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We describe the mortar element method for the two-dimensional edge finite elements of
class H(curl). These finite elements are currently used for the discretization of various
models coming from the Maxwell equations and using them in a mortar framework has
several interesting applications in the electromagnetic and electrotechnical domains. We
develop some technical tools necessary to perform the numerical analysis of this approach.
Then, we prove some optimal approximation results and we illustrate the theory by some
numerical experiences.
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1. Introduction

Domain decomposition techniques have become a standard way to increase the size

of the problems that can be treated through numerical simulation. These techniques

∗The authors recall that, despite its late publication, this paper is the starting step toward the
application of the mortar element method to electromagnetism.
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allow to use efficiently the parallel potentiality of computers and to design robust

iterative solvers to accelerate the access to the numerical (approximated) solution.

When dealing with elliptic or parabolic problems, in order to increase even more

the flexibility of the domain decomposition approach, the mortar element method
19,10 allows to use, in each sub-domain of the decomposition, the proper discretiza-

tion (of finite element, spectral, finite volume or of wavelet type) well suited to the

local (related to the sub-domain) solution behavior and geometrical features. The

resulting approximation is optimal in terms of error estimates and convergence rates

since the local discretization parameters can be chosen independently over each sub-

domain in such a way that each local contribution to the error is balanced. This

discretization parameter can either be designed a priori or a posteriori 42,18 in a

suitable way.

The mortar element method has received in the last decade a lot of attention

and it is currently used in many area of the numerical simulation such as, for ex-

ample, for the spectral approximation of Navier Stokes equations (in the primal

variables formulation 6,12, and in the ψ or (ψ, ω) formulation 8), for the finite ele-

ment approximation of Navier Stokes equations (in the primal variables formulation
3,11), for the finite element approach of elasticity 37,36. This method allows also to

couple different discretizations, spectral and finite elements 30,10, and more recently

finite elements and wavelets 20. In the area of solution algorithms, many ideas that

“work” on standard discretizations have been extended to the mortar framework

(iterative sub-structuring 2,1, multigrid 24).

The mortar element method can be cast in a hybrid framework 9 and, in this

case, it has an alternative that can be found in the more recent three field method
5,25. In order to enlarge even more the domain of application of the mortar element

approach, some attempts have been recently realized to extend it to different kind

of partial differential problems such as variational inequalities for the modeling of

unilateral contacts. We refer to 14,34 where optimal convergence results are proven.

Among the domains that are not currently covered†, we can quote the electromag-

netic wave propagation field and what involves the full set of Maxwell’s equations.

As far as we know, currently very few efficient solvers exist using domain decompo-

sition, and among them we refer to 7 in the 3D conforming case, where the match-

ing constraints are expressed using Lagrange multipliers41. The mortar approach

seems to be naturally fitted to that case and bring about all the advantages that

have been quoted before (to which can also be added the sliding mesh method 6,27

to approximate eddy currents in turning machines or the potential inter-processor

communication saving 15). According to the local dielectric permittivity ε and to

†It was the real situation at the time (1997) when this work was achieved in its old version. Since
then, some substantial advances were realized on this topic, we refer, e.g., to 40,26,21.
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the magnetic permeability µ this will enable to consider more or less refined grids

within each region.

Some functional notations — Let Ω be a bounded Lipschitz domain in R
2; L2(Ω)

denotes the classical Lebesgue space of square integrable functions, endowed with

the norm associated to the inner product

(ϕ, ψ) =

∫

Ω

ϕ(x)ψ(x).

We also use the Sobolev space Hm(Ω),m ≥ 1, provided with the norm

‖ψ‖Hm(Ω) =
(

∑

0≤|ν|≤m

‖∂νψ‖2
L2(Ω)

)
1
2

,

where ν = (ν1, ν2) is a multi-index of N
2 of length |ν| = ν1 + ν2 and ∂ν stands for

∂ν1x1
∂ν2x2

. The fractional Sobolev space Hτ (Ω), τ ∈ R+ \ N, can be specified by the

norm (see 4, 33)

‖ψ‖Hτ (Ω) =
(

‖ψ‖2
Hm(Ω) +

∑

|ν|=m

∫

Ω

∫

Ω

(∂νψ(x) − ∂νψ(y))2

|x − y|2+2θ
dx dy

)
1
2

,

where τ = m + θ, with m the integer part of τ and θ ∈]0, 1[ its decimal part. On

a portion Γ of the boundary ∂Ω, the space H
1
2 (Γ) is defined to be the set of the

traces over Γ of all the functions ofH1(Ω) andH− 1
2 (Γ) is its dual space. The duality

pairing between both spaces is denoted by 〈·, ·〉 1
2 ,Γ

. The space H
1
2
00(Γ) consists of

those elements v ∈ H
1
2 (Γ) whose trivial extension ṽ of v by zero to all ∂Ω belongs

to H
1
2 (∂Ω). Endowed with the image norm ||v||

H
1
2
00(Γ)

= ||ṽ|| 1
2 ,∂Ω, the space H

1
2
00(Γ)

is strictly embedded in H
1
2 (Γ) and its dual space is denoted by H

− 1
2

00 (Γ).

2. The continuous problem setting

We are interested in the full Maxwell equations modeling the propagation of

an electromagnetic wave through a medium contained in a Lipschitz domain Ω of

R
3 with outward normal n and tangent vector t. In the formulation for the wave

propagation, the electric and magnetic fields are solutions of an equation of the

following form

∂2(α̃u)

∂t2
+ curl (β̃ curl u) = f̃j in Ω × [0, T ] (2.1)

with T > 0 and curl the three-dimensional curl operator. Here, u denotes the

magnetic h or the electric e three-dimensional vector field, α̃ and β̃ depend on the

electric permettivity ε as well as on the magnetic permeability µ and the right-hand

side f̃j depends, via a spatial or temporal operator, on the current density vector j.



4 A. Ben Abdallah, F. Ben Belgacem, Y. Maday, F. Rapetti

To complete these equations we need to impose boundary conditions on ∂Ω× [0, T ]

and initial conditions on Ω × {0}. Let g
D

, g
N

, H and E be four known vector

functions. The boundary ∂Ω is in general split up into three portions: a Dirichlet

boundary ΓD of positive measure on which

u × n = g
D
,

a Neumann boundary ΓN where

curl u × n = g
N
,

and an artificial transparent boundary ΓA where we prescribe, e.g., the Silver-Muller

first order absorbing boundary conditions, they have to be descriminated for the

magnetic h and electric e vector fields,

ε−1(curl h × n − j × n) −

√

µ

ε
(
∂h

∂t
× n) × n = H,

√

µ

ε
curl e × n − µ(

∂e

∂t
× n) × n = E,

The practical role of such an absorbing condition is to allow for a truncation of an

unlimited propagation domain to make it bounded and then accessible to numerical

simulations. The initial conditions are e0 and h0 with div (µh0) = 0.

In many applications, the domain Ω is an infinite homogeneous cylinder (in the

z-direction we have Ω = Ω × Rz) and Ω is the cross-section with the boundary

partition ΓD = ΓD × Rz, ΓN = ΓN × Rz and ΓA = ΓA × Rz. We may then be

interested in solutions that are invariant through translations along the z axis, thus

having the structure h = h(x, y) or e = e(x, y) where the point x = (x, y) is a

generic point in the cross section Ω. This is the case, for instance, when we com-

pute an electromagnetic wave, solution of (2.1)) that has no magnetic component

in the propagating (z-) direction and referred to as a transverse magnetic (TM)

wave. Then, the only pertinent fields to compute are the transverse component h

of h that may be characterized as a two-dimensional field which is solution of a

reduced traveling wave equation similar to (2.1) (with the necessary adaptation of

the definition of the scalar curl operator) and the component ez of e verifying a

scalar wave equation. The other important class of electromagnetic waves are the

transverse electric (TE) ones which have no electric component in the z-direction.

The two-dimensional field e = (ex, ey) is then solution of equations similar to (2.1),

with the necessary modifications related to 2D (see 35) and hz is solution of a scalar

wave equation. In the continuous setting both equations are equivalent, i.e., solving

e allows to construct hz without no further calculations and vice-versa. However,

as it is well known, when approximating hz by standard Lagrangian finite elements

spurious modes may occur and the physical solution would not be obtained (see
35,31). The most popular remedy is to resort to edge elements to approximate the
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wave equation on e, known to provide satisfactory results.

Realizing the numerical analysis of any space/time discretization of the two-

dimensional transverse electric equation necessarily requires to look at the ability

of the space discretization method to approximate the following boundary value

problem

αe + curl (β curl e) = f in Ω, (2.2)

e · t = 0 on ΓD, (2.3)

β(curl e) = j on ΓN , (2.4)

β(curl e) − γ(e · t) = E on ΓA, (2.5)

for some parameters α, β, γ > 0 and Ω a bounded polygonal domain in R
2. Here,

n is the outward unit normal to the cross-section Ω, t is the unit tangential vector

to ∂Ω and

curl v =

(

∂yv

−∂xv

)

, curl v = ∂yvx − ∂xvy .

We shall, henceforth, focus our attention on the study of this problem. The basics

of the extension to the three-dimensional case are presented in 13. As the nature of

the boundary conditions has no particular effects on the definition and the analysis

of the discrete method, for the sake of simplicity, we shall consider homogeneous

Dirichlet boundary conditions only, i.e.,

e · t = 0 on ∂Ω. (2.6)

The appropriate functional framework for the analysis of problem (2.2)-(2.6) is

the space H(curl ,Ω), defined by

H(curl ,Ω) =
{

v ∈ L2(Ω)2; curl v ∈ L2(Ω)
}

,

that, equipped with the graph norm

‖v‖H(curl ,Ω) =
(

‖v‖2
L2(Ω)2 + ‖curl v‖2

L2(Ω)

)
1
2

,

is of Hilbert type. It is well known that the tangential component operator v 7→

(v · t)|∂Ω maps continuously H(curl,Ω) onto H− 1
2 (∂Ω) (see 32, 29). The kernel of

this operator, denoted in the literature by H0(curl,Ω), is thus a closed subset of

H(curl ,Ω) and, equipped with the norm ‖·‖H(curl ,Ω), is a Hilbert space. We denote

it by XΩ,

XΩ =
{

v ∈ H(curl ,Ω); (v · t)|∂Ω = 0
}

,
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and its norm by ‖ · ‖XΩ . In the following, for all integrals, we omit to specify the

integration variable where possible and not misleading. The weak form of problem

(2.2)–(2.6) reads as follows.

Find e ∈ XΩ such that

∫

Ω

α e · w +

∫

Ω

β (curl e)(curl w) =

∫

Ω

f · w , ∀w ∈ XΩ. (2.7)

The bilinear form defined by the left-hand side of (2.7) is continuous, symmetric

and coercive over XΩ with an ellipticity constant equal to min(α, β) and, hence,

problem (2.7) has a unique solution, by the Lax-Milgram Lemma.

The outline of the remainder of this paper is as follows. Section 3 is dedicated

to the description of the mortar element method applied to problem (2.7). The

finite elements used here are those of class H(curl) introduced by J.-C. Nédélec in
39 commonly known as the second family of edge finite elements. We then perform

a complete study of the discrete problem, i.e., existence, uniqueness of a solution

and error analysis. Section 4 is a validation of the method with some numerical

examples. The reader interested in the application of the mortar edge finite element

approach to the electrotechnical models (eddy currents) is recommended to look at
40 for some relevent examples.

3. The mortar edge finite element framework

The domain decomposition algorithm proceeds by breaking up the domain Ω

into K non-overlapping sub-domains (assumed to be provided with a boundary

that is at least Lipschitz connected),

Ω =

K
⋃

k=1

Ωk with Ωk ∩ Ωℓ = ∅, if k 6= ℓ.

With each sub-domain Ωk we associate a regular triangulation Tk composed of

triangles. We note that it is possible to extend what follows to triangulations Tk

involving either triangles or quadrangles or both of them. The extension to more

general situations does not give rise to any particular difficulty. Besides we assume,

to avoid the technicalities of the curved finite elements, that each sub-domain Ωk
(and thus Ω) is a polygon and also that each edge of Ωk meeting the boundary ∂Ω

is entirely contained in it and we set

Ωk =
⋃

κ∈Tk

κ .

We denote by Γk,i, 1 ≤ i ≤ I(k) the (macro) edges of Ωk, their union is ∂Ωk and

the outward normal unit vector is nk while the tangential one is tk. Each such

a face inherits a triangulation from Ωk that is denoted by Tk,i. Note that, since
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the triangulations on two adjacent sub-domains are independent, the interface is

provided with two different and independent discretizations.

For any integer q ≥ 0, Pq stands for the space of polynomials on R with global

degree ≤ q while P̃q is the subspace of homogeneous polynomials on R with degree

q; we introduce the space

Dq(κ) = Pq−1(κ)
2 + P̃q−1(κ)x.

The dimension of Dq(κ) is q(q+ 2). The finite element space we need to use locally

is that developed in 39 and, for any k, is given by

XΩk

h =
{

vh ∈ H(curl ,Ωk), ∀κ ∈ Tk, vh|κ ∈ Pq(κ)
2
}

.

In order to explicit the degrees of freedom of the discrete space XΩk

h , following 39, we

denote by (fκj )1≤j≤3 the three edges of each triangle κ and denote by tκj , 1 ≤ j ≤ 3

the tangent unit vectors to these edges (fκj ). The degrees of freedom associated

with XΩk

h are then

∫

fκ
j

(vh · t
κ
j ) p ∀ p ∈ Pq(f

κ
j ), ∀κ ∈ Tk ,

∫

κ

vh · p ∀p ∈ Dq−1(κ)
2, ∀κ ∈ Tk .

Their total number is 3(q+1)+(q−1)(q+1) = (q+1)(q+2) coincides of course with

the dimension of Pq(κ)2. The set of these degrees of freedom allows to determine

for any v ∈ H(curl ,Ωk) a unique interpolate ikhv ∈ XΩk

h satisfying the following

error estimate (see 39): for any v ∈ Hq(Ωk)
2 such that curl v ∈ Hq(Ωk) we have:

‖v − ikhv‖XΩk ≤ Chq
(

‖v‖Hq(Ωk)2 + ‖curl v‖Hq(Ωk)

)

. (3.8)

Over any edge Γk,i of Ωk the tangential traces of the functions of XΩk

h consist in

discontinuous piece-wise polynomial functions of degree ≤ q, so that, denoting by

Wh(Γk,i) the space

Wh(Γk,i) =
{

ψh = vh · t|Γk,i
, vh ∈ XΩk

h

}

we have that

Wh(Γk,i) =
{

ψh ∈ L2(Γk,i), ∀f ∈ Tk,i, ψh|f ∈ Pq(f)
}

.

The description of the topological features of the mortar element method starts by

introducing the skeleton

S =
K
⋃

k=1

∂Ωk =
K
⋃

k=1

I(k)
⋃

i=1

Γk,i.
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Among the many possible decompositions of S we choose a splitting of S as the

disjoint union of some edges Γk,i, which are called mortars. In detail, we set

S =

m∗

⋃

m=1

γm, with γm ∩ γm′ = ∅, if m 6= m′,

and any mortar γm is an entire edge of at least one sub-domain Ωk(m), i.e.,

∀m, 1 ≤ m ≤ m∗, ∃(k(m), i(m)), γm = Γk(m),i(m).

We note that this partition is not in general unique (see Figure 1 for an example of

different choices of the mortars family).

Mortars

Figure 1: Multiple choices of the mortars family are possible.

The mortar element method allows to work with discrete functions over Ω with

discontinuous tangential traces across the interfaces, thus these functions do not

belong to XΩ. Instead, they satisfy some integral matching conditions that glue

them across the interfaces. In order to express these constraints we need some

suitable functions belonging to the space

WS
h =

{

ϕh ∈ L2(S), ∀m, 1 ≤ m ≤ m∗, ϕh|γm
∈ Wh(Γk(m),i(m)), ϕh|∂Ω = 0

}

,

called the mortar space and the discrete space is then given by

XΩ
h =

{

vh ∈ L2(Ω)2, vkh = vh|Ωk
∈ X

Ωk

h , ∀ k, 1 ≤ k ≤ K,

∃ ϕh ∈WS
h , ∀ k, 1 ≤ k ≤ K, ∀i, 1 ≤ i ≤ I(k),

∫

Γk,i

(

(vkh · tk)|Γk,i
− ϕh|Γk,i

)

ψh dΓ = 0 , ∀ ψh ∈ Wh(Γk,i)
}

. (3.9)

It is clear that any vector field vh ∈ XΩ
h is associated with only one mortar function,

since it is checked that, ∀m, 1 ≤ m ≤ m∗,

ϕh|γm
= (v

k(m)
h · tk(m))|Γk(m),i(m)

.
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Besides, letting πk,i be the orthogonal projection operator mapping L2(Γk,i) onto

Wh(Γk,i), we have that: vh belongs to XΩ
h if and only if there exists ϕh ∈WS

h such

that, ∀k, ∀i,

(vkh · tk)|Γk,i
= πk,i(ϕh|Γk,i

).

We recall that πk,i satisfies the following error estimate: for any ϕ ∈ Hq(Γk,i),

‖ϕ− πk,iϕ‖L2(Γk,i) + h−
1
2 ‖ϕ− πk,iϕ‖

H
−

1
2 (Γk,i)

≤ Chq‖ϕ‖Hq(Γk,i). (3.10)

This bound on the L2-norm is classical and that on the H− 1
2 –norm is derived by

means of the Aubin-Nitsche duality argument.

The mortar approach being non-Hodge conforming, since XΩ
h 6⊂ XΩ, we need to

introduce the broken norm of the space XΩ
∗ =

∏K
k=1 XΩk defined by

‖v‖XΩ
∗

=
(

K
∑

k=1

‖vk‖2
XΩk

)
1
2

, ∀v = (vk)k ∈ XΩ
∗ .

The discrete problem associated with the variational formulation (2.7) reads:

Find eh ∈ XΩ
h such that

∫

Ω

α eh · wh +

K
∑

k=1

∫

Ωk

β (curl ekh)(curl wk
h) =

∫

Ω

f · wh, ∀wh ∈ XΩ
h . (3.11)

The bilinear form associated to (3.11) is symmetric and elliptic; problem (3.11) has

then only one solution in XΩ
h .

Remark 3.1 It has to be noticed that the method we propose is in the spirit of

the former mortar element method. Indeed, the constraints (3.9) involve a space of

Lagrange multipliers‡that is defined as a subspace of the (tangential) traces of the

discrete functions over each Ωk. Note also that here this space coincides exactly

with the full space of tangential traces in opposition to the former examples (e.g.

associated with discretization of H1(Ω)) where a constraint (of zero slope for P1-

approximations) is imposed on the two end parts of each interface Γk,i. The reason

lies on the fact that the tangential traces on two adjacent edges of the same sub-

domain are completely independent. This feature is specific to the two-dimensional

case (see 13,22, for the three dimensions).

4. Numerical analysis

The evaluation of the error ‖e − eh‖XΩ
∗

is based on the Berger-Scott-Strang

Lemma commonly known under the second Strang Lemma (see 16, 28), adapted to

our context.

‡The equivalent formulation of problem (3.11) as a saddle point problem will be thoroughly studied
in a forthcoming work.
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Lemma 4.1 The solutions e and eh of the exact and discrete problems verify

‖e − eh‖XΩ
∗

≤ C
(

inf
wh∈XΩ

h

‖e − wh‖XΩ
∗

+ sup
wh∈XΩ

h

1

‖wh‖XΩ
∗

K
∑

k=1

〈wk
h · t, (curl e)〉 1

2 ,∂Ωk

)

. (4.12)

Note that, the trace of (curl e) over ∂Ωk belongs to H
1
2 (∂Ωk) (because e ∈

L2(Ω)2 and from (2.2) we obtain that grade ∈ L2(Ω) and then the duality pairing

of the right-hand side makes sense. It results from Lemma 4.1 that the global error is

the sum of two contributions: the (classical) best approximation error, represented

by the first term in the right-hand side of (4.12), and the consistency error, due to

the non-conformity of the approximation and given by the remaining part of (4.12).

This last term measures the variational crime committed on the discrete solution.

Both errors are analyzed separately.

4.1. The best approximation error

The goal is to examine how close the discrete space XΩ
h is to XΩ. This study

involves some preliminary results related in particular to the stability of some ex-

tension operators in finite element spaces of class H(curl) designed on arbitrary

regular meshes (we stress on the fact that the quasi uniform regularity of the local

discretizations is not required here). Let us denote Wh(∂Ωk) =
∏I(k)
i=1 Wh(Γk,i) for

any k (1 ≤ k ≤ K).

Theorem 4.2 The tangential trace operator mapping XΩk

h onto Wh(∂Ωk) has a

continuous right inverse Rk, i.e. Rk is such that (Rkϕh) · tk|∂Ωk
= ϕh and the

following stability condition holds:

‖Rkϕh‖XΩk ≤ C‖ϕh‖
H

−
1
2 (∂Ωk)

, ∀ϕh ∈Wh(∂Ωk).

The constant C does not depend on the mesh size h.

The proof of Theorem 4.2 requires some preparation Lemmas. We shall skip

over the index k for a while. For any ϕ ∈ H− 1
2 (∂Ω), let us consider the decom-

position ϕ = ϕ̃ + ξ with ϕ̃ a zero-averaged distribution, i.e., 〈ϕ̃, 1〉 1
2 ,∂Ω = 0, and

ξ = 1
mes(∂Ω) 〈ϕ, 1〉 1

2 ,∂Ω. We then have the following Lemma.

Lemma 4.3 There exists a constant c > 0 such that for any ϕ ∈ H− 1
2 (∂Ω), we

have
(

‖ϕ̃‖2

H
−

1
2 (∂Ω)

+ |ξ|2
)

1
2

≤ c‖ϕ‖
H

−
1
2 (∂Ω)

.

Proof: For any ψ ∈ H
1
2 (∂Ω) decomposed as ψ = ψ̃ + δ with δ = 1

mes(∂Ω)

∫

∂Ω ψ dΓ

(so that ψ̃ is zero-averaged), the following equality is straightforward

‖ψ‖2

H
1
2 (∂Ω)

= ‖ψ̃‖2

H
1
2 (∂Ω)

+ δ2‖1‖2
L2(∂Ω). (4.13)
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Then, for any ϕ written as above, ϕ = ϕ̃+ ξ ∈ H− 1
2 (∂Ω), we have, by duality,

‖ϕ̃‖
H

−
1
2 (∂Ω)

= sup
ψ∈H

1
2 (∂Ω)

〈ϕ̃, ψ〉 1
2 ,∂Ω

‖ψ‖
H

1
2 (∂Ω)

.

Using the fact that

〈ϕ̃, ψ〉 1
2 ,∂Ω = 〈ϕ̃, ψ̃〉 1

2 ,∂Ω = 〈ϕ, ψ̃〉 1
2 ,∂Ω,

we deduce via (4.13) that

‖ϕ̃‖
H

−
1
2 (∂Ω)

≤ ‖ϕ‖
H

−
1
2 (∂Ω)

sup
ψ∈H

1
2 (∂Ω)

‖ψ̃‖
H

1
2 (∂Ω)

‖ψ‖
H

1
2 (∂Ω)

≤ ‖ϕ‖
H

−
1
2 (∂Ω)

.

On the other side, arguing in the same way and because of the equality

〈ξ, ψ〉 1
2 ,∂Ω = 〈ξ, δ〉 1

2 ,∂Ω = 〈ϕ, δ〉 1
2 ,∂Ω,

we obtain that

‖ξ‖
H

−
1
2 (∂Ω)

= |ξ| ‖1‖
H

−
1
2 (∂Ω)

≤ ‖ϕ‖
H

−
1
2 (∂Ω)

sup
ψ∈H

1
2 (∂Ω)

‖δ‖
H

1
2 (∂Ω)

‖ψ‖
H

1
2 (∂Ω)

≤ ‖ϕ‖
H

−
1
2 (∂Ω)

.

Summing up both inequalities and using (4.13) yields the result.

Before giving the next Lemma let us denote (ci)0≤i≤I the corners of Ω numbered

so that ci is the common vertex of Γi and Γi+1. Then, we consider the local polar

system with origin ci. For any point x, the positive real number ri measures the

distance between ci and x and θi is the angle from Γi to (cix) in the trigonometric

sense. For any i, 0 ≤ i ≤ I, we define ηi as a truncation function of D(Ω) (the

space of indefinitely smooth functions with support contained in Ω) which does not

depend on θi and is such that ηi ≡ 1 near ci and ηi ≡ 0 near all Γj for i 6= j and

i 6= j + 1. Besides, the intersection of the supports of ηi and ηj , for i 6= j, is empty.

Lemma 4.4 There exists a function χ ∈ H3(Ω) such that ∂nχ|∂Ω = 1.

Proof: Let us consider η∗ ∈ D(Ω) such that ((ηi)0≤i≤I , η∗) is a partition of unity

(i.e.
∑I
i=1 ηi+η∗ ≡ 1). It is immediate that for any i, η∗|Γi

∈ H
3
2 (Γi) and (0, η∗|∂Ω)

satisfies the required compatibility conditions at the corners (see 33) to be the trace

of a function χ∗ ∈ H3(Ω), which means that

χ∗|∂Ω = 0, ∂nχ∗|∂Ω = η∗.

Then, at the vicinity of any corner ci we set

χi(ri, θi) = −ηi(ri)
(

cot(
ωi

2
)ri cos(θi) − ri sin(θi)

)

.
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This function is the product of ηi by a first degree polynomial and, recalling that

∂nχ = r−1
i ∂θχi, it is easy to check that in particular ∂nχi|∂Ω = ηi. Then, summing

up over i we obtain that the function

χ = χ∗ +
I

∑

i=1

χi,

belongs to H3(Ω) and satisfies the desired result.

We recall also that, when Y Ωk

h is the Lagrange finite element space of degree q + 1

associated with H1(Ωk),

Y Ωk

h =
{

χh ∈ C (Ωk), ∀κ ∈ Tk, χh|κ ∈ Pq+1(κ)
}

,

the gradient operator ranges Y Ωk

h into XΩk

h . The space Y ∂Ωk

h denotes the range of

Y Ωk

h by the trace operator.

Let us recall now the following extension Lemma due to 17 that allows to deal

with non-quasi-uniform meshes.

Lemma 4.5 For any k, 1 ≤ k ≤ K, and any hk > 0, the trace operator from

Y Ωk

h provided with the H1(Ωk)-norm onto Y ∂Ωk

h provided with the H
1
2 (∂Ωk)-norm,

admits a right inverse that is uniformly continuous with respect to hk

Proof of Theorem 4.2 : Let ϕh be in
∏I
i=1Wh(Γi) and decomposed as ϕh =

ϕ̃h + ξ with
∫

∂Ω ϕ̃h dΓ = 0. The construction of a stable extension of ϕh takes two

steps, corresponding to separate extensions of ϕ̃h and ξ.

i.– Let us consider s 7→ x(s) a C 1–piece-wise parameterization of the boundary

∂Ω where s varies in [0, ℓ], ℓ is the length of ∂Ω, x(0) = x(ℓ) and

ψh(x(s′)) =

∫ s′

0

ϕ̃h(x(s)) ,

which is a continuous piece-wise polynomial of Y ∂Ω
h . Using Lemma 4.5 it is possible

to find χh ∈ Y Ω
h such that χh|∂Ω = ψh and

‖χh‖H1(Ω) ≤ c‖ψh‖
H

1
2 (∂Ω)

≤ c‖ϕ̃h‖
H

−
1
2 (∂Ω)

.

Next, we define the vector field w = gradχh, it can be readily checked that w is in

XΩ
h with

(wh · t)|∂Ω = ∂tχh = ∂tψh = ϕ̃h.

Furthermore wh satisfies the stability condition

‖wh‖XΩ ≤ ‖gradχh‖(L2(Ω))2 ≤ c‖ϕ̃‖
H

−
1
2 (∂Ω)

.
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ii.– For the lifting of the constant ξ, we use the function χ of Lemma 4.4. Then

the vector field defined by v = −ξcurl χ belongs to (H1+ε(Ω))2 and its tangential

trace (v · t)|∂Ω coincides with ξ∂nχ = ξ. Moreover, from the regularity of χ we have

‖v‖XΩ + ‖v‖H1+ε(Ω) ≤ C|ξ| ≤ C‖ξ‖
H

−
1
2 (∂Ω)

.

Next, we set vh = ihv ∈ XΩ
h , we notice immediately that again vh · t|∂Ω = ξ and

‖vh‖XΩ ≤ ‖vh − v‖XΩ + ‖v‖XΩ

≤ Chε‖v‖H1+ε(Ω) + ‖v‖XΩ

≤ C|ξ| ≤ C‖ξ‖
H

−
1
2 (∂Ω)

.

Thus, taking Rϕh = wh+vh and using the previous lemma we achieve the proof.

The main result of this section deals with the convergence rate of the best

approximation error and is provided by the following theorem.

Theorem 4.6 There exists a constant C > 0 such that for any e ∈ XΩ with

ek = e|Ωk
∈ Hq(Ωk)

2 and curl ek ∈ Hq(Ωk), we have

inf
vh∈XΩ

h

‖e− vh‖XΩ
∗

≤ C

K
∑

k=1

h
q
k

(

‖ek‖Hq(Ωk)2 + ‖curl ek‖Hq(Ωk)

)

. (4.14)

Proof: It is performed following the same points as in 19. Indeed, we begin by

determining a local approximation wk
h ∈ XΩk

h in each sub-domain (it may be taken

equal to ikhe|Ωk
), that satisfies

K
∑

k=1

‖e|Ωk
− wk

h‖XΩk ≤
K

∑

k=1

h
q
k

(

‖ek‖Hq(Ωk)2 + ‖curl ek‖Hq(Ωk)

)

. (4.15)

The global function wh = (wk
h)1≤k≤K does not belong to XΩ

h because it does not

satisfy the matching constraints across the interfaces. To build eh ∈ XΩ
h close to e

we need to define a mortar function ϕh, that coincides with (w
k(m)
h · t)k|Γk(m),i(m)

over each mortar γm. This element belongs to WS
h . Then, within each sub-domain

it is necessary to modify the values of wk
h over the edges Γk,i that are not mortars.

Let rkh denote the residual function defined on ∂Ωk, equal to πk,i(ϕh|Γk,i
−wk

h ·tk|Γk,i
)

over Γk,i when it is not a mortar and vanishing otherwise. Then, we define the new

local approximation by

ekh = wk
h + Rkr

k
h.

By construction, eh = (ekh)1≤k≤K is in XΩ
h . Besides, the stability of the extension

operators (Rk)k and the triangular inequality altogether yield

‖Rkr
k
h‖XΩk ≤ C‖rkh‖H−

1
2 (∂Ωk)
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and then

‖Rkr
k
h‖XΩk ≤ C

(

I(k)
∑

i=1

‖(ϕh|Γk,i
− e · tk|Γk,i

) − πk,i(ϕh|Γk,i
− e · tk|Γk,i

)‖
H

−
1
2 (Γk,j)

+

I(k)
∑

i=1

‖e · tk|Γk,i
− πk,i(e · tk|Γk,i

)‖
H

−
1
2 (Γk,i)

+

I(k)
∑

i=1

‖ϕh|Γk,i
− wk

h · tk|Γk,i
‖
H

−
1
2 (Γk,i)

)

.

Making use of the truncation error estimate (3.10) of πk,i, we obtain

‖Rkr
k
h‖XΩk ≤ C

(

h
1
2

k ‖ϕh|∂Ωk
− e · tk|∂Ωk

‖L2(∂Ωk) + h
q
k‖e · tk|∂Ωk

‖
H

q− 1
2 (∂Ωk)

+

I(k)
∑

i=1

‖ϕh|Γk,i
− e · tk|Γk,i

‖
H

−
1
2 (Γk,i)

+

I(k)
∑

i=1

‖wk
h · tk|Γk,i

− e · tk|Γk,i
‖
H

−
1
2 (Γk,i)

)

.

Finally, we sum over k and employ (4.15) together with the trace theorem. By

recalling that ϕh is the tangential trace on the mortar γm of w
k(m)
h , we get (4.14).

4.2. Consistency error

Let us turn to the consistency error. An optimal bound of this error is provided

in the following Lemma.

Lemma 4.7 When the solution e of the exact problem satisfies similar regularity

assumptions as those of Theorem 4.6 and that for k, 1 ≤ k ≤ K, the data fk = f|Ωk

belongs to Hq(Ωk)
2, there exists a constant C such that:

sup
wh∈XΩ

h

1

‖wh‖XΩ
∗

∑K
k=1〈w

k
h · t, curl e〉 1

2 ,∂Ωk

≤ C
(

∑K
k=1 h

q
k

(

‖ek‖Hq(Ωk)2 + ‖curl ek‖Hq(Ωk) + ‖fk‖Hq(Ωk)2
)

)

.

Proof: Because of the regularity of e we write that

K
∑

k=1

〈wk
h · t, curl e〉 1

2 ,∂Ωk
=

∫

S

(curl e)[wh · t]

=
∑

Γk,i not mortar

∫

Γk,i

(curl e)(wh · t − ϕh) .
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Thanks to the matching constraints we deduce that, ∀ψh ∈Wh(Γk,i),

∫

S

(curl e)[wh · t] =
∑

Γk,i not mortar

∫

Γk,i

(curl ek − ψh)(wh · t − ϕh).

Choosing in particular ψh as being the continuous Lagrange interpolant in Wh(Γk,j
of (curl ek) over each non mortar Γk,i, we deduce that

∫

S

(curl e)[wh · t] =
∑

Γk,i not mortar

‖curl ek − ψh‖
H

1
2
00(Γk,i)

‖wh · t − ϕh‖
H

−
1
2

00 (Γk,i)
.

The end of the proof relies on the stability relation

∑

Γk,i not mortar

‖wh · t − ϕh‖
H

−
1
2

00 (Γk,i)
≤ C‖wh‖∗,

and on the optimal error analysis concerning the interpolation operator. To recover

a convergence rate of hq using the finite element estimates (see 28), it is necessary

for (curl ek) to belong to Hq+1(Ωk). This may be issued from equation (2.2) which

yields that ∇(curl ek) is, actually, in Hq(Ωk)
2 provided that ek and fk belong to

Hq(Ωk)
2. Due to the fact that curl ek ∈ Hq(Ωk) it results that

‖curl ek‖Hq+1(Ωk) ≤ C
(

‖ek‖Hq(Ωk)2 + ‖curl ek‖Hq(Ωk) + ‖fk‖Hq(Ωk)2
)

,

and this yields the consistency error estimate.

Remark 4.2 The hypothesis made on the regularity of the exact solution is not

that stringent in practice. This situation may occur in many interesting physical

situations. Think, for instance, to the magnetic field h and/or electric field e created

in a non smooth domains. At the vicinity of the corners it presents a singular part

which is the gradient of the singularities of the Poisson problem with the suitable

boundary conditions. Hence the curl operator applied to e cancels the singularities

and curl e is actually more regular than e.

4.3. The final estimate

Assembling the results of Lemma 4.7 and Theorem 4.6, via the Berger-Scott-

Strang Lemma 4.1 we obtain the estimate of the global error made on the exact

solution.

Theorem 4.8 Let the exact solution e ∈ XΩ be such that ek = e|Ωk
∈ Hq(Ωk)

2

and curl ek ∈ Hq(Ωk). For data fk = f|Ωk
belonging to Hq(Ωk)

2, we have the

following estimate

‖e − eh‖XΩ
∗

≤ C

K
∑

k=1

h
q
k

(

‖ek‖Hq(Ωk)2 + ‖curl ek‖Hq(Ωk) + ‖fk‖Hq(Ωk)2
)

. (4.16)
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5. Numerical discussion

In this section we present some numerical results that illustrates the numerical

analysis performed before.

The computations are made on a squared domain Ω = (1
2 ,

3
2 ) × (1

4 ,
3
4 ) and we

have used edge finite elements on triangular meshes (see 38). More in detail, given

the triangle κ, let (xm)m=1,3 be its vertices and λm(x) be the barycentric coordinate

function associated to xm. To an edge fκj = (xm,xn), oriented from xm to xn, is

associated one vector function

wj(x) = λm(x)∇λn(x) − λn(x)∇λm(x).

For any vector field vector e ∈ (C (κ))3 the interpolating function eh on κ is provided

by eh = αjwj , (the Einstein summation convention is used) with αj(e) = |fκj | (e ·

tκj )(xm ∗ xn), where |fκj | is the length of fκj , xm ∗ xn its midpoint and tκj its

tangential unit vector. Then, in each κ the field eh has the following form

eh|κ(x) =

(

a− cy

b+ cx

)

a, b, c ∈ R.

The computation of the curl of the shape functions is given by

curlwj(x) = 2
(

∂xλm(x)∂yλn(x) − ∂yλn(x)∂xλm(x)
)

.

The analysis of the previous sections is readily extended to this reduced element

that belongs to the first family of Nédélec edge elements in H(curl).

First numerical example—. The goal is to approximate the solution of equation

(2.2) in the domain Ω, with α = β = 1 and f given in such a way that the exact

solution is

e(x) =

(

2π sin(πx) cos(2πy)
−π cos(πx) sin(2πy)

)

.

A representation of the this field is provided in Figure 2.

We start by testing the conforming computations. For the structured meshes

with different sizes (i.e., h ∈ {0.1, 0.05, 0.025, 0.0125}), we calculate the discrete

solutions eh and we plot in logarithmic scaling the convergence curves of the L2-

norm and the H(curl )-norm of the gap between eh and the interpolant of the exact

solution ihe. Both errors are expected to decay with the same rate (because of the

particular features of the interpolation operator ih) since it can be easily stated

from (2.7) and (3.11) that

∫

Ω

[curl (eh − ihe)]2 dx =

∫

Ω

(eh − e)(eh − ihe) dx.
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Figure 2: The interpolant ihe of the exact vector field on a conforming mesh (left figure).
The non-conforming mortar field is regular, no significant alteration is caused by the jumps
along the interfaces (right figure).

The evaluation of the slopes of both curves concludes to a quadratic convergence of

the computed solution with respect to both norms. The explanation of this super-

convergence may be found in the conjunction of the particular nature of the exact

solution (e = −curl (sin(πx) sin(2πy)) with the structured shape of the meshes.

0.10.050.0250.0125
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0
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rr
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L2−norm

L2−norm(curl .)

Figure 3: Convergence curves of the L2-norm and the H(curl )-norm of the error (eh−ihe).

The domain Ω is then broken up into four squared sub-domains with the middle

of Ω as a cross-point, as indicated in Figure 4 so as the choice of the mortar and

non-mortar interfaces. The different meshes (T k
h )1≤k≤4 of the the sub-domains

(Ωk)1≤k≤4 are taken structured and uniform. The numerical mortar finite element

calculations are carried out using local triangular meshes of the sizes 4
3h in Ω1 and

Ω4 and h in Ω2 and Ω3. For h in {0.1, 0.05, 0.025, 0.0125}, the errors ‖ihe− eh‖XΩ
∗

and ‖ihe − eh‖L2(Ω)2 as functions of h are depicted in the Figure 5. We observe a
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behavior which is similar to that for the conforming case, the approximated solution

converges toward the exact one like O(h2) in both spaces L2(Ω) and XΩ
∗ . The fact

that the four sub-domains are discretized by triangular meshes that do not match

at the skeleton of the decomposition does not affect or in a very little extent the

electric field distribution. In fact, it can be remarked that the tangential component

of the electric field seems to be transmitted from one domain to the neighboring

ones without ostensible discontinuity.

Ω Ω

ΩΩ

1

2

3

4

Γ

Γ

Γ

Γ

1,2

1,3

2,2

3,3

Figure 4: The decomposition of the domain Ω, the solid dark lines denote the masters
and the dashed ones are the slaves.
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Figure 5: Quadratic convergence of the mortar Withney finite element solution, the slope
of both curves is approximately 2.

Second numerical example—. The examination of the local accuracy along the

mortar of the matching constraints is aimed by the second test. We consider the

elementary electric field eT (x) = (1, 0) as the solution of problem (2.7). The data

are then chosen so that f = e and some Dirichlet conditions are enforced on the

boundary, we have e · t = 1 on the horizontal walls and e · t = 0 on the vertical
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walls. The discrete solution is calculated by the mortar approach using the domain

decomposition chosen in the first example. We measure the gap between the tan-

gential component along the mortars Γ1,3 and Γ3,3, of the interpolated field ihe and

the discrete solution eh (i.e., (ihe − eh) · t)) and show in Figure 6 (in logarithmic

scales) how its L2-norm behaves with respect to the mesh size. Since the space

Wh(Γ1,3 ∪ Γ3,3) of tangential traces of the discrete fields involves all the piece-wise

constant functions it is expected that the convergence rate is of order O(h) which

is confirmed by the slope of the linear regression of the error curve ≈ 0.997.

0.10.050.0250.0125
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e
rr

o
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L2−norm

Figure 6: Linear convergence of the error ((ihe−eh)·t) along the horizontal mortars.

6. Concluding Remarks

This work, the substantial part of which was achieved in 1997, is the first con-

tribution in the extension of the mortar finite element method of class H(curl ) in

view of handling electromagnetic models governed by the full Maxwell equations.

This technique is studied and implemented in 27,40 for the computation of the eddy-

currents in moving structures (like a rotor/stator device) using sliding meshes. The

generalization to the three dimensions turns to be technically more difficult and is

addressed successfully in 13,26 for the numerrical analysis and we refer to 22,23 for

some attractive applications.
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problème de Poisson, Thesis, Université Pierre et Marie Curie, Paris (1993).
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