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Abstract

This paper deals with the qualitative analysis of a model related to
the immune response to the evolution of the progression of endothe-
lial cells which have lost their differentiation and start their evolution
toward methastatic states. We prove the existence of solutions to the
Cauchy problem related to the model. The asymptotic behavior in
time of our solutions is also investigated.
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1 Introduction

This paper deals with the qualitative analysis of the initial value problem
for a mathematical model designed to describe the interaction and the com-
petition between immune and cancer cells mediated by environmental cells
which provide the feeding for the growth related to the mitosis process.
The mathematical model was proposed in [1] derived on the basis of math-
ematical methods typical for nonequilibrium statistical mechanics and gen-
eralized kinetic theory. The general idea, as documented in [2], consists in
deriving an evolution equation for the first distribution function over the
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variable describing the microscopic internal state of the individuals. Gen-
erally, this variable may include position and velocity, but it can also refer
to some additional specific microscopic states. Interactions between pairs
have to be modelled taking into account not only mechanical rules but also
modifications of the non-mechanical physical (internal) state.
This model refers to the early stage of tumor development when tumor cells
are not yet aggregated into a solid form. This situation also occur when
cells are residually dispersed in the environment after removal of solid form.
Developments of modeling methods for large dispersed systems by methods
of the mathematical kinetic theory is documented in the collection of sur-
veys edited in [3] and [4]. Specifically the mathematical model dealt with in
this paper is based on a mean field description corresponding to the Vlasov
equation. This generalization is applied to various fields of applied sciences,
an example is the modeling of dispersed bubbles in a fluid, see [5] and [6].
Cellular phenomena, related to inner properties of the cell, play a relevant
role in the evolution of the physical system we are dealing with, see e.g.
Greller, Tobin and Poste [8]. The cellular scale refers to the main (interac-
tive) activities of the cells: activation and proliferation of tumor cells and
competition with immune cells. In particular, proliferation of tumor cells,
which are often degenerated endothelial cells, happens when an environ-
mental cell looses its death program and/or starts to undergoing mitosis
without control. Moreover, competition with the immune system starts if
tumor cells are recognized by immune cells. Activation and inhibition of
the immune cells in their competition with tumor is regulated by cytokine
signals. Tumor cells can be additionally activated towards proliferation due
to nutrient supply from environmental cells.
Specifically the present paper aims to analyze the model proposed in [1]
through a qualitative analysis whose main result refers to existence and
uniqueness of the solution to the initial value problem under suitable as-
sumptions on the initial data. An asymptotic analysis is also developed to
better understand the relevance of some phenomena described by the model.
Particular attention is given to the qualitative analysis of the asymptotic be-
havior of the solutions which may either show the blow up of tumor cells, or
the progressive destruction of tumor cells due to the action of immune cells.
Indeed, the qualitative analysis developed in this paper points out the above
behavior with reference to the parameters which characterize the model. As
it will be shown in what follows an interesting biological interpretation can
be given with reference to the above asymptotic analysis.
The contents of this paper are proposed in five sections:
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– This first section deals with this introduction concerning the aims and
the organization of the paper;

– Section 2 deals with the presentation of the analytic results concerning
the qualitative analysis of the solutions to the initial value problem;

– Section 3 deals with a concise review of the mathematical model pro-
posed in [1] and of the role of the parameters characterizing the math-
ematical model;

– The interpretation of the mathematical results from a biological point
of view is proposed in Section 4. This section also indicates some
research perspectives;

– Technical aspects of the mathematical proofs are reported in Section
5.

2 Analytic Results

The model proposed in [1] considers three interacting cell populations:
cells of the aggressive host, immune cells, and environmental cells labeled,
respectively, by the indexes i = 1, 2 and i = 3. Each cell is characterized
by a certain state, a real variable u ∈ I = [0,+∞) describing its main
activity: progression for the host cells, activation for the immune cells,
and feeding ability for the environmental cells. The state of each type of
cells is described by its distribution function fi(t, u), for i = 1, 2, 3.
Interesting quantities to be computed are defined by the zeroth and first
order moments of the distribution functions. Specifically

ni(t) =
∫ ∞

0
fi(t, u) du, i = 1, 2, 3, (2.1)

is the size of the populations, while

Ai(t) ≡ A[fi](t) =
∫ ∞

0
ufi(t, u) du, i = 1, 2, 3. (2.2)

is the activity of each cell population.
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As already mentioned in the introduction this paper deals with the qualita-
tive analysis for the following problem

∂tf1 + ∂u

(
−α12uA[f2]f1 + α13uA[f3]f1

)
= −β12A[f2]f1 + β13uA[f3]f1

∂tf2 + ∂u

(
−α21uA[f1]f2

)
= β21uA[f1]f2

∂tf3 + ∂u

(
−α31uA[f1]f3

)
= −β31A[f1]f3

(2.3)

for all t, u ∈ R+, with initial conditions

f1(t = 0, u) = f0
1 (u), f2(t = 0, u) = f0

2 (u), f3(t = 0, u) = f0
3 (u). (2.4)

An account of the biological justification of the above model and mathemat-
ical problem will be given in Sec. 3.
In equations (2.3), all constants αij and βij are assumed to be positive.
The system (2.3) is non linear, however the main difficulty comes from the
unboundedness in the activity u (which is in all R+) combined with the
creation terms of the form uA[fj ]fi in the equations for f1 and f2.
Notice that no boundary condition is needed on u = 0 because the transport
fields all vanish at this point. We also point out that the equation on f3

is not really necessary. Indeed the only interesting quantity is A3 and by
multiplying the equation for f3 in (2.3) by u and integrating, we see that it
satisfies

d

dt
A3 = −(α31 + β31)A1 A3, A1(t = 0) = A0

1. (2.5)

This indicates that the equation on f3 does not pose any real problem con-
trary to equations for f1 and f2. It is nevertheless possible to prove a global
in time existence for the initial value problem (2.3)-(2.4) but by assuming
exponential decay on f1 and f2 in u. More precisely we need that∫ ∞

0
eλuf0

1 (u)du <∞, ∀λ > 0. (2.6)

For f2, the assumption is less restrictive∫ ∞

0
eβ21u/α21f0

2 (u)du <∞. (2.7)

As to f3, it only has to be integrable with respect to 1 + u∫ ∞

0
(1 + u)f0

3 (u)du <∞. (2.8)
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With these assumptions, existence is given by the following

Theorem 2.1 Assume that f0
1 , f0

2 , and f0
3 satisfy (2.6), (2.7) and (2.8).

Then there exists solutions

f1, f2, f3 ∈ C([0, ∞), L1((1 + u)du))

to the initial value problem (2.3)-(2.4) (in the distributional sense) which
satisfy ∫ ∞

0
eλuf1(t, u)du ∈ L∞([0, T ]), ∀ λ, T > 0,∫ ∞

0
eβ21u/α21f2(t, u)du ≤

∫ ∞

0
eβ21u/α21f0

2 (u)du,∫ ∞

0
(1 + u)f3(t, u)du ≤

∫ ∞

0
(1 + u)f0

3 (u)du.

(2.9)

Remarks.

1. In the case where α21 ≤ α31 +β31 and A0
2 is large enough with respect

to A0
3, it is possible to relax somehow the assumption on f0

1 and ask
only that f0

1 be integrable against exp((β13 + α13)A0
3/(α12A

0
2)).

2. It is also possible to deduce from this theorem an existence result of
classical solutions and the uniqueness provided the initial data are
regular enough (typically ∂uf

0
i has a better than exponential decay).

The techniques are exactly the same as the ones we use here.

A very natural question now is whether this assumption of exponential decay
is really necessary or only technical. We can offer only a partial answer:

Theorem 2.2 Suppose that∫ ∞

0
eλuf0

2 (u)du = ∞, ∀ λ > 0.

Then no weak solutions f1, f2 and f3 in C([0, T ], L1((1 + u)du)) to the
system of (2.3)-(2.4) exist whatever, and how small, the time T is, except
the trivial one with A1(t) = 0, 0 ≤ t ≤ T .

Remarks.
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1. The same theorem may be written for f0
1 instead of f0

2 . The proof
would be exactly the same with a bit more complicated computations
due to the structure of the equations for f1 which has more terms than
the equation for f2.

2. This theorem leaves open the question of whether a blow-up in finite
time (but also the existence of solutions up to this finite time) is pos-
sible when the initial data f0

2 has precisely exponential decay but do
not satisfy (2.7).

Now we investigate the asymptotic behavior in time of our solutions. It
turns out that only two cases are possible. Either the immune system wins
and completely eliminate the tumor cells of the organism or the organism
eventually dies. We need here an assumption a bit stronger than (2.7) to
state a quite precised result, which is∫ ∞

0
uγeβ21u/α21f0

2 (u)du <∞, for some γ > 1. (2.10)

We now have

Theorem 2.3 Assume that f0
1 , f0

2 and f0
3 satisfy (2.6), (2.10) and (2.8)

and consider a solution (f1, f2, f3) given by Theorem 2.1. Then as t → ∞,
there are only the two possibilities

(i)

n1(t) −→ 0,
∫ ∞

0
A1(t)dt <∞, n2(t) −→ n2(∞) <

∫ ∞

0
eβ21u/α21f0

2 (u)du,

but n3, A3, n2, A2 are bounded from below.

(ii)∫ ∞

0
A1(t)dt = ∞, n2(t) −→

∫
eβ21u/α21f0

2 (u)du, A2(t), n3(t), A3(t) −→ 0.

Remarks.
We are not able to indicate how the system chooses between the two behav-
iors. This certainly depends highly on the exact initial data and the value
of the constants.
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3 On the Derivation of the Model

The aim of this section is to provide a concise description of the model
proposed in [1] where the framework proposed is the one of the mean field
modelling, according to the fact that a test cell feels the presence and
interacts with the surrounding field cells localized in a suitable volume.
The mathematical model consists in evolution equations for the distribution
functions fi corresponding to the above mentioned cell populations. Refer-
ring to Sections 5 and 7 of [1] a specific model is summarized in what follows.
According to [1], consider a large system of cells homogeneously distributed
in space. Microscopic cells interactions are also distributed in space and are
capable both to modify the state of the cells (by interactions defined con-
servative in [1]), and the size (by interactions defined nonconservative).
The mathematical structure of the model proposed in Section 5 of [1] is as
follows:

∂tfi(t, u)+∂u

[
ki(t, u)fi(t, u)

]
+ ∂u[fi(t, u)

3∑
j=1

∫
I
ϕij(u,w)fj(t, w) dv]

=
3∑

k=1

∫
I

∫
I
ψik(v, w;u)fi(t, v)fk(t, w) dv dw,

(3.1)

where
Ii[f ] = ∂u [ki(t, u)fi(t, u)] (3.2)

is the inner-outer dynamic evolution operator which takes into account the
evolution of the distribution functions due to the dynamics of the variable
u governed by an intrinsic evolution which may depend on u and to an
external action.

Fi[f ](t, u) = ∂u[fi(t, u)
3∑

j=1

∫
I
ϕij(u,w)fj(t, w) dw] (3.3)

corresponds to actions of the field cells in the state w of the j-th population
which modify the state u of the test cells of the i-th population into a new one
and are modelled by the conservative action function ϕij = ϕij(u,w).
Finally

Si(t, u) =
3∑

j=1

∫
I

∫
I
ψij(v, w;u)fi(t, v)fj(t, w) dv dw (3.4)

corresponds to proliferation and/or death phenomena. The nonconser-
vative action function ψij = ψij(v, w;u) models the generation or the
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destruction of the cells of the i-th population in the state u as a conse-
quence of the actions of the field cells in the state w of the j-th population
over test cells of the i-th population in the state v.
We point out that this framework refers to the evolution in absence of source
terms. This means that cells are contained in a vessel and the system is
closed. Tumor cells can then replicate exploiting the existing environmental
cells. This supply is, in some cases, sufficient to generate an uncontrolled
growth of tumor cells.
This general framework can generate specific models after a detailed mod-
elling of the cell interactions. Still referring to [1], Section 7, the specific
model we are going to deal is given by (2.3) which corresponds to the fol-
lowing phenomenological assumptions on the terms modelling the cell inter-
actions in (3.1) - (3.4):

• The intrinsic evolution of the cells is negligible and no external actions
are taken into account, i.e. ki(t, u) = 0,∀ i = 1, 2, 3.

• The progression of neoplastic cells is not modified by interactions with
other cells of the same type: ϕ11 = 0. On the other hand, it is
weakened by interaction with immune cells (linearly depending on their
activation state) and it is increased by interactions with environmental
cells (linearly depending on their feeding ability). The effect increases
with increasing values of the progression: ϕ12 = −α12wu, ϕ13 =
α13wu.

• The defense ability of immune cells is not modified by interactions
with other cells of the same type and with environmental cells: ϕ22 =
ϕ23 = 0. On the other hand, it is weakened by interactions with tumor
cells (linearly depending on their activation state) due to their ability
to inhibit the immune system: ϕ21 = −α21wu.

• The feeding ability of environmental cells is not modified by interac-
tions with other cells of the same type and with immune cells ϕ32 =
ϕ33 = 0. On the other hand, it is weakened by interaction with tumor
cells linearly depending on their activation state: ϕ31 = −α31wu.

• The nonconservative action function ψij is assumed to be a delta func-
tion over the state v of the interacting test cell: ψij(v, w;u) = pij(v, w)
δ(u− v).

• No proliferation of neoplastic cells occurs due to interactions with other
cells of the same type: p11 = 0. On the other hand, interactions
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with immune cells generate a destruction linearly depending on their
activation state and a proliferation by interactions with environmental
cells depending on their feeding ability and the progression of tumor
cells: p12 = −β12w , p13 = β13vw.

• No proliferation of immune cells occurs due to interactions with other
cells of the same type and with environmental cells: p22 = p23 = 0. On
the other hand, interactions with tumor cells generate a proliferation
linearly depending on their defense ability and on the activation state
of tumor cells: p21 = β21vw.

• No proliferation of environmental cells occurs due to interactions with
other cells of the same type and with immune cells: p32 = p33 = 0. On
the other hand, interactions with tumor cells generate a destruction
linearly depending on the activation state of tumor cells: p31 = −β31w.

The mathematical model described is characterized by various phenomeno-
logic parameters which may be classified into two groups:
α-parameters which refer to conservative encounters and, specifically, to
inhibition activity of tumor cells, to weakening ability of immune cells, and
to modifications of the feeding ability of environmental cells. Interactions
modify the state of the cells, but not their number.
β-parameters which refer to encounters that modify the number of cells due
to proliferative or destructive actions.
All parameters α and β have to be regarded as positive, small with respect
to one, constants, to be identified by suitable experiments.

4 Interpretation of the Analytic Results and Per-
spectives

The aim of this section is to analyze, from a biological point of view, the
mathematical results given by Theorem 2.3. The Theorem indicates two
different asymptotic behaviors of the competition: regression of progressed
cells due to an effective action of the immune system, and the opposite one:
with the blow up of progressed cells and progressive inhibition of the immune
system.
This kind of analysis corresponds to a well defined medical motivation re-
lated to the action of cytokine signals [7]: one is interested in understanding
whether a suitable action on the immune system may make it able to rec-
ognize and possibly destroy the tumor cells.
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The model introduces the concept of progression for the host cells, identified
by the variable u, with values on the whole positive real line, in such fashion
that the higher is the progression value, the greater is the strength (degree of
malignancy) of the tumor cells. The progression moves from small to large
values due to inner degenerating dynamics. The dynamics is contrasted by
the immune system which may be inhibited by tumor cells.
The results given by Theorem (2.3) refer to the time evolution of the dis-
tribution function as well as of the zero-th moments, Eq. (2.1), and first
order moments, Eq. (2.2): the zero-th order moments refer to the number
densities, and the first order moments refer to the activities. The activities
are proportional to the mean progression speed, describing the velocity of
evolution toward larger or lower values of the cells states. In detail, this
means, for tumor system, evolution toward higher or lower degree of ma-
lignity, while for immune system toward higher or lower activation. When
tumor cells are progressing, not only their number increases but also their
progression values moves toward higher values. On the other side, immune
cells may increase in time, but their effective action is significant only if
their activation is not strongly weakened by the competition.
When the tumor cells blow up, they inhibit the immune system and the evo-
lution has a trend to increase the number of progressed cells with increasing
number and value of the progression. In this case, the immune system is
not able to contrast the neoplastic growth; tumor cells are able to increase
their progression and to inhibit immune cells. The distribution function of
the tumor cells f1 evolves toward larger values of the state u, while the
distribution of the immune cells is shifting toward lower values of u.
In this case we observe that the immune system saturates, because n2 reaches
its maximal value whereas A2 converges toward zero: the immune system
has produced as many cells as it could but their activities have all vanished
because of the effect of the tumor cells. One of the most interesting features
is of course this notion of a maximal number of immune cells. And as it will
appear in the a priori estimates, the closer the number n2 is to this maximal
number, the smaller the activity necessarily is. It is nevertheless possible
that A1 also vanishes. It would mean that the immune system manages to
kill the invading cells but not fast enough to save the environment or itself,
a sort of mutual destruction.
When the opposite behavior is observed, the immune system is able to con-
trol the growth of tumor cells. As a consequence of the activation of the
immune system, the number of tumor cells will decrease and their progres-
sion will shift toward lower values. Competitions which end up with the
destruction of the host are characterized by a modest inhibition ability of
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the host against the immune system. It follows that immune cells are always
able to attack and destroy the host; the uncertain variable of the compe-
tition is the time needed to reach the above result. In fact, proliferation
of the host occurs with the contribution of environmental cells, that may
progressively weak the organism where the competition developed.
The result summarized here are certainly useful to research activity in im-
munology addressed to control, by cytokine signals, the activation of the
immune system to prevent the inhibition action of the tumor cells. In par-
ticular, an iperactivation of the immune system does not seem useful if not
accompanied by a control of the above mentioned inhibition activity.
As already mentioned the above qualitative analysis has been developed for
a system of cells such that no inlet of environmental cells is allowed. This
is a situation which is apparently favorable to control tumor growth.
On the other hand, as we have seen, if the number of environmental cells is
sufficiently large at t = 0, then the blow up of tumor cells is possible.
Similarly, it may be possible analyzing a problem such that the inlet from
outer environment maintains constant the quantity of environmental cells.
The problem which is definitively interesting to analyze is the qualitative
analysis of the solutions related to the above quantity of environmental
cells. In principle the control of such a quantity may be related to the blow
up or depletion of tumor cells according to the experiments on control of
angiogenesis developed by Folkmann and coworkers [9]

5 Estimates and Proofs

We first prove some important a priori estimates and then we give the proofs
of Theorems 2.1, 2.2 and 2.3.
Throughout this section we consider the equations in (2.3), namely

∂tf1 + ∂u

(
−α12uA[f2]f1 + α13uA[f3]f1

)
= −β12A[f2]f1 + β13uA[f3]f1,

(5.1)

∂tf2 + ∂u

(
−α21uA[f1]f2

)
= β21uA[f1]f2, (5.2)

∂tf3 + ∂u

(
−α31uA[f1]f3

)
= −β31A[f1]f3, (5.3)

for all t, u ∈ R+, and we assume Hypotheses (2.6), (2.7) and (2.8). The
main a priori estimates which we prove, are summarized in the following
proposition
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Proposition 5.1 Any solutions f1, f2, and f3 to (2.3)-(2.4), which are
the weak limits of compactly supported solutions in L∞t L

1
u, satisfy Estimates

(2.9) in Theorem 2.1. Moreover Equation (2.5) holds in distributional sense
and we have for f3

∃ φ3(u) with
φ3(u)
1 + u

−→∞, as u→∞,∫ ∞

0
Φ3(u)f3(u) du ∈ L∞([0, ∞ [ ).

(5.4)

Notice that Proposition 5.1 trivially implies

Corollary 5.1 The macroscopic quantities ni and Ai satisfy

(i) ∀ T > 0, n1, A1 ∈ L∞([0, T ]),

(ii) n2(t) ≤
∫ ∞

0
eβ21u/α21f0

2 du, A2(t) ≤
∫ ∞

0

(
eβ21u/α21 − 1

)
f0
2 du,

(iii) n3(t) ≤ n0
3, A3(t) ≤ A0

3.

We begin with estimates for f3 because they are the easiest ones and then
for f2 and at last f1. All computations are in fact formal but they may be
made rigorous. Since the weak solutions we consider are limits of solutions
with compact support, the question of integrability at infinity in u poses no
problem. Then since the equations are linear in the fi, we can regularize the
solutions simply by convolution, work with regular and compactly supported
functions and eventually pass to the limit.

5.1 Estimates for Equation (5.3)

The function f0
3 is integrable with respect to (1+u)du so it is in fact a little

more than that. More precisely, there exists a positive and nondecreasing
function φ3 ∈ C1(R+) with

φ3(u)
1 + u

−→∞, as u→∞, (5.5)

and ∫ ∞

0
φ3(u)f0

3 (u)du <∞.
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Multiply Equation (5.3) by φ3(u) and integrate over R+, after integrating
by part the transport term, we obtain

d

dt

∫ ∞

0
φ3(u)f3(t, u)du = −A1

∫ ∞

0
(α31uφ

′
3(u) + β31φ3(u)) f3(t, u)du ≤ 0.

Consequently, we know that∫ ∞

0
φ3(u)f3(t, u)du ∈ L∞([0, ∞ [ ). (5.6)

Let us prove now that Equation (2.5) holds true. The idea is of course to
multiply Equation (5.3) by u and integrate by part. But contrary to the
previous estimate, we want to obtain an equality and not only an inequality.
Hence we need to control the queue in u.
Consider a non negative function φR ∈ C∞(R+) with value 1 in [0, R],
compactly supported in [0, 2R] and such that φ′R is less than 2/R. Since
f3 is a solution to (5.3) in the distributional sense and since uφR ∈ C∞c (R),
multiplying (5.3) by uφR(u), we have for any α(t) ∈ C∞c (R)

−
∫

t>0
α′(t)

∫ ∞

0
uφR(u)f3(t, u)dudt−

∫ ∞

0
α(0)uφR(u)f0

3 (u)du

= −
∫

t>0
α(t)A1(t)

∫ ∞

0

(
uφR(α31 + β31) + α31φ

′
R(u)u2

)
f3(t, u) dudt.

(5.7)

Because of Estimate (5.6) or Proposition 5.1, the last term vanish as R goes
to infinity. Indeed∣∣∣∣∣

∫
t>0

α(t)A1(t)
∫ ∞

0
φ′R(u)u2f3 dudt

∣∣∣∣∣
≤ 2

∫
t>0

|α(t)|A1(t)
∫ 2R

R

u2

R
f3 dudt

≤ 4
∫

t>0
|α(t)|A1(t)dt× sup

t

∫
u>R

uf3(t, u) du,

and this last integral is converging to zero with R.
Now passing to the limit in R in (5.7), since for any bounded function α(t)∫

t>0
α(t)

∫ ∞

0
uφRf3(t, u)dudt −→

∫
t>0

α(t)A3(t)dt,

we obtain

−
∫

t>0
α′(t)A3(t) dt− α(0)A0

3 = −(α31 + β31)
∫

t>0
α(t)A1(t)A3(t)dt,

which is exactly Equation (2.5) written in a weak sense.
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5.2 Estimates for Equation (5.2)

Multiplying Equation (5.2) by exp(β21u/α21) and integrating in u, we for-
mally find after one integration by part

d

dt

∫ ∞

0
eβ21u/α21f2(t, u)du = A1

∫ ∞

0

(
β21 − α21

β21

α21

)
eβ21u/α21 f2(t, u)du = 0.

As a consequence, we also obtain a priori for any solution f2∫ ∞

0
eβ21u/α21f2(t, u)du ≤

∫ ∞

0
eβ21u/α21f0

2 (u)du. (5.8)

With the same computation, we can show that∫ ∞

0
uγeβ21u/α21f2(t, u)du ≤

∫ ∞

0
uγeβ21u/α21f0

2 (u)du. (5.9)

We now prove the following lemma

Lemma 5.2 Given A1 ∈ C([0, ∞ [ ), consider any weak solution

f2 ∈ C([0, ∞ [ , L1((1 + u)du))

to (5.2) (solution in a distributional sense), satisfying (2.10), then∫ ∞

0
eβ21u/α21f2(t, u)du =

∫ ∞

0
eβ21u/α21f0

2 (u)du.

Proof. As in the rigorous derivation of Equation (2.5), the control of the
decay in u of f2 is fundamental, hence the need of Estimate (5.9).
We consider a sequence of functions ψR ∈ C1

c ([0, ∞ [ ) satisfying the proper-
ties ψR(u) ≤ exp(β21u/α21), equality on [0, R] and |ψ′R| ≤ Cexp(β21u/α21).
Now given any time T and any ε > 0, we choose R large enough such that

1
Rγ−1

∫ T

0

∫ ∞

0
A1(t)uγeβ21u/α21f2(t, u) dudt < ε,

and
1
Rγ

sup
t≤T

∫ ∞

0
uγeβ21u/α21f2(t, u)du < ε.

This has for immediate consequence that for any t∫ ∞

R
eβ21u/α21f2(t, u)dudt ≤

∫ ∞

R

uγ

uγ
eβ21u/α21f2(t, u)du < ε.
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On the other hand since f2 is a weak solution to (5.2),∫
ψR(u)f2(T, u)du−

∫
ψR(u)f0

2 (u)du =
∫ T

0

∫
A1u(β21ψR−α21ψ

′
R)f2dtdu.

And as a consequence∣∣∣∣∫ ψR(u)
(
f2(T, u)− f0

2 (u)
)
du

∣∣∣∣
≤ (1+C)

∫ T

0

∫ ∞

R
A1(t)ueβ21u/α21f2(t, u)dudt

≤ (1+C)
Rγ−1

∫ T

0

∫ ∞

0
A1u

γeβ21u/α21f2dudt < ε,

for R large enough. Finally for such R, we obtain that∣∣∣∣∫ ∞

0
eβ21u/α21(f2(T, u)− f0

2 (u))du
∣∣∣∣ < 2ε,

which proves the lemma.

5.3 Estimates for Equation (5.1)

Let us fix any time interval [0, T ]. On this time interval, for any µ > 0, if we
multiply Equation (5.1) by exp(uexp(µ(T − t))) and integrate, we formally
obtain

d

dt

∫ ∞

0
eu exp(µ(T+1−t))f1(t, u)du ≤

∫ ∞

0
ueu exp(µ(T+1−t))

×
(
−µeµ(T+1−t) + α13e

µ(T+1−t)A3 + β13A3

)
× f1(t, u)du ≤ 0,

if µ ≥ (α13 + β13) suptA3. Now given any λ > 0, we consider a constant µ
satisfying this last inequality and such that expµ is larger than λ, then for
any 0 ≤ t ≤ T ,∫ ∞

0
eλuf1(t, u) ≤

∫ ∞

0
eu exp(µ(T+1−t))f1(t, u)du.

And therefore for any λ and any T > 0,∫ ∞

0
eλuf1(t, u) ∈ L∞([0, T ]). (5.10)

15



Let us indicate now why if α21 ≤ α31 + β31 and A0
2/A

0
3 is large enough, it is

possible to precise Assumption 2.6. We notice that because of (2.5)

A3(t) ≤ A0
3e
−(α31+β31)

∫ t
0 A1(s)ds.

On the other hand, multiplying (5.2) by u and integrating we find

dA2

dt
≥ −α21A2A1,

and thus
A2(t) ≥ A0

2e
−α21

∫ t
0 A1(s)ds.

Consequently, if α21 ≤ α31 + β31,

A2(t)
A3(t)

≥ A0
2

A0
3

.

Assuming that α12A
0
2 ≥ α13A

0
3, we also have for λ > β13A

0
3/α12A

0
2

d

dt

∫ ∞

0
eλuf1(t, u)du ≤

∫ ∞

0
ueλu (−α12λA2 + α13λA3 + β13A3) f1(t, u) ≤ 0,

which implies that the integral of f1 against exp(λu) remains bounded. This
is an interesting example because it shows all the importance which the
exact value of the constants and the initial data have when we work with
only exponential decay for f1.

5.4 Continuity in time

The a priori estimates (2.9) proved in Proposition 5.1 imply that f3, f2 and
f3 belong to L∞([0, T ], L1((1 + u)du)) for any T > 0. To conclude this
section, we explain how we can obtain continuity in time.

Lemma 5.3 Given Ai ∈ L∞([0, T ]), ∀i, weak solutions f1, f2, f3 to (2.3)-
(2.4), satisfying (2.9) and (5.4), also belongs to C([0, T ], L1((1 + u)du)).

Proof. We do the proof for f3 but it would be exactly the same for f2 or
f1.
We can solve explicitly Equation (5.3) in terms of a1(t) =

∫ t
0 A1(s)ds and

we obtain
f3(t, u) = e(α31−β31)a1(t)f0

3

(
ueα31a1(t)

)
. (5.11)
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Since a1 belongs to W 1,∞([0, T ]) for any T (thanks to point (i) in Corollary
5.1), it is obvious that f3 belongs to C([0, T ], L1

loc(R+)) (continuity locally
in u).
To conclude, it only remains to prove that we control the integral of f against
1 + u, uniformly in time, outside any bounded domain in u.
For R > 0, we consider a sequence of function φn

R ∈ C1
c (R+) with suppφn

R ⊂
[R/2, 2n], φn

R = 1 on [R, n] and |φn
R
′(u)| ≤ 10/(1 + u). Since f3 satisfies

(5.3) in distributional sense, we have

d

dt

∫ ∞

0
φn

R(u)(1 + u)f3(t, u) du

= A1(t)
∫ ∞

0

(
α31(u+ u2)φn

R
′(u) + α31uφ

n
R(u)

− β31(1 + u)φn
R(u)

)
f3(t, u) du.

Therefore, we obtain thanks to the choice of φn
R∫ ∞

0
φn

R(u)(1 + u)f3(t, u) du ≤
∫ ∞

0
φn

R(u)(1 + u)f0
3 (u) du

+
∫ t

0
A1(s)(α31 + β31)

∫ 2n

R/2
(1 + u)f3(s, u) duds.

Letting n converge toward infinity, we obtain∫ ∞

R
(1 + u)f3(t, u) du ≤

∫ ∞

R/2
(1 + u)f0

3 (u) du

+
∫ t

0
A1(s)(α31 + β31)

∫ ∞

R/2
(1 + u)f3(s, u) duds.

Now thanks to Estimate (5.4) in Proposition 5.1, the last integral converges
toward zero with R uniformly in t. The same is true for the first integral in
the right hand side and hence so does the integral in the left hand side.

5.5 Proof of Theorem 2.1

The existence result is an almost direct consequence of the following stability
result

Lemma 5.4 (Stability) Let

fn
1 , f

n
2 , f

n
3 ∈ C([0, ∞), L1((1 + u)du))
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be sequences of solutions in the distributional sense to (2.3)-(2.4). Assume
that they satisfy Estimates (2.9), (5.4) in Proposition 5.1 uniformly in n.
Then any weak limits f1, f2 and f3 of converging subsequences also belong to
C([0, ∞), L1((1 + u)du)) and are solutions to (2.3)-(2.4) in distributional
sense with as initial data the weak limits of the initial data.

Proof. Because of Estimates (2.9) and (5.4), we may indeed extract con-
verging subsequences in L∞([0, T ], L1((1 + u)du) toward f1, f2 and f3.
Because of (2.6), (2.7) and (2.8) we may do the same for the initial data,
obtaining f0

1 , f0
2 and f0

3 .
Now notice that for any T > 0

An
1 ∈W 1,∞([0, T ]). (5.12)

Indeed consider a sequence of test functions ψR ∈ C1
c (R) with ψR(u) ≤ u in

R+, equality on [0, R] and ψ′R ≤ 1 + u, then thanks to Equation (5.1)∣∣∣∣ ddt
∫ ∞

0
ψRf

n
1 (t, u)

∣∣∣∣ ≤ (A2+A3) (α12+α13+β12+β13)
∫ ∞

0
(1+u2)fn

1 (t, u)du.

Because of (2.9), for any T > 0 we have uniformly in R and n∫ ∞

0
ψRf

n
1 (t, u)du ∈ W 1,∞([0, T ]).

Letting R converge toward ∞ proves (5.12). This means that after a extrac-
tion, An

1 converges strongly in C([0, T ]) for any T > 0.
We could of course do the same for An

2 and An
3 which are also compact. We

may thus pass to the limit in Equations (5.1), (5.2) and (5.3) and we deduce
that f1, f2 and f3 are also solutions of these equations.
But we also know that fn

1 , fn
2 and fn

3 belong to W 1,∞([0, T ],W−1,1(R+))
uniformly in n for any given T > 0. Hence f1, f2 and f3 are equal to f0

1 , f0
2

and f0
3 at t = 0 at least in a weak sense.

To conclude, it is enough to apply Lemma 5.3 and its equivalents for f1 and
f2.

We now briefly indicate one possibility of proving Theorem 2.1 thanks to
Lemma 5.4. We consider sequences fN

i of the form

fN
i (t, u) =

1
N

N∑
n=1

µn
i (t)δ(u− un

i (t)),

AN
i (t) =

1
N

N∑
n=1

µn
i (t)un

i (t).

(5.13)
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We take µn
i (0) and un

i (0) such that (2.6), (2.7) and (2.8) are satisfied. We
take for µn

i and un
i the solutions of the following differential system

µ̇n
1 (t) = −β12A

N
2 µ

n
1 (t) +AN

3 β13u
n
1 (t)µn

1 (t),

u̇n
1 (t) = −α12A

N
2 u

n
1 + α13A

N
3 u

n
1 .

(5.14)

As for i = 2

µ̇n
2 (t) = β21u

n
2 (t)AN

1 µ
n
2 (t),

u̇n
2 (t) = −α21A

N
1 u

n
2 .

(5.15)

And finally for i = 3,

µ̇n
3 (t) = −β31A

N
1 µ

n
3 (t),

u̇n
3 (t) = −α31A

N
1 u

n
3 .

(5.16)

The differential system composed of (5.14), (5.15) and (5.16) has solutions
at least for a short time interval [0, T ]. It is quite easy to check than fN

1 ,
fN
2 and fN

3 are then solutions to (5.1), (5.2) and (5.3). These sequences
satisfy every a priori estimates listed in section 2 and applying a slighty
modified version of Lemma 5.4 we would be able to take weak limits, ob-
taining solutions for any initial data satisfying (2.6), (2.7) and (2.8) on the
time interval [0, T ]. Since f1(t, .), f2(t, .) and f3(t, .) satisfy (2.6), (2.7) and
(2.8) uniformly in t, we may extend indefinitely the time of existence.
Notice that of course other techniques could be applied (like a fixed point
result for instance).

5.6 Proof of Theorem 2.2

Now the function f0
2 is not integrable against any exponential. Suppose that

there exist A1(t) ∈ C([0, T ]) and f2 in C([0, T ], L1((1 + u)du)) solution to
(5.2) in a distributional sense and with f2(t = 0) = f0

2 .
Since A1u belongs to C([0, T ], W 1,∞([0, R])) for any R > 0, there is only
one solution to (5.2) with f0

2 as initial data. Define U(t, u) the solution of

∂tU(t, u) = −α21A1(t)U(t, u), U(0, u) = 0,

or by a direct computation

U(t, u) = ue−α21

∫ t
0 A1(s)ds.

Then the solution f2 is given by

∂tf2(t, U(t, u)) = β21A1U(t, u)f2(t, U),
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which means that

f2(t, U) = f0
2 (t, u)eβ21α−1

21 u
(
1−exp(−α21

∫ t
0 A1(s)ds)

)
. (5.17)

Notice that the function f2 given by (5.17) is perfectly well defined if A1 ∈
C([0, T ]). However given the assumption on f0

2 it is impossible that this
function be integrable against 1+u if A1 is not always zero. Indeed suppose
that at time t

α21

∫ t

0
A1(s)ds ≥ − ln ε, with 0 < ε < 1.

If f2 were integrable, we would have∫ ∞

0
f2(t, u)du = eα21

∫ t
0 A1(s)ds

∫ ∞

0
uf2(t, U(t, u))du,

and ∫ ∞

0
uf2(t, U)du ≥

∫ ∞

0
uf0

2 e
β21u(1−ε)/α21 ,

and this last quantity is equal to ∞ because of the hypothesis on f2. Thus
Theorem 2.2 is proved.

5.7 Proof of Theorem 2.3

Since A3 is nonincreasing there are clearly only the two possibilities that A3

converges toward zero or that A3 is bounded from below.
Throughout all this subsection, we will use the following lemma

Lemma 5.5 We have for the solutions given by Theorem 2.1

d

dt
A3 = −(α31 + β31)A1A3,

d

dt
n3 = −(α31 + β31)A1 n3,

d

dt
A2 ≥ −α21A1A2,

d

dt
n2 = β21A1A2,

d

dt
n1 = −β12A2 n1 + β13A3A1.
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Proof. It is easy to see that all estimates given in Lemma 5.5 are formally
true. To prove them rigorously, we apply the same method which we used
in Lemma 5.2: We take sequences ψR equal to 1 or u on [0, R] and we let R
converge to infinity. We do not repeat here the details of the proofs which
are exactly the same.

5.7.1 Case A3 bounded from below

Because of Lemma 5.5,

A3(t) ≤ A0
3e
−(α31+β31)

∫ t
0 A1(s)ds,

we know that here ∫ ∞

0
A1(t)dt <∞. (5.18)

Lemma 5.5 immediately implies that n3, A2 and n2 are also bounded from
below.
Because of (2.10), we may apply Lemma 5.2 and thus

β21

α21
A2(t) ≤

∫ ∞

0

(
eβ21u/α21 − 1

)
f2(t, u)du ≤

∫ ∞

0
eβ21u/α21f0

2du− n2(t).

Therefore
n2(t) −→ n2(∞) <

∫ ∞

0
eβ21u/α21f0

2du− n2(t).

We also have

n1(t) = e−β12

∫ t
0 A2(s)ds

∫ (
n0

1 + β13

∫ t

0
A3(s)A1(s)eβ12

∫ s
0 A2(r)drds

)
.

Since β12A2 ≥ c > 0 and A3 is decreasing, we deduce that

n1(t) ≤ C

(
e−ct +

∫ t

0
A1(s)ec(s−t)ds

)
≤ C

(
e−ct + e−ct/2

∫ ∞

0
A1(s)ds+

∫ t

t/2
A1(s)ds

)
,

which is converging toward zero because of (5.18). We have proved all
properties listed in point (i) of Theorem 2.3. We nevertheless point out that
if for some T > 0

α12A2(t) > α13A3(t), ∀ t ≥ T, (5.19)
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it is also possible to show that A1 → 0 (whereas for the moment A1 could
still exhibit some oscillations).
Indeed if (5.19) is true, take λ > 0 with

λ > sup
t≥T

α12A2(t)− α13A3

β13A3(t)
.

The constant λ is well defined because A3 is bounded from below. We then
have that, just as in the a priori estimates for f1∫ ∞

0
eλuf1(t, u)du ≤

∫ ∞

0
eλuf1(T, u)du <∞, ∀ t ≥ T,

thanks also to (2.9). With this last inequality it is possible to show that

A1 ∈ W 1,∞([T, ∞ [ ),

by the same method which is detailed in Lemma 5.4. However this bound
combined with (5.18) directly implies that A1 converges toward 0 as t goes
to infinity.

5.7.2 Case A3 → 0

Here again because of Lemma 5.5, we know that∫ ∞

0
A1(t)dt = ∞. (5.20)

Lemma 5.5 then has for consequence that n3(t) converges toward zero as
t→∞.
Since n2 is bounded as given by Corollary 5.1, we nevertheless have that∫ ∞

0
A1(t)A2(t)dt <∞.

Consequently, there necessarily exists a sequence of times tn →∞ such that
A2(tn) converges toward zero. Now∫ ∞

0

(
eβ21u/α21 − 1

)
f2(t, u)du ≤ Ceβ21R/α21

∫ R

0
uf2(t, u)du

+
C

R

∫ ∞

R
u
(
eβ21u/α21 − 1

)
f2(t, u)du ≤ CA2(t)eβ21R/α21 +

C

R
,
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because of (5.9). Let us denote g the function such that for any x > 0
g(x) exp(β21g(x)/α21) = 1/x. Of course g(x) converges toward infinity as
x→ 0 and by taking in the last inequality R = g(A2)∫ ∞

0
eβ21u/α21f0

2 (u)du− n2(t) =
∫ ∞

0

(
eβ21u/α21 − 1

)
f2(t, u)du ≤

C

g(A2(t))
.

Therefore n2(tn) converges toward
∫
exp(β21u/α21)f0

2 . Since n2(t) is non-
decreasing, n2(t) converges also toward the same quantity as t → ∞. But
finally

A2(t) ≤
∫ ∞

0
eβ21u/α21f0

2 (u)du− n2(t) −→ 0,

and the proof of point (ii) is complete.
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