such as Schwarz, substructur-
ing or FETI type approaches [5, 53, 56, 57, 82]. The coupling of the mortar element method
with multigrid algorithms is analyzed in [87] and [85].

A more precise description of the previous techniques can be found in [78, 88]. We also
refer to the recent book [84] for a review of all these methods and even more.

5 Some applications

We have chosen to present three basic applications, the first one in the spectral context and
the last two ones in the finite element context. Hints and references for other applications
are given at the end of the section. We present a few numerical experiments in the two-
dimensional case. For brevity, we prefer to omit the description of three-dimensional tests and
refer to [59] and [73] among others for recent simulations of different physical phenomena.

5.1 Treatment of non homogeneous porous media

By non homogeneous media, we mean that one or several coefficients involved in the partial
differential equation are piecewise constant. So it seems natural to use a domain decom-
position which takes into account these discontinuities, in the sense that the coefficients are
constant on each subdomain, but which can involve a larger number of subdomains for nu-
merical reasons. We have chosen to present this idea for the Darcy equations that model the
flow of a viscous incompressible fluid in a porous medium

u+agradp = f in Q,
divu =0 in Q, (31)
u-n=>0 on 99Q.

The parameter « is a piecewise constant positive function which represents the porosity of
the inhomogeneous medium divided by the viscosity of the fluid. It must be observed that
this system can equivalently be written as a second-order elliptic equation with Neumann
boundary conditions, and we refer to [33] for the analysis of the mortar spectral element
discretization of this equation, to [15] for the mathematical and numerical comparison of the
two discretizations issued from the two formulations of the problem in a specific geometry.

It is readily checked that problem (31) admits the following equivalent variational formu-
lation
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Find (u, p) in L*(Q)¢ x (H' () N L&(%Y)) such that

Vv € L3(Q)4, /

Q

u(x) -v(x) dm+/

v(z)-a(z) (gradp)(z)dz = | f(z) v(z)de,
Q Q

Vg € HY(Q), / u(x) - (grad¢)(x)dz =0, (32)
Q
where LZ(€2) stands for the space of functions in L2(£2) with a null integral on Q. Note that
this problem is not of usual saddle-point type since three bilinear forms are involved in its
formulation. However its well-posedness is proved in [2] according to the arguments given in
[32]: For any data f in L2(2)¢, problem (32) admits a unique solution (u, p).

We now consider a decomposition of the domain €2 as introduced in (3), with the assump-
tions that each subdomain €, satisfies the further condition stated in Example 1 and that the
function « is constant, equal to a, on each domain Q. For a parameter §, we introduce two
discrete spaces:

e The space Z; of functions in L2(Q)? such that their restrictions to each Q, 1 < k < K,
belong to X¢, , where Xy, is the space described in Example 1,
e The space X; of functions in L%(Q) such that their restrictions to each O, 1 < k < K,
belong to the space X, described in Example 1 and which satisfy condition (7) again for the
space W, described in Example 1.
The discrete problem now reads

Find (us,ps) iNZs x X(g such that

Yvs € Zs, /Quts(:c) - vs(x) dx + by (vs, ps) :/Qf(:c) - vs(x) dex,
Vgs € X5, b(us,q5) =0, (33)

where the bilinear forms b(-, -) and b, (-, -) are defined by
K
Hua) =Y [ ula) - (gradg)(a) da.
k=1

bolw) =3 e /ka@c) . (gradp)(z)dz. (34)

In order to optimize the numerical analysis of this problem, we introduce the quantities

(see [2])

K K
lulla-r = Qi lullZziye)®s IIpllas = (O an lgradpliz(g,ya) . (35)
k=1 k=1

Indeed, the same arguments as for Proposition 2.1 yield that, if Assumption Al holds, the
seminorm || - ||« is @ norm on X;. Moreover, when taking vs equal to o~ us + grad p; in
the first line of problem (33), we derive the estimate

s lla-t + [psllax < V2 Flla-1- (36)
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Since problem (33) results into a square linear system, this estimate obviously yields its well-
posedness.

Proposition 5.1 If Assumption A1 holds and if each W , 1 < m < M, contains W},
for any data f in L2(Q)<, problem (33) has a unique solution « in Xs. Moreover this solution
satisfies estimate (36).

To prove an a priori error estimate between the solutions of problem (32) and (33), we
observe that the following identity holds for any (ws, rs) in Zs x Xs

Vs € Zs, /Q(Ua —ws)(x) - vs(x)dx + ba(vs,ps — 1)
= /Q(u—w(;)(:c) cvs(x) de+bo(vs,p—7s),

Vas € X, blus — w5, s) = b(u—ws, gs) — / (u - n)(7)[gs) dr.

S
@37
So the same arguments as for estimate (18), combined with triangle inequalities, lead to
u = uslla-1 + [[p — ps|lax
u - n)(7)[gs](T) dT
< ¢ (flw = wslla-r +|lp = rsllas + sup Jstu - mm)lasl(r) ). @9
45 €%s llgs1lax

Bounding the approximation error in Zs is derived by introducing the orthogonal projection
operator from L2(Q2)? provided with the norm || - ||,—: onto Z;, and evaluating the approxi-

mation error in X and the consistency error relies on the same arguments as in Section 3.
Theorem 5.2 Let the solution (u, p) of problem (32) be such that each (uq, ,p|o, ), 1 <

k < K, belongs to H*®*(Q,)* x H**+1(€) for some s;, > % In the case of dimension

d = 2, the following error estimate holds between this solution and the solution (us, ps) of

problem (33):

w = uslla-r + [P — psllax
1 K _1 1
<c(L+X9)7 Y6 (Jlog el ay * lull e @ya + @it 1Plmoia,)),  (39)
k=1
where the quantities px and A5 are introduced in Propositions 3.1 and 3.2, respectively.
Estimate (39) is fully optimal, at least for a geometrically conforming decomposition, and
the possibly high ratios between the different values of the o, are correctly taken into account
by the weighted norms. Moreover the same results still hold when the integrals in (33) are re-
placed by Gauss-type quadrature formulas and also for more complex subdomains, according
to the arguments in [74].

5.2 Eddy currentswith sliding meshes

Eddy currents are generated in a conducting material by temporal variations of the surrounding
magnetic field, as it results from Lenz’s law (see [45, Chap. 8] for a more precise explanation
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of this phenomenon). These variations are induced either when the conductor does not move

but is embedded in a magnetic field with a time varying source or when the magnetic field is
constant but the conductor is moving. The first case can be treated without difficulties by a
standard finite element or spectral approach, but not the second, where a part of the domain is
moving with respect to the remaining part.

The eddy current system is represented by Maxwell’s equations in the low frequency ap-
proximation, i.e., the displacement currents are neglected with respect to the induced ones.
Let E be the electric field, H the magnetic field, B the magnetic induction, . the source
current and J the induced or eddy current. We assume that the magnetic permeability p and
the electric conductivity o are piecewise constant scalar functions on 2. The equations that
must be solved in §2 x [0, T], with T' > 0, are Faraday’s law and Ampere’s theorem, and read

curl E = -0, B, curlH =J + J,. (40)
They are combined with two constitutive relations and the standard Gauss conservation law,
B=uH, J=0F, divB = 0. (41)

The system is made complete by appropriate boundary conditions on 92 x [0, T'] and initial
conditions at 2 x {0}.

The computation of the space and time distribution of eddy currents is of great importance
for performance prediction and device design in the case of electric engines. For all important
examples, we can divide the computational domain into at least two subdomains: ©; which
contains the moving part (thus, the conductor) and the remaining part Q, = Q \ ©Q; which
usually contains the magnetic field sources. Here the skeleton S of the decomposition is
reduced to the interior of Q; N Q. This non-overlapping decomposition is chosen in such a
way that the interface S, which can be physical or not, is invariant with respect to the motion
of 4, i.e., S is a sliding interface, and 2, moves in contact with Q5 along S. Note that the
idea of sliding meshes was first considered in [7] and [6].

When ; is moving with respect to 2, we have to choose the reference system with
respect to which we write the eddy current problem. Let R; be the reference system linked to
Q;, 1 =1,2. If v is the conductor velocity, the appropriate form of Ohm’s law in R, reads

J=0(E+vxB) in Q;x][0,T] and J=0FE in Qyx][0,T]. (42)

The motion of €2, is directly taken into account in the convective term v x B. This is a
typical feature of the Eulerian description, i.e., the use of a unique reference system for both
subdomains €y,.

To get rid of the explicit velocity term, the idea is to use as many different reference sys-
tems as the number of subdomains, that is, in our case, to reformulate with respect to R4
the equations in £2; and with respect to R» the equations in Q5. This is the Lagrangian de-
scription, where the observer is attached to the subdomain under consideration and describes
the events from his material point of view. Indeed, the explicit velocity term disappears from
Ohm’s law, provided that each subdomain is treated in its own “co-moving” frame (R with
Q). If two different reference systems are used, one has to couple both of them by suitable
transmission conditions at the sliding interface. We underline the fact that for the analysis of
eddy current problems in domains with moving parts, the freedom in the choice of the refer-
ence frame is valid only when the motion can be considered as quasi-stationary with respect
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to electrodynamics. This freedom is a consequence of the low frequency limit and would not
be possible with the full system of Maxwell’s equations. Thanks to this property of the eddy
current model, we can adopt the “piecewise Lagrangian approach” (a Lagrangian approach in
each part), see [80, Chap. 4] for instance. This allows us to work with independent meshes
and discretizations in the Q. Searching the solution of the problem in € is equivalent to
looking for the solutions of the subproblems stated in the Q25 which satisfy some transmission
conditions at the interface S.

The transmission conditions at the interface express the continuity through S of the tan-
gential components of H and E and of the normal components of B and J, for all ¢ in [0, T,
see [21]. Let . : Q1 — €Q; be the motion operator acting on €2, and r_; its inverse. We
adopt the notation Q4 (t) = 2, (0) where £ (0) is the initial configuration of €. The mate-
rial particle occupies a definite position « in the initial configuration Q(0) and its changing
position in the present configuration € (¢) at time ¢ is given by .. If w is a scalar function
(e.g., ascalar potential) defined on €2 and «; denotes its restriction u|q, to €2;, the transmission
conditions on S x [0, 7] read

uy(r_sx,t) = us(x,t), e(r—ix) Opuq (r_sx,t) = c(x) Opusa(x, t), (43)

where ¢ is a scalar function of the space position (e.g., depending on the material parameters).
In the case where u is a vector field (e.g., a vector potential), the transmission conditions (43)
are written for the either tangential or normal component of w that is physically continuous
across S (see [16, 51] for more details). To apply a finite element or spectral discretization,
we rewrite the eddy current problem in variational form. Note that only the left-hand con-
dition in (43) (which is the essential one) is explicitly enforced on both the unknowns and
test functions. The right-hand condition in (43) (which is the natural one) is handled in the
variational formulation and can be recovered by integration by parts [50].

The eddy current problem is then discretized in time by a finite difference scheme and in
space by finite elements or a spectral type method. For the space discretization, the main prob-
lem is to verify the essential transmission condition at each time ¢ in [0, 7']. In a conforming
approach, this condition is exactly satisfied, whereas in a nonconforming one, such as in the
mortar framework, this condition is weakly enforced, i.e., it is re-written in terms of suitable
Lagrange multipliers and the jump of the traces. This weak formulation allows for more flex-
ibility in the space mesh (the space discretization parameter is completely independent of the
time step) but it is a little more costly, as explained in Section 4.1.

Figure 1 presents the mesh near the interface (left part) and the curves of isovalues of the
magnetic vector potential (right part) in a cross section of the considered device. The meshes
are non-matching at the sliding interface and the mortar element method is used to take into
account the conductor movement.
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5.3 Mesh adaptivity

A very simple way for locally refining a triangular mesh in dimension d = 2 consists in
cutting the marked triangles into four equal triangles by joining the middle of the edges, and
this process can be iterated as many times as needed. However it leads to a partition of the
domain which is no longer a triangulation since hanging nodes appear on some edges of the
triangles that have been cut. A number of methods have been proposed to solve this difficulty;
let us quote among others the Delaunay algorithm. We choose here another approach which
consists in handling the nonconforming parts of the decomposition by the mortar element
method.

We assume that € is a polygon. Let (7,0),0 be a regular family of triangulations of 2,
in the sense made precise in Section 2, where as usual h° denotes the maximal diameter of
the triangles in Z,2. Assuming that the family (Th"_l)hnfl, we construct a new family of
triangulations as follows:

e For arbitrary positive integers m, we cut some elements of Th”*1 into 22 subtriangles by
iteratively joining the midpoints of the edges of these elements;

o We denote by ’Th"’k, the set of triangles such that their area is equal to 2—2* times the area
of the triangle of 7,0 in which they are contained;

o \We denote by K} the set of integers & such that Th”’k is not empty and by Q™* the open
domain such that ™" is the union of the triangles of 7,"*;

e We call 7, the union of all 7,"*, k € K.

It is readily checked that the Q™% form a partition of the domain € as described in (3). So we
use the decompositions (4) and (5) of the skeleton with the further assumption that each £
is a whole edge of one of the elements of 7.

We are now interested in the finite element discretization of problem (1) which relies on
the partition 7,”. So we consider the discrete spaces X s, and W(;fm defined in (8) and (10),
respectively, with the triangulation 7y, replaced by Th"’k . Let X} denote the subspace of the
corresponding space X defined in Section 2, made of functions which are continuous at the
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endpoints of the ~; (this further condition make the analysis easier and also simplifies the
implementation). We consider the following discrete problem
Finduy in X} such that

Vop, € X3, ann(up,vp) = /Qf(w)vh(:c) dx, (44)

where the bilinear form ay,, (-, -) is defined by

apn (U, v) = Z /Qn'k(gradu)(:c) - (grad v)(x) dx. (45)

keK]

Due to the continuity of the functions of X7 at the endpoints of the %, the next result is
obvious.

Proposition 5.3 For any data f in L?((2), problem (44) has a unique solution u in X7

The main difficulty for the a priori analysis of this problem is to prove the uniform el-
lipticity of the form a,(-,-) since the decomposition we consider highly depends on the
discretization. We refer to [37, Prop. 2.1] for the proof of the following result, which requires
an assumption on the choice of the ~,f,

Assumption A2: For1 <m < M,
(i) either ~;% is the union of several edges of triangles contained in ﬁ;:
(ii) or ~;+ intersects at most another domain Q™% = Qf .

Proposition 5.4 If Assumption A2 holds, there exists a constant « > 0 independent of A
and n such that

Yop, € X3, ann(vn,vp) > « ||vh||§11(uﬂn,k). (46)

Thanks to this ellipticity property, proving the a priori error estimate relies on the same
arguments as in Section 3. We refer to [36, §2] for the details.

Theorem 5.5 Let the solution u of problem (1) be such that each w|qn.x, k € K}, belongs

to H*=*T1(Q™F) for some s, > % If Assumption A2 holds, the following error estimate holds
between this solution and the solution «} of problem (44):

lu = wpll i oany < (L4 ps) Y (0™F) [lull o @), (47)
kekn

where

(i) h™* denotes the maximal diameter of the triangles in Th"’k,

(i) the parameter u; is the maximum of the p,,, 1 < m < M™, where each p,,, denotes the
maximal ratio k. /k where ;. is equal to Q™* and &, denote the maximum of the &’ such

that »;* intersects " .

Estimate (47) is fully optimal, at least when the C}! are contained in a set of integers
which is bounded independently of » and n. Moreover, despite the nonconformity of the
discretization, optimal a posteriori estimates are proved in [36, §3]. So we think that this
method provides a very efficient tool for adaptivity. The previous results have been recently
extended to the Stokes problem in [35] and to the heat equation in [30].
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To conclude, we describe a numerical experiment performed on the code FreeFem++ [64].
In the square =] — 1, 1[?, we take f equal to 100 times the characteristic function of the
domain ]0, 1[2. Figure 2 presents the final adapted mesh and the curves of isovalues of the
corresponding discrete solution. Note that the final mesh does not reflect the nearly concentric
structure of the solution because the initial mesh does not and that we stop the adaptivity
iteration when the Hilbertian sum of the indicators is small enough.

Figure?2
(courtesy of F. Hecht)

Adaptivity by the mortar element method in the framework of spectral elements, first pro-
posed in [9], has been developed in [76] and more recently in [59].

5.4 And others

We have described three applications of the mortar element method, but there exist many other
ones and, among them, we wish to quote the following topics.

e The interaction between two solids

The mortar element method has become an efficient tool for handling the contact between
two solids. Indeed, in the finite element case for instance, each of these solids is provided with
its own triangulation, and the contact between them is modeled by an appropriate condition
which can often be treated as a mortar matching conditions. The case of a fixed contact zone
has first been analyzed in [23]. The more complex and more realistic situation of unilateral
contact where the contact zone is an unknown of the problem has been studied in [66, 24,
71, 19] for elastic solids, in [60] for elastic—viscoplastic solids and in [65, 10] in the case of
contact with friction. This also seems to be the first application of the mortar element method
to variational inequalities.

e The Navier—Stokes equations with discontinuous boundary data
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We consider an elliptic problem with boundary condition equal to 1 on a part of the bound-
ary and to 0 elsewhere. When extended to the Navier—Stokes equations with zero normal
values on the boundary of the domain and tangential values presenting the same type of dis-
continuity, this problem is known as the driven cavity problem. The mortar element method
seems well suited to handle this type of difficulty since a partition of the domain €2 into two
subdomains ; and €, can be introduced such that the boundary data are constant on each
00 N 0%y,; so the discretization takes into account the discontinuity.

The main difficulty here is that neither the solution of the Laplace equation nor the velocity
of the Navier—Stokes equations with this type of boundary conditions has a square integrable
gradient. This leads to use weighted Sobolev spaces, the distance being essentially the dis-
tance to the boundary OS2 up to a fixed positive power and to introduce a weighted version of
the mortar element method. The existence of a solution for the weighted formulation of the
problem and the convergence of the corresponding mortar spectral element of the discretiza-
tion are proved in [13, 14] for the Stokes and Navier—Stokes equations, respectively.

e The coupling of fluids and structures

For fluid-structure interaction problems, and more generally for problems related to multi-
physics there is another reason for referring to the mortar element methodology. Indeed, the
operators used in the modeling of the different phenomena taking place in adjacent domains,
here the fluid part and the structure part, can be of different orders, leading to different func-
tional spaces on both parts of the interface and thus to different discretization spaces as well.
In our specific case, the coupling between the fluid subdomain and the structure subdomain
implies that the velocities of the fluid and the structure coincide (essential coupling condition)
and the normal stresses are also equal (natural coupling condition). As always the variational
statement for this coupled problem involves spaces in which the essential interface condition
is the only that appears explicitly and the mortar condition deals only with this one. In the case
of the finite element approach, the difficulty is that the nature of the finite elements is differ-
ent: They are, e.g., H'—conforming ones of Lagrange type for the fluid and H 2~conforming
ones of Hermite type for the structure (see [40, Chap. VIII] for precise definitions). This
forbids the exact equality of the discrete velocities, in this sense the mortar coupling provides
the natural approach for relaxing the equality. For the analysis of a simplified problem in this
context, we refer to [63]. It appears that the mortar element method builds a natural frame and
yields optimal error bounds, in contrast with approaches based on interpolation.

e The problems of shells

An extension of the mortar element method to the Discrete Kirchhoff Triangles (called
DKT in what follows) approximation for shells problem is presented and analyzed in [70] and
numerical results are shown in [69]. The basic idea of the DKT approximation is to neglect
the shear strain energy and to introduce on the discrete model some Kirchhoff—Love relations
between the rotations 3 and the displacements. For the shell equation, many functions have
to be matched, first the tangential displacements ., for = 1,2 and then the transver-
sal displacement uy3. The rotations (3;, associated with these displacements have also to be
matched. For the two first components of the displacement, the matching is easy since these
functions are independent and are involved in a second order equation, their natural space
is H'(Q) and the standard mortar element method for piecewise quadratic finite elements is
used. The originality of the generalization relies on the following approach: We start from the
value u,’;g to derive the rotations 8T by using the DKT conditions. The next step is then to
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recover the rotation 5~ on the mortar side and at this level we handle separately the tangential
and transverse components. The final step is to reconstruct the displacement on the mortar
side by integrating the rotations, in order to maintain as much as possible the Kirchhoff-Love
conditions. This way of matching leads to optimal consistency and approximation errors.

e ThecouplingT — ®

We consider again the eddy current problem and still use the notation of Section 5.2. We
are now interested in conductors that can move anywhere in the global domain. ¢From the
point of view of the problem formulation, we assume that 2, is contained in £, and we work
with two different unknowns:
e ascalar function @ in the whole computational domain €25,
e avector field T in the conducting part €} .
The equations for these unknowns are derived from Maxwell’s system (40) by writing

H=T-grad® inQy, H=T,—-grad® inQy\Qy, (48)

where T, represents a source term. Indeed, we have J = curlT and J;, = curl T';.

The novelty with respect to Section 5.2 is that the domain decomposition cannot be done
without overlap, due to the lack of sliding interfaces in the configuration of the problem (as
in the case of an electrodynamic levitation system for instance). In the mortar element frame-
work, one has to deal with overlapping decompositions, as already hinted in the introduction.
In this particular case, we use two different meshes on 25, that is considered as a non-mortar
domain, and on 4, that plays the role of a mortar domain: the mesh in 2 is neither a restric-
tion nor a refinement of the mesh of €},. The transmission conditions concern the continuity
of ® and of the tangential component of T' through S = 9. Again the mortar approach is
used to weakly enforce this continuity. The computation of the associated integrals now goes
through the intersection of the three-dimensional supports of the trial functions defined in €,
with the two-dimensional supports of the Lagrange multipliers defined on S. This computa-
tion can be efficiently performed by using quadrature formulas [73, 61]. For this particular
problem, standard Lagrange finite elements are used to approximate the scalar potential ®
everywhere in Q2 while the vector potential T is approximated in 2; by edge elements (see
[45, Chap. V] for a general description of edge elements).
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