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Abstract

This paper deals with the qualitative analysis of a model describing the compe-
tition among cell populations each of them expressing a peculiar cooperating and
organizing behaviour. The mathematical framework in which the model has been
developed is the kinetic theory for active particles. The main result of this paper is
concerned with the analysis of the asymptotic behavior of the solutions. We prove
that, if we are in the case when the only equilibrium solution if the trivial one,
the system evolves in such a way that the immune system, after being activated,
goes back towards a physiological situation while the tumor cells evolve as a sort of
progressing travelling waves, characterizing a typical equilibrium/latent situation.
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1 Introduction

This paper deals with the qualitative analysis of a model describing the competition
among cell populations each of them expressing a peculiar cooperating and organizing
behaviour. In detail, the object of our study are some aspects of the competition
between tumor and immune cells, in presence of environmental (i.e. endothelial) cells.
Such competition is a part of the complex evolutionary process that is the cancer
progression and represents a tumor-defence and tumour-suppressive mechanism, at
least at the early stage of the process.
The term progression related to cancer cells, as reported in the pioneer paper [10],
describes the biological state of the cells and concisely represents a way to describe
how far from the healthy (free from disease) state the cells are. We also refer to [14]
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for a review of the developing knowledge and the understanding of the many different
aspects of the phenomenon of tumor progression.
As reported in [3], tumour survival and metastasis necessitate overcoming immune
surveillance and regulation, extracellular matrix barriers and limiting nutrients.
The crucial role of the immune system in shaping cancer development and controlling
tumour growth has been recognized for decades, see for example [1] and [12]. An active
immune system can detect early lesions and can keep the proliferating tumor cells at
low numbers. It can also prevent the expansion of proliferating tumor cells and can
eliminate them. A tumour mass, although angiogenesis competent, might be prevented
from expanding and kept dormant (i.e. in a non-dividing state and with quiescent
physiological functions, a state of equilibrium) by an active immune response, [1]. This
is the mechanism of the immunosurveillance.
On the other hand, evasion of the immune system causes tumour mass expansion: tumor
cells with increased capacity to attenuate the immune response can escape equilibrium
and may progress. This process as a whole is termed cancer immunoediting, see [12].
Another important aspect of tumor progression consists in the evolution of tumour
cell populations through sequential genetic and epigenetic changes. In clinical trials,
one of the possible strategy to contrast such evolution consists in mobilizing the im-
mune system against a crucial self antigen that is upregulated in the tumour (active
immunotherapy), [11].
At the moment, an interdisciplinary and a multiscale approach to the study of cancer
progression and evolution seems a reality more then a challenge, as mentioned in [4], [5],
[2], [15]. More generally, an interdisciplinary approach to the study of complex systems,
as cancer dynamics can be considered, is needed in order to capture the main essence
of the such kind of problems. Among different disciplines, the mathematical approach
in general and the mathematical modelling approach in particular, is addressed to
the phenomenological description of some aspects of the biology of the system we are
dealing with.
The aim of this paper if just to present and to carry out a qualitative analysis of a
model describing some particular features of the immune competition related to cancer
dynamics. More in detail, we propose and analyze a model describing the relevant
phase of the cancer dormancy that is the immunosurvelliance.
Cancer dormancy is a complex stage of the disease progression and therapeutic re-
sponse, but it is still poorly understood. The immunosurvelliance is one important
phase of this stage. Other phases are angiogenic dormancy and cellular dormancy.
Presently, the details of the entire mechanisms controlling each single phase of tumor
dormancy are still unknown as well as the intersections among the different phases.
From a clinical point of view, it is crucially important to understand the mechanisms
of the cancer dormancy, because metastases and local recurrences derived from these
dormant cells. Additionally, dormant cells are resistant to chemotherapy so that they
escape the drug treatments to induce cell death, [1].
The mathematical framework in which the model has been developed is the kinetic
theory for active particles: we refer to [4] for a complete overview of the mathematical
framework and a comprehensive list of papers devoted to models describing the immune
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competition with specific focus on cancer. The main result of this paper is concerned
with the analysis of the asymptotic behavior of the solutions. We prove that, if we are
in the case when the only equilibrium solution if the trivial one, the system evolves
in such a way that the immune system, after being activated, goes back towards a
physiological situation while the tumor cells evolve as a sort of progressing travelling
waves, characterizing a typical equilibrium/latent situation.
The contents of this paper are proposed in four sections, following this Introduction:
- Section 2 deals with the presentation of the model;
- Section 3 deals with the presentation of the analytical results and with their biological
interpretation;
- Section 4 presents the proofs of the analytical results;
- Section 5 deals with some numerical simulations, with the main aim to give informa-
tion on functions linked to the asymptotic behaviour of the tumor cells that we have
not got theoretically.

2 The model

As already mentioned in the Introduction, our model consists in the evolution equations
for a three population system developed in the framework of the kinetic theory for
active particles. In detail, we consider the following three populations: endothelial (or
environmental) cells, immune cells and tumor cells, labelled respectively by the indexes
i = 1, 2, 3, homogeneously distributed in space. Each population is characterized by a
peculiar way of expressing both its self-organizing ability and its capability to interact
with the entities of the other populations.
We are mainly interested in describing a situation of relative competition among the
three populations, with the specific aim of capturing the progression of the tumor cells
toward a situation of latent/equilibrium state.
As alredy mentioned in the Introduction, the term progression related to cancer cells
represents a way to describe how far from the healthy (free from disease) state the cells
are. Clinical and biological aspects of tumor progression include clonal evolution and
genetic alterations, such that the genes involved cover a variety of functions, [14].
From a mathematical point of view, we describe this biological characterization at the
cellular level with a scalar variable u ∈ I = [0,+∞). Let f3 = f3(t, u) be the dependent
variable describing the tumor cells population as depending on time t and progression
u.
Referring to the other two populations involved in the system, i.e. endothelial cells and
immune cells, we are just interested in the effects of such populations in the competition
with the tumor cells. Let A1 = A1(t) and A2 = A2(t) be the dependent variables able
to describe the behavior of such populations, as function of time t.
Based on the above modelling principles, we are now ready to present the evolution
equations for A1, A2 and f3:

d

dt
A1 = −A1(t)A3(t) + α(A1)A1(t) (2.1)
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d

dt
A2 = A∗

2 − A2(t) + A3(t) (2.2)

∂tf3 + ∂uf3 = r(u)f3(t, u) − A2(t)f3(t, u), (2.3)

for all t, u ∈ R
+, where by definition

A3(t) = A3[f3](t) =

∫

I

u f3(t, u) du.

Equation (2.1) describes the evolution of the environmental cells under the hypothesis
that no proliferation occurs due to interactions with other cells of the same type or with
immune cells. On the other hand, interactions with tumor cells generate a destruction,
as is described by the first term on the right hand side of the equation. The second
term on the right hand side is a reproduction term and suitable hypotheses on function
α will be given in the next section.
Referring to equation (2.2), we consider in the model a term describing the tendency
of the immune system to relax to a given healthy state, represented by some constant
value A?

2. Similarly to the case studied in [9], we include the modelling of the important
phenomenon that consists in the natural trend of the immune cells to try to reach
a sentinel level, even after being involved in the competition with the tumor cells.
Moreover, a source term due to the presence of the tumor cells is taken into account as
it is shown by the last term of the equation.
In the evolution equation for the tumor cells (2.3), we assume that no proliferation
occurs due to interactions with other cells of the same type but we include in the
equation a proliferation term with a coefficient r(u), depending on the activity of the
cells. On the other hand, interactions with immune cells generate a destruction linearly
depending on their activation state A2.
The evolution equations (2.1)-(2.3) are linked to the following initial conditions

A1(0) = A0
1, A2(0) = A0

2, f3(t = 0, u) = f 0
3 (u) , (2.4)

and to the only boundary condition neeed, that is the one for f3,

f3(t, 0) = βA1(t), (2.5)

where β is a positive constant. The boundary condition (2.5) represents an inlet flow
for the tumor cells due to the environmental cells and it states that the tumor cells are
originated by mutated endothelial (tissues) cells. Several gene mutations are needed to
turn a normal cell into a tumor cell and when this situation takes place then the normal
mechanisms controlling growth, proliferation and death of the cell are disrupted. We
decide to fix at u = 0 the beginning of the mutation process, but any other initial value
can be chosen without altering the meaning of condition (2.5).
Six parameters should be included in the problem (2.1)-(2.5), but a rescaling of the
three depending variables A1, A2, f3 and of the two independing variables t, u enables
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us to reduce the system to one parameter only. We chose to place such parameter in
the boundary condition (2.5).
Problem (2.1)-(2.5) represents one example of modelling the competition among mul-
ticellular systems constuited by several, say n, components, in the framework of the
kinetic theory for active particles. The general principles followed toward modeling
are precisely the same we have already described in [7], [8], [9] and we refer to [4] and
[6] for a complete review of the general modelling procedure. We just mention here
that the main idea consists in considering each population characterized by a peculiar
way of expressing both its self-organizing ability and its capability to interact with the
entities of the other populations. Each component, i.e. each cell population in this
case, is able to express a biological function different from those expressed from the
other components.
From a mathematical point of view, this characterization is described by a scalar vari-
able u ∈ I = [0,+∞), called the activity variable. The meaning of such variable has
to be specified for each population playing the game. As an example, if we consider
the three populations as it is in our model: endothelial (or environmental) cells, im-
mune cells and tumor cells, labelled respectively by the indexes i = 1, 2, 3, then the
activity variable can assume the meaning of feeding ability for the environmental cells,
activation for the immune cells and progression for the tumor cells.
The description of the overall state of the system at time t ∈ [0, T ] is defined by the
generalized one-particle distribution function for each population

fi = fi(t, u) ,

for i = 1, . . . , n, generally depending on time t and activity u.
Using fi we can compute macroscopic quantities characterizing the behaviour of the
system. Let us just recall here the definition of the number density of active particles
at time t for the i-th population

ni(t) = ni[fi](t) =

∫

I

fi(t, u) du ,

the total density, or local size

n(t) =

n
∑

i=1

ni(t) ,

and the activity of each population

Ai(t) = Ai[fi](t) =

∫

I

u fi(t, u) du.

We don’t report here all the modelling principles, but we address the reader to [7],
[8], [9] for more details. One important aspect consists in taking into account that
interactions with cells of the other populations modify the biological state and may
also generate proliferation and/or destruction phenomena. Let us just mention that, as
it was already pointed out in [8], also in the case of our model (2.1)-(2.5), the equations
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for the distribution functions f1 and f2 of the endothelial cells and the immune system
are not really necessary. As already explained in the first part of this Section, the only
interesting quantities are A1 and A2 as well as their relative equations.

3 Analytic Results and their Biological Interpretation

As already mentioned this paper deals with the qualitative analysis of the following
problem







































d

dt
A1 = −A1A3 + α(A1)A1

d

dt
A2 = A∗

2 − A2 + A3

∂tf3 + ∂uf3 = r(u)f3 − A2f3

(3.1)

for all t, u ∈ R
+, with initial conditions

A1(0) = A0
1, A2(0) = A0

2, f3(t = 0, u) = f 0
3 (u). (3.2)

and boundary condition
f3(t, 0) = βA1(t), (3.3)

where β is a positive constant.
The main goal of this paper is to carry out the analysis of the asymptotic behaviour in
time of this new system, that requires new ideas and new proofs which are presented
in details.

Assumption 3.1 From now on, we assume that α(ξ) and r(u), the coefficients of the
proliferation terms respectively in (2.1) and (2.3), satisfy the following conditions:

i) α(ξ) ∈ L∞[0,+∞), and α vanishes on [A∗

1,+∞), with A∗

1 > 0;

ii) r(u) ∈ L∞[0,+∞), and r(0) = 0;

iii) r(u) = R∗ −
A

u
+ O

( 1

u2

)

, as u → +∞.

Parts i) and ii) of Assumption (3.1) express the boundedness of the coefficient of the
two source terms respectively in Equations (2.1) and (2.3), as it is reasonable from a
biological point of view. Moreover, the function α is assumed to have a logistic type
form. We assume that there exists a threshold value A∗

1 for A1 above which the activity
of the endothelial cells can only decrease in time, due to the presence of tumor cells.
Parts iii) of Assumption (3.1) refers to the asymptotic behaviour of r = r(u) and it
will be shown how this is related to the asymptotic behaviour of f3, the distribution
function of the tumor cells.
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In the first part of this section we present the analytical results related to the qualitative
analysis of the solution to the initial-boundary value problem (3.1) - (3.3) and we
postpone to the next Section the technical proofs.
The following theorem states the existence of solutions to the initial-boundary value
problem (3.1) - (3.3)

Theorem 3.1 Assume that the initial condition f 0
3 (u) satisfies the following assump-

tion

f0
3 (u) ≥ 0 and

∫ +∞

0
(1 + u) f 0

3 (u) du < +∞ , (3.4)

Then there exists at least one solution (A1, A2, f3) to the initial-boundary value problem
(3.1) - (3.3) (in the distributional sense), such that (A1, A2) ∈ C([0, ∞)), and f3 ∈
L1((1 + u)du)).

The proof of this theorem is a direct consequence of the equations and we omit the
details.
Concerning the asymptotic behaviour in time of the solutions, we have investigated the
system in the case when the only equilibrium solution of the system (3.1) is the trivial
one. The following proposition states a sufficient condition to assure this situation. In
this case we will see how the asymptotic behaviour in time of the solutions will be not
given by the equilibrium solution.

Proposition 3.1 If
sup
ξ∈R+

α(ξ) + A∗

2 < R∗ , (3.5)

where
R∗ = sup

u∈R+

r(u) ,

then the only equilibrium solution of (3.1) is the trivial solution, i.e. A1 = 0, A2 =
A∗

2, f3 = 0. Such equilibrium is unstable.

Our main result is described by the following Theorem related to the asymptotic be-
haviour in time of the system (3.1) - (3.3)

Theorem 3.2 Assume that the initial condition f 0
3 (u) satisfies assumption (3.4). Then

as t → ∞ we have

i) A1(t) → 0;

ii) n3(t) → 0;

iii) A2(t) → R∗ and A3(t) → R∗ − A∗

2;

iv) ∃L(u) ∈ L1(du, R) and ∃Φ(t) such that f3, with the right normalization, converges
to L(u):

∫ +∞

−∞

∣

∣

∣
f3(t, u + t)

eA log(u+t)

Φ(t)
− L(u)

∣

∣

∣
du ≤

c

t

where c is constant and A is defined in Assumption (3.1).
In other words, the behavior of f3(t, u) is the behavior of Φ(t)L(u − t) e−A log u.
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Some interesting biological implication can be gathered from the main results described
in this section. First of all we recall that, as already pointed out, Assumption (3.1)
expresses the reasonable condition that there is a bound for the reproduction capability
both of the endothelial cells and the tumor cells. We also observe that condition (3.4)
is consistent with the biological requirements of cell populations.
The main result is stated in Theorem (3.2) and concerns the asymptotic behaviour of
the system. Comparing this model to other models developed in the same mathematical
framework, as for example the ones analyzed in [7], [8] and in the references therein, we
are now able to capture some new features of the system. We just recall briefly that in
the previous papers the asymptotic analysis indicated two possible behaviours as the
result of the competition: regression of progressed cells due to an effective action of
the immune system and the opposite one, with the blow up of progressed cells and the
progressive inhibition of the immune system. This analysis corresponds to the medical
motivation related to investigate whether a suitable action on the immune system may
make it able to recognize and possibly destroy the tumor cells.
What we get now is a different scenario: we observe the evolution of the progression
of the tumor cells in such a way that their number decreases and their activity can be
kept under control, even if it is not decreasing to zero. In other words, what we have is
a situation characterized by a few number of tumor cells with high progression values.
At the same time, the activity of the immune system, after being activated, is able to
come back to a situation very close to the physiological one, while the activity of the
endothelial cells decrease to zero.
The asymptotic behaviour described by our model is very close to the one related to
the immunosurvelliance: the proliferating tumor cells are kept at low numbers and
in a controlled situation in terms of progression values. The analytic result shows an
evolution of the tumour cells as a sort of “travelling waves” through the function L(u)
and in Section 5 we will see some numerical examples of possible shapes of these waves.
Of course, from a biological point of view this situation cannot be really “stable” for
a long time, as it is from a mathematical point of view. Even if the latency periods
may range from years even to decades, what we aspect is that at a certain point a
real system should evolve towards behaviours characterized, for example, either by the
total destruction of the tumor cells or by the reactivation of the few tumor cells with
very high progression values and the outcome of the disease, [13]. Our model and the
macroscopic quantities here described are not still able to describe such behaviors and
this represents a limit of the model itself.

4 Estimates and proofs

In this section we prove the theorems and the related qualitative properties of the
solutions of (3.1) - (3.3).
Let us consider the Equations in (3.1), namely

d

dt
A1 = −A1A3 + α(A1)A1 (4.1)
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d

dt
A2 = A∗

2 − A2 + A3 (4.2)

∂tf3 + ∂uf3 = r(u)f3 − A2f3 (4.3)

for all t, u ∈ R
+ and assume Hypothesis (3.4).

4.1 Proof of Proposition 3.1

Let A1, A2 and f3 be a nontrivial equilibrium solution of (4.1)-(4.3). From (4.1) we see
that

A3 :=

∫ +∞

0
u f3(u) du = α(A1) ,

while from (4.3) we obtain

f3(u) = A1 eR(u)−A2u , where R(u) =

∫ u

0
r(s) ds ,

and this implies

A3 = A1

∫ +∞

0
u eR(u)−A2u du =: A1 G(A2).

Comparing the two expression obtained for A3, we have

α(A1) = A1 G(A2)

and this yields

A2 = G−1

(

α(A1)

A1

)

=: H(A1).

Finally, from (4.2), we obtain the following equation for A1:

A∗

2 − H(A1) + α(A1) = 0. (4.4)

Let us now define the function

g(ξ) = A∗

2 − H(ξ) + α(ξ).

For ξ = 0 we have g(0) = A∗

2 −R∗ + α(0), moreover for ξ → +∞ we have g(ξ) → −∞,
and this implies that if ε ∈ R

+ is such that

R∗ − ε > max
ξ∈R+

α(ξ) + ε + A∗

2 ,

then equation (4.4) cannot be satisfied and this proves Proposition (3.1).
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4.2 Proof of some useful Lemmas

Lemma 4.1 For the solution of the initial-boundary value problem (3.1) - (3.3) given
by Theorem 3.1, A2 and A3 are bounded.

Proof. It is sufficient to prove the boundedness of A3. In fact, if there exists k > 0
such that A3(t) ≤ k, for all t > 0, then from Eq. (4.2) we get A2(t) ≤ k + A∗

2, for all
t > 0.
Let us assume, by contradiction, that for all k > 0, there exists an interval [s, t] such
that

A3(r) ≥ k, ∀r ∈ [s, t], A3(s) = k, A3(t) = 2k.

From (4.3), it is easy to see that, formally,

d

dt
A3 ≤ R∗A3 + n3 − A2A3

and

n3 ≤ A3 +

∫ 1

0
u f3(t, u) du.

To prove these estimates rigorously, we refer to Lemma 5.5 in [7]. Moreover, we have

∂tf3 + ∂uf3 ≤ R∗f3

and this implies that f3(t, u) ≤ f3(t − u, 0) eR∗

.

Since α(ξ) = 0 for ξ ∈ [A∗

1,+∞), we have that
d

dt
A1 ≤ 0 and we deduce that A1 ≤ A∗

1.

Consequently, f3(t, u) ≤ f3(t − u, 0) eR∗

≤ A∗

1 eR∗

which implies

n3 ≤ A3 + A∗

1 eR∗

.

On the other hand, if k is such that k > A∗

1 eR∗

, we obtain

d

dt
A3 ≤ (R∗ + 2 − A2)A3 , (4.5)

so that A3(t) ≤ A3(s)e
(R∗+2)(t−s) and e(R∗+2)(t−s) ≥ 2.

Let us now consider Eq. (4.2), from which we have
d

dt
A2 ≥ A∗

2 + k − A2; this implies

that
A2(r) ≥ (A2(s) − A∗

2 − k) e−(r−s) + A∗

2 + k ≥ k(1 − e−(r−s))

and hence
∫ t

s

A2(r) dr ≥ k(t − s − 1 + e−(t−s)) ≥ k ε(t − s) (4.6)

10



where we have used the elementary inequality

ξ − 1 + e−ξ ≥ ε ξ

for ξ > c and ε = ε(c), in the case c =
log 2

R∗ + 2
.

Using (4.6) in (4.5), we arrive at

2k = A3(t) ≤ A3(s) e(R∗+2)(t−s)−
R

t

s
A2(r) dr ≤ ke(R∗+2−kε)(t−s)

and this is impossible if we take k >
R∗ + 2

ε
. Thus Lemma 4.1 is proved.

Lemma 4.2 For the solution of the initial-boundary value problem (3.1) - (3.3) given
by Theorem 3.1, we have the following estimates:

i)
∫ t

0 A2(s) ds ≥ −k′ + (R∗ − ε)t;

ii)
∫ t

0 A3(s) ds ≥ −k′′ + (R∗ − ε − A∗

2)t;

where k′, k′′ are positive constants and ε is such that (by (3.5))

max
ξ∈R+

α(ξ) + A∗

2 − R∗ < −2ε.

Proof. From (3.5), we can take ε such that

R∗ − A∗

2 − ε > max
ξ∈R+

α(ξ) + ε.

We take u∗ such that r(u) > R∗ − ε, for all u ≥ u∗ and we define

I(t) =

∫ +∞

u∗

uf3(t, u) du.

From (4.3), we have
d

dt
I ≥ (R∗ − ε)I − A2I. (4.7)

Because of Lemma 4.1, there exists k > 0 such that A2, A3 ≤ k and this immediately
implies, from (4.3), that

∂tf3 + ∂uf3 ≥ −kf3.

As a consequence,
∂tf3(t, u + t) ≥ −kf3(t, u + t) ,

so that
f3(t, u + t) ≥ f 0

3 (u) e−ku∗

, ∀u ≥ 0.

Now

I(u∗) =

∫ +∞

u∗

uf3(u
∗, u) du =

∫ +∞

0
(u + u∗)f3(u

∗, u + u∗) du

≥ e−ku∗

∫ +∞

0
(u + u∗)f0

3 (u) du ≥ e−ku∗

∫ +∞

0
uf0

3 (u) du = A0
3 e−ku∗

.

(4.8)
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From (4.7) we also have

k ≥ I(t) ≥ I(u∗) exp
(

(R∗ − ε)(t − u∗) −

∫ t

u∗

A2(s) ds
)

≥ A0
3 e−ku∗

exp
(

(R∗ − ε)(t − u∗) −

∫ t

u∗

A2(s) ds
)

where the last inequality has been obtained using estimate (4.8).
Taking the logarithm, we obtain

(R∗ − ε)(t − u∗) −

∫ t

u∗

A2(s) ds ≤ C (4.9)

where C = ku∗ + log
k

A0
3

.

As a final step, consider the following estimates

∫ t

0
A2(s) ds ≥

∫ t

u∗

A2(s) ds ≥ −C − (R∗ − ε)u∗

+ (R∗ − ε)t = −k′ + (R∗ − ε)t

(4.10)

obtained using (4.9) and where k′ = (R∗ − ε)u∗ + C.
This proves part (i) of Lemma (4.2).
Now let us first consider that due to the fact that f3 is positive, also A3 is positive and
this implies A2 > A∗

2.
From Eq. (4.2), we get

A2(t) − A0
2 = −

∫ t

0
A2(s) ds +

∫ t

0
A3(s) ds + A∗

2t

and using (4.10) we have

∫ t

0
A3(s) ds ≥ (R∗ − ε − A∗

2)t − k′ − A0
2 = −k′′ + (R∗ − ε − A∗

2)t (4.11)

where k′′ = k′ + A0
2, and this proves part ii) of Lemma (4.2).

4.3 Proof of Theorem 3.2

Part i):

From Eq.(4.1) we have

A1(t) ≤ A0
1 exp

(

(max
ξ∈R+

α(ξ)) t −

∫ t

0
A3(s) ds

)

≤ A0
1 e−εt ek′′

(4.12)

where the last inequality is obtained through (4.11) and (3.5); so part i) of Theorem
(3.2) is proved.
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Part ii):

Let us define l(t, u) = f3(t, t + u) so that, from (4.3), l is the solution of the equation

∂tl = (r(t + u) − A2)l

and l(t,−t) = βA1(t).
Consequently

l(t, u) = l
( t

2
, u
)

exp
(

∫ t

t

2

(r(s + u) − A2(s)) ds
)

.

Let us take u <
t

2
; then

f3(t, u) ≤ f3(t − u, 0) exp
(

∫ t

t−u

(r(u + s − t) − A2(s)) ds
)

from (4.3). Considering that

f3(t − u, 0) = βA1(t − u) ≤ ke−ε(t−u) ≤ ke−ε t

2 ,

where we have used (4.12), we have

f3(t, u) ≤ k e−ε′t exp
(

∫ t

t−u

(r(s −
t

2
) − A2(s)) ds

)

. (4.13)

Now if t < t and v > t − t , we have

f3(t, u) = f3(t, v − t − t) exp
(

∫ t

t

(r(v + s − t) − A2(s)) ds
)

,

so that if u <
t

2
, t = t − u, and v > u we deduce that

f3(t, v) = f3(t − u, v − u) exp
(

∫ t

t−u

(r(v + s − t) − A2(s)) ds
)

≥ f3(t − u, v − u) exp
(

∫ t

t−u

(r(u + s − t) − A2(s)) ds
)

.

By definition of A3,using the last inequality above and (4.13), we obtain the following
estimates

A3(t) ≥

∫ +∞

u

vf3(t, u) dv

≥ exp
(

∫ t

t−u

(r(u + s − t) − A2(s)) ds
)

∫ +∞

u

vf3(t − u, v − u) dv

≥ exp
(

∫ t

t−u

(r(u + s − t) − A2(s)) ds
)

∫ +∞

u

(v − u)f3(t − u, v − u) dv

≥
eε t

2

k
f3(t, u)A3(t − u)
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and we can deduce that

f3(t, u) ≤ ke−ε t

2
A3(t)

A3(t − u)
≤ k′e−ε t

2 , ∀u ≤
t

2
. (4.14)

Recalling the definition of n3, we have

n3(t) =

∫ t

2

0
f3(t, u) du +

∫ +∞

t

2

f3(t, u) du

≤
t

2
k′e−ε t

2 +
2

t

∫ +∞

0
uf3(t, u) du

≤ k′e−ε′t +
k′

t
A3(t) ,

(4.15)

and this concludes the proof of Part ii) of Theorem 3.2.

Part iii):

From Equation (4.3) we have

d

dt
A3(t) =

∫ +∞

0
u r(u)f3(t, u) du − A2(t)A3(t) + n3(t)

= R∗A3(t) − A2(t)A3(t) + ε(t) ,

where we have defined ε(t) as follows:

ε(t) = n3(t) +

∫ +∞

0
u(r(u) − R∗)f3(t, u) du.

Now, from part iii) of Assumption (3.1), we have

ε(t) ≤ n3 + c

∫ +∞

0
f3(t, u) du ≤ c n3(t) ≤

c

t

where the last estimate can be obtained using (4.15).
For the asymptotic behaviour of A2 and A3, we use a dissipation argument, introducing
the following Liapunov functional

F (t) =
1

2
(R∗ − A2)

2 + η(A2 − A3 − A∗

2)
2

+ (R∗ − A∗

2) log
R∗ − A∗

2

A3
+ A3 − (R∗ − A∗

2)

with η small enough. By definition, we have

d

dt
F (t) ≤ (R∗ − A2)

2(1 − ηA3)
2 − η(A2 − A3 − A∗

2)
2

+ ε(t)[
1

A3
(A3 − A2 − A∗

2) +
1

A3
(A2 − R∗) + 2η(A3 − A2 − A∗

2)]

≤ −(R∗ − A2)
2(1 − ηA2

3 −
1

2
) + ε2(t)[

1

2A2
3

+
3

A2
2

+ 12]

− η(A2 − A3 − A∗

2)
2(1 −

η

3
−

η

3
).
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Summarizing, we have proved that

d

dt
F (t) ≤ −cF + c′(ε2(t))

with c and c′ suitable constants, and consequently F (t) → 0 as t → +∞. This concludes

the proof of part iii) of Theorem 3.2. Note moreover that as |ε(t)| ≤
c

t
, we have

F (t) ≤
c

t2
. (4.16)

Part iv):

Let us define

g(t, u) =

{

f3(t, u + t) eA log(u+t) if u ≥ −t

0 if u < −t

From Equation (4.3) we have

∂tg = (r(u + t) +
A

u + t
− A2)g

= (r(u + t) +
A

u + t
− R∗)g + (R∗ − A2)g

=: a(u + t)g + b(t)g

= O
( 1

(u + t)2

)

+ b(t)g ,

where in the last estimate we have applied part iii) of Assumption (3.1).
Let now Φ(t) be the solution of the following Cauchy Problem











Φ′(t) = b(t)Φ(t)

Φ(0) = 1

From (4.16) we know that |b(t)| ≤
c

t
, so that

∫ t

0
|b(s)| ds ≤ c log t

and
e−c log t ≤ Φ(t) ≤ ec log t.

Now taking h(t, u) =
1

Φ(t)
g(t, u), so that ∂th = a(u + t)h, we can prove the following

lemma:

Lemma 4.3 The function h = h(·, u) verifies the Cauchy condition in L1(du, R), for
t → +∞.
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Proof. Because of the definition of h we have

d

dt

∫ +∞

−∞

h(t, u) du =
d

dt

∫ +∞

−t

h(t, u) du = h(t,−t) +

∫ +∞

−t

∂th du

=
A1

Φ
+

∫ +∞

−t

a(u + t)h(t, u) du

=
A1

Φ
+

∫

−
t

2

−t

a(u + t)h(t, u) du +

∫ +∞

−
t

2

a(u + t)h(t, u) du

≤ e−εt+c log t + c

∫ t

2

0
f3(t, u) du +

c

1 + t2

∫ +∞

−t

h(t, u) du ,

and this implies

d

dt

∫ +∞

−∞

h(t, u) du ≤ e−ε′t +
c

1 + t2

∫ +∞

−∞

h(t, u) du ,

so what we get is the following estimate for h:

∫ +∞

−∞

h(t, u) du ≤ exp
(

∫ t

0

c

1 + s2
ds
)(

∫ +∞

−∞

h(0, u) du
)

+

∫ t

0
e−ε′s exp

(

−

∫ s

0

c

1 + x2
dx
)

ds ≤ ec
(

n3(0) +
1

ε′

)

,

which proves that h(t, u) ∈ L1(du, R).
Using the estimates above, we see that for t ≥ s:

∫ +∞

−∞

|h(t, u) − h(s, u)| du =

∫ +∞

−s

|h(t, u) − h(s, u)| du +

∫

−s

−t

|h(t, u)| du

≤

∫ +∞

−s

∫ t

s

|∂th(x, u)| dx +

∫

−s

−u

|h(−u, u)| du +

∫ t

−u

∂th(x, u) du

≤

∫ t

s

∫ +∞

−s

c

(1 + x + u)2
h(x, u) du dx +

∫ t

s

A1(x)

Φ(x)
dx

+

∫

−s

−t

∫ t

−u

c

(1 + x + u)2
h(x, u) du dx

≤

∫ t

s

e−εx+c log x dx +

∫ t

s

∫ +∞

−∞

c

(1 + x + u)2
h(x, u) du dx

≤ c e−ε′s + c

∫ t

s

∫

−
x

2

−x

h(x, u) dx du +

∫ t

s

c

(1 + x
2 )2

∫ +∞

−∞

h(x, u) du dx

≤ c e−ε′s + c

∫ t

s

1

Φ(x)
eA log x

2 +

∫

−
x

2

−x

e−εx du dx +

∫ t

s

c′

(1 + x
2 )2

dx

≤ c e−ε′s + c e−ε′′s +
c′

(1 + s)
−→ 0 , for s , t → +∞ ,
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and this proves the Lemma.
Because of Lemma (4.3), there exists L(u) ∈ L1(du, R) such that h(t, u) → L(u) in
L1(du, R), as t → +∞. Moreover, we know that

∫ +∞

−∞

|h(t, u) − L(u)| du ≤
c

t
,

and this concludes the proof of Theorem (3.2).
We now prove the following Proposition related to the convergence of A3(t) = A3[f3](t)
and to the convergence of the corresponding “activity functional” defined using the
limit function L, as t → +∞:

Proposition 4.1

lim
t→+∞

∫ +∞

t

2

uΦ(t)L(u − t)e−A log u du = lim
t→+∞

A3(t). (4.17)

Proof. Recalling the estimate (4.14), we have that

∫ +∞

t

2

u f3(t, u) du = A3(t) −

∫ t

2

0
u f3(t, u) du = A3(t) + O(e−εt)

and this implies that

lim
t→+∞

∫ +∞

t

2

u f3(t, u) du = lim
t→+∞

A3(t).

From this last inequality, we deduce that we can prove (4.17) showing that
∫ +∞

t

2

u f3(t, u) du −

∫ +∞

t

2

uΦ(t)L(u − t)e−A log u du −→ 0 for t → +∞.

By definition of h, we have

d

dt

∫ c(t+1)

−
t

2

h(t, u) du ≥

∫ c(t+1)

−
t

2

α(u + t)h(t, u) du ≥ −
c

(1 + t)2

∫ c(t+1)

−
t

2

h(t, u) du ,

from which we deduce
∫ c(t+1)

−
t

2

h(t, u) du ≥ exp
(

−

∫ t

0

c

(1 + s)2
ds
)

∫ c

0
f0
3 (u) du ≥ c′ ,

where the last inequality is true if c is such that

∫ c

0
f0
3 (u) du > 0.

Applying the estimate obtained in Part ii) for n3, we have:

c

1 + t
≥ n3(t) ≥

∫ c(t+1)

t

2

f3(t, u) du

=

∫ c(t+1)

t

2

Φ(t)h(t, u) e−A log(u+t) du ≥ c′′Φ(t)e−A log t ,
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and this implies

Φ(t)e−A log t ≤
c

1 + t
.

We will also use the following estimate:

d

dt

∫ +∞)

−∞

h(t, u)u+ du =

∫ +∞

0
∂th(t, u)u+ du

=

∫ +∞

0
a(u + t)h(t, u)u+ du ≤

c

(1 + t)2

∫ +∞

−∞

h(t, u)u+ du

which yields
∫ +∞

−∞

h(t, u)u+ du ≤ c.

We are now ready for the last step of the proof:

∫ +∞

t

2

u (f3(t, u) − Φ(t)L(u − t)e−A log u) du

=

∫ +∞

−
t

2

(u + t) (f3(t, u + t) − Φ(t)L(u)e−A log(u+t)) du

≤ Φ(t)

∫ +∞

−
t

2

(u + t) e−A log(u+t) (h(t, u) − L(u)) du

= Φ(t)

∫ +∞

−
t

2

(u + t) e−A log(u+t)

∫ +∞

t

∂th(x, u) dx du

≤ Φ(t)

∫ +∞

t

∫ +∞

−
t

2

(u + t) e−A log(u+t) |a(u + x)|h(x, u) dx du

≤ cΦ(t) e−A log(t)

∫ +∞

t

∫ +∞

−
t

2

|u + t|

(1 + u + x)2
h(x, u) dx du

≤
c

1 + t

∫ +∞

t

∫ +∞

−
t

2

t

(1 + x)2
h(x, u) du dx

+
c

1 + t

∫ +∞

t

∫ +∞

t

u

(1 + x)2
h(x, u) du dx

≤ c

∫ +∞

t

1

(1 + x)2
dx +

c

1 + t

∫ +∞

t

1

(1 + x)2
dx

≤
c

1 + t
+

c

(1 + t)2
→ 0 , for t → +∞ ,

and this concludes the proof of the Proposition.

5 Numerical Simulations

This Section is devoted to some numerical simulations with the main aim to give an
idea of which kind of shapes the function L(u) may assume. We do not claim a detailed
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numerical precision or completeness in performing these simulations, but we would just
like to give some information on L(u) that we have not got theoretically. We remember
that L = L(u) is linked to the asymptotic behaviour of f3, as it is expressed in Theorem
(3.2).
We also compare the solutions of problem (3.1)-(3.3) corresponding to different sets of
initial and boundary conditions.
A finite difference scheme has been applied to solve numerically problem (3.1)-(3.3).
Following Assumption 3.1, we fix a parabola as function α = α(u) and the following
form for r:

r(u) =
1

1 + 1
u

,

so that we have R∗ = 1 and A = 1.
We always fix the threshold value A∗

2 of the immune system equal to the initial value
A0

2.

The routine we applied is defined by the following steps:

1. we fix a set of initial and boundary conditions;

2. we solve problem (3.1)-(3.3);

3. we compute Φ = Φ(t), that is, up to a normalization constant, equal to

∫ +∞

0
f3(t, u + t) eA log(u+t) du;

4. we compute

h(t, u) =
1

Φ(t)
f3(t, u + t) eA log(u+t),

that is such that h(t, u) → L(u) in L1(du, R), as t → +∞.

We fix the value of the parameter β in the boundary condition for f3 as well as the
values of the initial conditions for A1 and A2 in the range [0, 1].
Concerning the initial condition for f3, that is f 0

3 (u) = f3(0, u), we have analyzed two
different cases:

Case 1: f 0
3 (u) = 0, for all u ∈ R;

Case 2: f 0
3 (u) is a Gaussian type function;

and we describe the corresponding numerical results in the following two subsections.
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5.1 Numerical Results for Case 1

This is the case of initial condition for f3 identically equal to zero.
Let us consider a first example of numerical simulations obtained with the following
set of initial data respectively for A1 and A2 and for the parameter β in the boundary
condition for f3:

Set 1 : A0
1 = 0.5 , A0

2 = 0.2 , β = 1.

reported in Figure 1-3. The graphs of A1, A2 A3 show how the asymptotic behaviour
described in Theorem (3.2) is reached. The 2-D and the 3-D graphs of f3(t, u) show
how the tumour cells evolve as a sort of travelling waves moving from lower values of
progression toward higher values. The graphs represented on the right in Figure 3 show
a first example of the evolution of function h(t, u) as time increases, from which we can
conjecture the possible shape of L(u).
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1.4

1.6

t
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Figure 1: A1(t) and A2(t) in the case of Set 1.

Other simulations have been obtained varying the values of the parameters to respect
the ones fixed in Set 1. The corresponding graphs do not show significative qualitative
variations, but just quantitative ones. One example is reported in Figure 4, where we
report the graphs of A1 and f3 corresponding to the set of parameters:

Set 2 : A0
1 = 0.05 , A0

2 = 0.2 , β = 1.

The last graphs of this subsection have been obtained with the aim of showing once
again and hopefully more clearly the trend of the system, as time increases. Due to
computational time, we force the parameter β to assume an higher value with respect
to the previous ones, that is β = 10, while the values of A0

1 and A0
2 are fixed as in

Set 1. The results are in Figure 5: on the left we have the 2-D graphs of f3(t, u) as
function of the progression u, for t = 10, 20, 30, 40, moving from the left to the right.
The graph on the right of Figure 5 shows a 2-D representation of h(t, u) as function of
the progression u, for t = 10, 20, 40, moving from the right to the left.
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Figure 2: 2-D and 3-D representation of f3(t, u) in the case of Set 1. In the 2D graph,
the continuous line corresponds to t = 2, the dotted line to t = 8 and the dashed line
to t = 14.
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Figure 3: Case of Set 1: on the left we have A3(t) and on the right we have h(t, u).
Here the continuous line corresponds to t = 2, the dotted line to t = 8 and the dashed
line to t = 14.

5.2 Numerical Results for Case 2

This is the case with f 0
3 (u) as a Gaussian type function. As in the previous subsection,

we first report report the results corresponding to the value of parameters as in Set 1
and what we obtained is showed in Figures 6-8.
Also in this case, a variation of the values of the parameters corresponds to a quanti-
tative but not qualitative modification of the graphs and we omit to show the results.
The trend of the system is one more time showed in the last figure, Figure 9, where, as
for Figure 5, β = 10 and the values of A0

1 and A0
2 are fixed as in Set 1. On the right we

have the 2-D graphs of f3(t, u) as function of the progression u, for t = 10, 20, 30, 40,
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Figure 4: Case of Set 2: on the left we have A1(t) and on the right we have f3(t, u).
Here the continuous line corresponds to t = 2, the dotted line to t = 8 and the dashed
line to t = 14.
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Figure 5: On the left we have f3(t, u) and on the right we have h(t, u).

moving from the left to the right. The graph on the left of Figure 9 shows a 2-D
representation of h(t, u) as function of the progression u, for t = 10, 20, 40, moving
from the right to the left.
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Figure 6: A1(t) and A2(t) in the case of Set 1.
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Figure 7: 2-D and 3-D representation of f3(t, u) in the case of Set 1. In the 2D graph,
the continuous line corresponds to t = 2, the dotted line to t = 8 and the dashed line
to t = 14.
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Figure 8: Case of Set 1: on the left we have A3(t) and on the right we have h(t, u).
Here the continuous line corresponds to t = 2, the dotted line to t = 8 and the dashed
line to t = 14.
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Figure 9: On the left we have f3(t, u) and on the right we have h(t, u).
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