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Abstract

This paper deals with the qualitative analysis of a model related to the de-
scription of two medical therapies which have been intensively developed in recent
years. In particular, we refer to the modeling of the actions applied by proteins,
to activate the immune defense, and to the control of angiogenesis, to contrast
the growth of tumour cells by preventing the feeding actions of endothelial cells.
The therapeutical actions which are object of the modeling process developed in
this paper have to be regarded as applied within the framework of the competition
between the immune system and tumour cells. We prove the existence of solutions
to the Cauchy problem related to the model. The efficiency of the therapies and
the asymptotic behaviour in time of our solutions is also investigated.
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1 Introduction

Methods of the mathematical kinetic theory have been applied in the last few years to
model the competition between tumour and immune cells. The literature in the field
and a critical analysis on the existing results and open problems can be found in the
review papers [2] and [3].
Mathematical models are expected to describe the interactions and competition be-
tween tumours and the immune system. The evolution of the system may end up
either with the blow-up of the host (with inhibition of the immune system), or with
the suppression of the host due to the action of the immune system. The mathematical
structure of the equations suitable to deal with the modeling of the above system have
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been developed and critically analyzed in [1], while motivations from scientists operat-
ing in the sciences of immunology in favor of development of methods of nonequilibrium
statistical mechanics can be recovered, among others, in [12] and [13].
The mathematical methods are those typical in nonequilibrium statistical mechanics
and generalized kinetic theory. The general idea, as documented in [4], consists in
deriving an evolution equation for the first distribution function over the variable de-
scribing the microscopic internal state of the individuals. Generally, this variable may
include position and velocity, but it can also refer to some additional specific micro-
scopic features. Interactions between pairs have to be modeled taking into account not
only mechanical rules but also modifications of the non-mechanical physical (internal)
state.
Specifically we are interested in a development of the model proposed in [4], whose an-
alytical properties have been studied in [5], toward the description of medical therapies
which have been intensively developed in recent years. More precisely a model of com-
petition between the immune system and tumour cells was proposed in [4], this model
did not include the effect of any therapy. In [5], it was proved that there exists global
solutions to this model and the possible asymptotic behaviours in time were detailed.
The aim of this paper is first to present a general framework (in which the model of [4]
fits) which is then used to build a new model. The difference with the previous model
of [4] is that the effect of two different therapies is now taken into account. The last
part of the paper studies the properties of the new model; Existence of global solutions
is a consequence of the proof given in [5] and consequently we only state the result.
However the analysis of the asymptotic behaviour in time is more complicated for the
new model than what it was for the one of [4], thus requiring new ideas and new proofs
which are presented.
Concerning the therapies, we refer to the modeling of the actions applied by proteins to
activate the immune defense [15] and to the control of angiogenesis [9], [10], to contrast
the growth of tumour cells by preventing the feeding actions of endothelial cells. All
above therapeutical actions which are object of the modeling process developed in this
paper have to be regarded as applied within the framework of the competition between
the immune system and tumour cells. Referring to the literature on the immune com-
petition, developed within medical sciences, the interested reader is addressed to the
survey [6].
Another development of the model introduced in [4] is presented in [7], where the
capacity of the body to repair cells damaged is taken into account. The idea is that for
a long time range the body produces new cells to replace the dead ones in order to try
to reach its normal healthy state.
After this introduction, the contents of this paper are organized in five more Sections:

– Section 2 deals with the derivation of a mathematical framework for the design
of specific models suitable to describe the therapeutical actions indicated above.
This means deriving a class of integro-differential equations to describe, by meth-
ods of the mathematical kinetic theory, the evolution over the biological state of
the cells;
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– Section 3 deals with a short description of the two therapies we will consider:
angiogenesis control and activation of the immune defense;

– Section 4 deals with some phenomenological assumptions about microscopic in-
teractions, by which we obtain, within the general framework, the specific models
object of our interest;

– Section 5 deals with the presentation of the analytical results related to the qual-
itative analysis of the solution to the initial value problem introduced in Section
4. This Section is also dedicated to the biological interpretation of the analytical
results;

– Section 6 deals with the technical proofs of the results listed in Section 5.

2 Mathematical framework towards modeling

This section deals with the design of the general framework within which the specific
models proposed in the next section will be developed. The objective is presented
through three sequential steps. First we deal with the characterization of cell or par-
ticles population, then with the modeling of microscopic interaction, and finally with
the derivation of a class of evolution equation. Specific models can be derived, as we
shall see, by specializing the above mentioned microscopic interactions.

2.1 Cell populations and statistical representation

Consider a large system of cells or particles homogeneously distributed in space. Mod-
eling the immune competition between tumour and immune cells under the medical
action developed by particles which are artificially inserted into a vertebrate, needs the
definition of the various populations which play the game.
In particular, we adopt the following assumptions:

Assumption 2.1 Cells and particles are homogeneously distributed in space. The sys-
tem is constituted by the following populations: cells or particles of the aggressive host,
immune cells, environmental cells, and particles of the therapeutical host (with possibly
several different populations in this last class). Each population is labeled, respectively,
by the indeces i = 1, . . . , n.

Assumption 2.2 Each cell is characterized by a certain state, a real variable u ∈
I = [0,+∞) describing its main properties: progression for the host cells, activation
for the immune cells, feeding ability for the environmental cells, and therapeutical
ability for the particles of the therapeutical host.

Remark 2.1 The therapeutical ability needs to be specialized according to the spe-
cific medical action which is being modeled. In the cases which will be studied in the
next section, we will consider two populations of particles with therapeutical effect and
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the therapeutical ability can hence be either the control of the activation ability of
the immune system (for the first population), or the control of the feeding ability of the
environmental cells (for the second population).

Assumption 2.3 The statistical description of the system is described by the number
density functions

Ni = Ni(t, u),

which are such that Ni(t, u) du denotes the number of cells per unit volume whose state
is, at time t, in the interval [u, u+ du]. Moreover, if n0 is the number per unit volume
of environmental cells at t = 0,

n0 =
∫

I
N3(0, u) du,

the description of the system can be given by the following distributions, normalized
such as to have total density 1 at t = 0 of environmental cells,

fi = fi(t, u) =
1
n0
Ni(t, u).

Other normalizations are of course possible. We opted for this one as the density of
environmental cells represents in some sense the normal healthy state of the body.

Remark 2.2 If the distribution function fi is given, it is possible to compute, under
suitable integrability properties, the size of the population still referred to n0

ni(t) =
∫

I
fi(t, u) du, (2.1)

and first order moments such as the activation

Ai(t) = Ai[fi](t) =
∫

I
u fi(t, u) du, (2.2)

of each population.

2.2 Modeling microscopic interactions

This section deals with the modeling of microscopic interactions. Specifically we refer
to the framework proposed in [4], which may be classified as mean field modeling, ac-
cording to the fact that a test cell feels the presence and interacts with the surrounding
field cells localized in a suitable volume around the test cell.

Assumption 2.4 Interactions are homogeneously distributed in space and can be di-
vided into three types of encounters: mass conservative interactions, which modify
the state of the pair, but not the size of the population, proliferative and destructive
interactions, which produce proliferation or destruction of the interacting subjects, and
population shifting interactions which generate individuals into a third population
out of interactions within individuals of two different populations.
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Assumption 2.5 Conservative encounters are interactions modeled by the term Pik =
Pik(u, u∗) which defines the action on the cell of the i-th population with microscopic
state u due to the cell, with state u∗, of the k-th population, so that the resultant action
is

Fik[f ](t, u) =
∫

I
Pik(u, u∗) fk(t, u∗) du∗, (2.3)

where f = {f1, . . . , fn}.
Additional conditions should be considered on the term Pik for u = 0 to guarantee
the conservation property of the term (2.3) on the interval [0, ∞[. We will see, in
Section 4, that under the phenomenological assumptions we consider, such conditions
are automatically satisfied.

Assumption 2.6 The term describing proliferation and/or destruction phenomena,
within the same population, in the state u due to pair interactions between cells of
the i-th population with microscopic state u∗ with cells of the k-th population, with
microscopic state u∗∗, is modeled by the source/sink term:

Sik[f ](t, u) =
∫

I

∫
I
σik(u∗, u∗∗;u) fi(t, u∗) fk(t, u∗∗) du∗ du∗∗, (2.4)

where σik is a suitable proliferation–destruction function.

Assumption 2.7 The term describing proliferation and/or destruction phenomena,
within the i-th population, in the state u related to pair interactions between cells of the
j-th population with microscopic state u∗ due to the subject of the k-th population, with
microscopic state u∗∗ is given by:

Q(i)
jk [f ](t, u) =

∫
I

∫
I
ψ

(i)
jk (u∗, u∗∗;u) fj(t, u∗) fk(t, u∗∗) du∗ du∗∗, (2.5)

where ψ(i)
jk is a suitable proliferation–destruction function.

Assumption 2.8 The above framework refers to the evolution in absence of source/sink
terms. This means that cells are contained in a vessel and the system is closed. Tumour
cells can then replicate exploiting the existing environmental cells. On the other hand,
the above mentioned supply or consumption can be modeled for the i-th population by
suitable source/sink terms Ii(t, u)

2.3 Evolution equations

The mathematical model consists in an evolution equation for the distribution functions
fi corresponding to the above mentioned cell populations. The mathematical structure
of the model proposed in Section 5 of [4] is as follows:

∂

∂t
fi(t, u) + Fi[f ](t, u) = Si[f ](t, u) +Qi[f ](t, u) + Ii(t, u), (2.6)

5



where, according to the framework for microscopic modeling described in Eqs. (2.3),
(2.4), (2.5), we have:

Fi[f ](t, u) =
∂

∂u

[
fi(t, u)

n∑
k=1

Fik[f ](t, u)
]
,

Si[f ](t, u) =
n∑

k=1

Sik[f ](t, u),

and

Qi[f ](t, u) =
n∑

j=1

n∑
k=1

Q(i)
jk [f ](t, u).

This general framework can generate specific models after a detailed modeling of mi-
croscopic cell interactions, as it will be shown in Section 4.

3 On the control of angiogenesis and immune activation

The framework described in Section 2 can be exploited to derive specific models after
having properly modeled all microscopic interactions among the various subjects play-
ing the game. Of course the specific therapeutical actions which are applied has to be
properly specified.
A large variety of therapeutical actions are known in the field of medicine: a brief
account is given in this section with reference to the following two specific actions (we
refer the interested reader to [3] for more details)

• Modeling of the actions applied by proteins to activate the immune defense, e.g.
[11] or [15], thus preventing the ability of tumour cells to inhibit immune cells.

• Control of angiogenesis phenomena, that is the formation of new blood vessel
from pre-existing vasculature, e.g. [9] and [10], thus preventing tumour growth
by limiting the feeding ability from blood vessels.

There is an experimental evidence that immunotherapy have the potential to treat
many tumour types, see [8]. The immunotherapy approach consists in the activation
of specific tumour antigen combined with incorporation of an immunological adjuvant
into a vaccine regime. In detail, cancer vaccines involve the induction of an active
immune response that may lead to the subsequent destruction of tumour tissue. On
the other hand, as reported in [16], an adoptive cancer immunotherapy involves the use
of tumour-killing lymphocytes and lymphokines engaging in a search and destroy anti-
cancer activity. Following [11], tumour vaccine and cytokine therapy are two methods
of promoting an anticancer immune response and these techniques are highly effec-
tive when combined. In cancer prevention using cancer vaccines the target is not the
tumour mass but the potential risk of cancer (the so-called primary prevention), a
preneoplastic lesion (the so-called secondary prevention) or a small number of isolated
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neoplastic cells remaining after a temporarily successful therapeutical treatment (the
tertiary prevention). Moreover, vaccination after the removal of a tumour mass can
stop the formation of minimal residual disease or metastatic diffusion.
Referring to the second therapy, e.g. the control of angiogenesis phenomena, tumour
progression and growth cannot occur without angiogenesis, which supplies the neces-
sary oxygen and nutrients to the growing tumour. Various angiogenesis inhibitors have
been developed to target endothelial cells and stop the process. Referring to [10], a
new class of drugs is represented by different type of angiogenic inhibitors and they
are extremely important in cases for which the general rules involving conventional
chemotherapy might not apply. Inhibitors like angiostatin prevent vascular endothe-
lial cells from proliferating and migrating, while indirect angiogenesis inhibitors can
prevent the expression of the activity of one of the tumour proteins which drive the
angiogenic switch. Another feature of the angiogenesis process is the evident abnormal
vasculature as a hallmark of solid tumour, see [14], and the normalization of this ab-
normal vasculature can facilitate drug delivery to tumours and it represents an other
important goal in the antiangiogenic therapy.

4 Modeling the immune competition and the therapeuti-
cal actions

The general principles followed toward modeling are precisely the same we have seen in
Section 2. Interactions with cells of the other populations modify the biological state
and may generate proliferation and/or destruction phenomena. In detail, referring to
interactions between host, immune and endothelial cells, we shall essentially extend the
model proposed in [4] and [5]. For i = 1, 2, 3 we will indicate, respectively, the aggressive
host, the immune system and the environmental cells. Concerning the angiogenesis
control and the activation of the immune system, let the related population of particles
be denoted respectively by the subscript i = 4 and i = 5. The assumptions which
define the microscopic interactions can be stated as follows.
Consider first conservative encounters described by Eq. (2.3):

Assumption 4.1 The progression of neoplastic cells is not modified by interactions
with other cells of the same type. On the other hand, it is weakened by interaction
with immune cells (linearly depending on their activation state) and it is increased by
interactions with environmental cells (linearly depending on their feeding ability). The
effect increases with increasing values of the progression. Moreover, the progression
of the aggressive host is not modified by interactions with both particles of the anti-
angiogenesis and of the immune activation therapeutical actions:

P11 = 0, P12(u, u∗) = −α12uu
∗, P13(u, u∗) = α13uu

∗, P14 = P15 = 0

Assumption 4.2 The defense ability of immune cells is weakened by interactions with
tumour cells (linearly depending on their activation state) due to their ability to inhibit
the immune system. On the other hand, it is not modified by interactions with other
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cells of the same type, with environmental cells and with the angiogenic therapeutical
host. Moreover, it is increased by interaction with the immune activation therapeutical
host and the effect is linearly depending on their activation state:

P21(u, u∗) = −α21uu
∗, P22 = P23 = P24 = 0, P25(u, u∗) = α25uu

∗.

Assumption 4.3 The feeding ability of the endothelial cells is weakened by interaction
with tumour cells linearly depending on their activation state. On the other hand, it is
not modified by interactions with immune cells and with other cells of the same type.
Moreover, it is weakened by interaction with the therapeutical host and we assume that
this action depends linearly on their activation state. Finally it is not modified by
interactions with the immune activation therapeutical host:

P31(u, u∗) = −α31uu
∗ , P32P33 = 0 , P34(u, u∗) = −α34uu

∗ , P35 = 0.

Assumption 4.4 The therapeutical ability of the angiogenic therapeutical host is not
modified by interactions with all the other populations and with cells of the same type:

P41 = P42 = P43 = P44 = P45 = 0.

Assumption 4.5 The therapeutical ability of the immune activation host is not mo-
dified by interactions with all the other populations and with cells of the same type:

P51 = P52 = P53 = P54P55 = 0.

Consider now the nonconservative encounters described by Eq. (2.4). A simple
modeling can be based on the assumption that the terms σij are delta functions over
the state u∗ of the interacting test cell:

σij(u∗, u∗∗;u) = sij(u∗, u∗∗)δ(u− u∗),

for all i , j = 1, . . . , 5.

Assumption 4.6 No proliferation of neoplastic cells occurs due to interactions with
other cells of the same type. On the other hand, interactions with immune cells gen-
erate a destruction linearly depending on their activation state, while interactions with
environmental cells generate a proliferation depending on their feeding ability and the
progression of tumour cells. Moreover, no proliferation arises due to the interactions
with the therapeutical hosts:

s11 = 0, s12(u∗, u∗∗) = −β12u
∗∗, s13(u∗u∗∗) = β13u

∗u∗∗, s14 = s15 = 0.

Assumption 4.7 Proliferation of immune cells occurs due to interactions with tumour
cells, linearly depending on their defense ability and on the activation state of tumour
cells. On the other hand, no proliferation of immune cells occurs due to interactions
with other cells of the same type, with environmental cells and with cells of the thera-
peutical hosts:

s21(u∗, u∗∗) = β21u
∗u∗∗ , s22 = s23 = s24 = s25 = 0.
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Assumption 4.8 A destruction of the environmental cells occurs due to interactions
with tumour cells, linearly depending on the activation state of tumour cells. On the
other hand, no proliferation of environmental cells occurs due to interactions with im-
mune cells, with other cells of the same type and with cells of the therapeutical hosts:

s31(u∗, u∗∗) = −β31u
∗∗ , s32 = s33 = s34 = s35 = 0.

Assumption 4.9 No proliferation of cells of the angiogenic therapeutical host occurs
due to interactions with tumour cells and with immune cells. On the other hand, a
destruction occurs due to interactions with environmental cells, linearly depending on
the activation state of environmental cells. No proliferation occurs due to interactions
with cells of the same type and with cells of the immune activation therapeutical host:

s41 = s42 = 0, s43(u∗, u∗∗) = −β43u
∗∗, s44 = s45 = 0.

Assumption 4.10 No proliferation of cells of the immune activation therapeutical host
occurs due to interactions with tumour cells. On the other hand, a destruction occurs
due to interactions with immune cells, linearly depending on the activation state of the
cells of the host. Moreover, no proliferation occurs due to interactions with the immune
cells, with cells of the angiogenic therapeutical host and with other cells of the same type:

s51 = 0, s52 = −β52u
∗∗, s53 = s54 = s55 = 0.

Assumption 4.11 For all the actions we consider, the terms Q(i)
jk in Eq. (2.5) are

equal to zero. This means that the possibility of shift between populations is not relevant.

Assumption 4.12 No source terms are considered in the evolution equations for all
the distribution functions fi, expressing the absence of source/sink terms.

Based on the above modeling of cell interactions, we are now able to derive the evolution
equations (2.6) for each fi :

∂f1

∂t
(t, u) =

∂

∂u

[
uf1(t, u)

(
α12A2[f2](t)− α13A3[f3](t)

)]
+f1(t, u)

(
− β12A2[f2](t) + β13uA3[f3](t)

)
,

(4.1)

∂f2

∂t
(t, u) =

∂

∂u

[
uf2(t, u)

(
α21A1[f1](t)− α25A5[f5](t)

)]
+β21uf2(t, u)A1[f1](t),

(4.2)

∂f3

∂t
(t, u) =

∂

∂u

[
uf3(t, u)

(
α31A1[f1](t) + α34A4[f4](t)

)]
−β31f3(t, u)A1[f1](t),

(4.3)
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∂f4

∂t
(t, u) = −β43f4(t, u)A3[f3](t), (4.4)

∂f5

∂t
(t, u) = −β52f5(t, u)A2[f2](t), (4.5)

for all t, u ∈ R+, where the activations Ai[fi] are defined in Eq. (2.2).
The Cauchy problem for the system (4.1) - (4.5) is defined given the initial conditions

fi(t = 0, u) = f0
i (u), ∀ i = 1, . . . , 5, (4.6)

for all u ∈ R+.
All the parameters α and β, which appear in the above Assumptions, have to be
regarded as positive, small with respect to one, constants, to be identified by suitable
experiments.

5 Analytic Results and Biological Interpretation

In the first part of this section we present the analytical results related to the qualitative
analysis of the solution to the Cauchy problem (4.1) - (4.6) and we refer to the next
Section 6 for the technical proofs.
The following theorem states the existence of the solutions of the Cauchy problem
(4.1) - 4.6.

Theorem 5.1 Assume that the initial conditions f0
i , for i = 1, . . . , 5, satisfy respec-

tively the following assumptions∫ ∞

0
eλuf0

1 (u)du <∞, ∀λ > 0, (5.1)

∫ ∞

0
(1 + u) eλu f0

2 (u) du < +∞, ∀λ > 0, (5.2)∫ ∞

0
(1 + u)f0

i (u)du <∞, ∀ i = 3, 4, 5. (5.3)

Then there exists at least one solution (f1, f2, f3, f4, f5) ∈ C([0, ∞), L1((1 + u)du)) to
the initial value problem (4.1)-(4.6) (in the distributional sense) which satisfy

∫ ∞

0
eλuf1(t, u)du ∈ L∞([0, T ]), ∀ λ, T > 0,∫ ∞

0
(1 + u) eλuf2(t, u)du ∈ L∞([0, T ]), ∀ λ, T > 0,∫ ∞

0
(1 + u)fi(t, u)du ≤

∫ ∞

0
(1 + u)f0

i (u)du, ∀ i = 3, 4, 5.

(5.4)
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Notice that to obtain the existence of solutions, we would only require to ask that∫
eλuf0

2 (u) du be finite for all λ > 0. The stronger hypothesis (5.2) is however useful in
what follows, which concerns the asymptotic behaviour in time.

We also point out that the equation for f4 and f5 are not really necessary. Indeed the
only interesting quantities are A4 and A5 and the relative equations, together with the
equation for A3, are listed in the following lemma.

Lemma 5.1 For the solutions to the initial value problem (4.1)-(4.6) given by Theorem
5.1 we have

d

dt
A3(t) = −[(α31 + β31)A1(t) + α34A4(t)]A3(t). (5.5)

d

dt
A4(t) = −β43A3(t)A4(t). (5.6)

d

dt
A5(t) = −β52A2(t)A5(t). (5.7)

Remark 5.1 From now on we will use the notation

A0
i := Ai(0) =

∫ +∞

0
u f0

i (u) du, and n0
i := ni(0) =

∫ +∞

0
f0

i (u) du,

∀ i = 1, . . . 5.

In general we are not able to predict exactly the asymptotic behaviour given a set of
initial data, except in the case where only the host and the immune system are present
where we have the following result.

Proposition 5.1 For f0
3 = f0

4 = f0
5 = 0, we define n∗2 =

∫
eβ21 u/α21 f0

2 (u) du and we
have that
i) If (α12+β12)n0

2+β21A
0
1 < (α12+β12)n∗2, then A1 → 0 as t→∞ and A2 is uniformly

bounded from below.
ii) If (α12 + β12)n0

2 + β21A
0
1 ≥ (α12 + β12)n∗2, then A2 → 0 as t→∞.

Before presenting the partial results which we are able to obtain in the general case,
we state the next lemma concerned with an estimate for the distribution f2.

Lemma 5.2 Assume f0
i satisfy (5.1)-(5.3), i = 1, . . . , 5. Then we have for the activa-

tion A2(t) the following estimate

A0
2e

R t
0 A(s) ds ≤ A2(t) ≤

( ∫
u eCu f0

2 (u) du
)
× e

R t
0 A(s) ds, (5.8)

where C =
β21

α21
+
β21α25A

0
5

α21α52A0
2

and A(s) = α25A5(s)− α21A1(s).

The next two propositions will show that it is always possible to have a therapeutical
action sufficiently high in order to have, asymptotically, the destruction of the tumour
cells.
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Proposition 5.2 It is always possible to choose A0
5 sufficiently high so that the activity

of the immune system A2 together with A3 are bounded from below by a positive constant
and A1 converges toward 0 as time tends to infinity.

Concerning the first therapy, the result is a bit weaker as it reads:

Proposition 5.3 If A0
5 = 0, and (α12 +β12)n0

2 +β21A
0
1 > (α12 +β12)n∗2, it is possible

to choose A0
4 such that A2 is bounded from below and both A1 and A3 converge toward

zero as time tends to infinity.

Notice that this result is optimal in the sense that if A0
5 = 0, and 2n0

2 + A0
1 < 2n∗2,

then for any A0
4, it is A2 which converges to 0 since we have convergence toward the

asymptotic behaviour prescribed by Prop. 5.1. We do not know the precise condition
if A0

5 is non zero.
We stress the point that the previous two propositions are independent from each other.
Let us now investigate the asymptotic behaviour in time of the solution.
We will use the following lemma.

Lemma 5.3 For the solutions to the initial value problem (4.1)-(4.6) given by Theorem
5.1 we have ∫ +∞

0
A2(t)A5(t) dt < +∞, (5.9)∫ +∞

0
A3(t)A4(t) dt < +∞, (5.10)∫ +∞

0
A1(t)A3(t) dt < +∞. (5.11)

From Eq. (5.5), A3(t) is decreasing, and hence

either A3 → 0 or ∃ c > 0 s.t. A3(t) ≥ c, ∀ t.

First, we consider the asymptotic behaviour in the case A0
4 = 0.

Theorem 5.2 Assume that A0
5 6= 0 and A0

4 = 0. Then as t→ +∞, there are only the
following two possibilities:
i) If A3(t) is bounded from below by a positive constant, then also A2(t) is bounded from
below by a positive constant,

∫ +∞
0 A1(t) dt < +∞ and

∫ +∞
0 A5(t) dt < +∞;

ii) If A3 → 0, then also A2(t) → 0 and
∫ +∞
0 A1(t) dt = +∞ .

We are not able to indicate all possible asymptotical features of the system, if A0
5 6= 0

and A0
4 6= 0, but we can still give some partial answers. In particular, property i) of

Theorem (5.2) remains true.

Proposition 5.4 If A3(t) is bounded from below by a positive constant, then also A2(t)
is bounded from below by a positive constant,

∫ +∞
0 A1(t) dt < +∞,

∫ +∞
0 A4(t) dt < +∞

and
∫ +∞
0 A5(t) dt < +∞.
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An interesting biological interpretation can be given to the main results described in
this section. First we observe that conditions (5.1)-(5.3) needed to prove the existence
theorem are consistent with the biological requirements of cell populations. Specifically
the decay to zero at infinity implied by conditions (5.1)-(5.3) can be regarded as natural,
since the distribution functions fi must effectively decay to zero at infinity to have a
bound to the initial density and activation as given by Eqs. (2.1) and (2.2). Exponential
might nevertheless seem too demanding but we recall the result obtained in [5], which
also applies here and which tells that, without some exponential decay, no solution
exists even for a short time.
The theorem states in (5.4) the L∞ boundedness of the weighted distributions f1 and
f2 and a bound of f3 to f5 with respect to the corresponding quantities at t = 0. The
theorem provides a useful background for simulations, while the results which are useful
for a biological interpretation are stated in Propositions (5.1)-(5.4) and Theorem (5.2).
In detail, Proposition (5.1) concerns the simplest case where only the tumour cells and
the immune system are present and it indicates how the system chooses between the
two asymptotic behaviours, already described in [5], in terms of the initial data and of
the parameters of the model. We recall that in the general case studied in [5] we did
not have such a result.
Propositions (5.2) and (5.3) show the efficiency of the treatment in both the cases of
the two therapies considered, even if the analytical results obtained in the case of the
angiogenesis control is a bit weaker. The two propositions state how in principle is
always possible to reach the situation where the immune system wins and completely
eliminates the tumour cells of the organism. As a consequence of the activation of
the immune system or of the weakening of the feeding ability of the environmental
cells, respectively, the activation of the tumour system evolves toward lower degrees of
malignity. Unfortunately, these mathematical results do not always correspond to the
reality, in the sense that the amount of the initial conditions of the treatments can be
not realistic (if a high dose of treatment is dangerous for other reasons).
Theorem (5.2) shows the complete asymptotic analysis in the presence of the second
therapy. Recalling that this is the therapy referring to the actions applied by proteins
to activate the immune defense, the analysis corresponds to a well defined medical
motivation related to the action of cytokine signals, [11] and [15]. The competition
between the tumour cells and the immune system may end up with the regression
of progressed cells, due to the action of the immune system, or with the blow up of
progressed cells and inhibition of the immune system.
Finally, Proposition (5.4) gives only a partial answer concerning the asymptotic be-
haviour in the general case of the two therapies, showing a case where the destruction
of the host is still possible. In that case, some more complicated asymptotic behaviours
are probably possible, corresponding to chronical diseases for instance (with oscillations
for the numbers of immune cells and agressive hosts).
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6 Estimates and Proofs

This section is devoted to the technical proofs of the qualitative properties of the
solution to the Cauchy problem (4.1) - (4.6).

6.1 Existence theorem 5.1

The proof of the existence Theorem 5.1 is the same as that of Theorem 2.1 in [5]. We
just list here the main steps of the proof:

• A priori estimates: any solution fi, for i = 1, . . . , 5, to the system which is
the weak limit of compactly supported solutions in L∞t L

1
u, satisfies the estimates

(5.4).

• Continuity in time: given Ai ∈ L∞([0, T ]), for i = 1, . . . , 5, the weak solutions
fi, for i = 1, . . . , 5, to the system, satisfying the conditions (5.4), also belong to

C([0, T ], L1((1 + u)du)), ∀T > 0.

• Stability result:

Let fn
i in C([0, ∞), L1((1+u)du)), for i = 1, . . . , 5, be a sequence of solutions in

the distributional sense. Assume that they satisfy the a priori estimates (5.4) uni-
formly in n. Then any weak limit fi, for i = 1, . . . , 5, of converging subsequences
also belongs to C([0, ∞), L1((1 + u)du)) and solves the system in distributional
sense with initial data the weak limits of the initial data.

• Existence: we construct sequences of approximate solutions of our system, sat-
isfying every a priori estimate. Taking weak limits, we obtain solutions for any
initial data satisfying the hypotheses (5.1) - (5.3) of the theorem, on the inter-
val [0, T ]. Since the solutions satisfy the estimates (5.4) uniformly in t, we may
extend indefinitely the time of existence.

6.2 Proof of Proposition 5.1

If f0
3 = f0

4 = f0
5 = 0, they remain so at any latter time, which obviously simplifies the

equations on f1 and f2. Multiplying Eq. (4.1) by u and integrating we formally obtain
in this case

d

dt
A1(t) = −(α12 + β12)A1A2.

This formal computation can easily be made rigorous (see [5] for more details). Inte-
grating Eq. (4.2) we get

d

dt
n2(t) = β21A1A2.

Then with these two relations, we conclude that

d

dt

(
(α12 + β12)n2 + β21A1

)
= 0. (6.1)
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We now recall the main result from [5] which states that either A1 converges toward 0,
A2 is bounded from below and n2 is bounded away from n∗2, or A2 converges toward 0
and n2 converges toward n∗2.
The first case means that

lim
t→∞

(
(α12 + β12)n2(t) + β21A1(t)

)
< (α12 + β12)n∗2,

and the second that

lim
t→∞

(
(α12 + β12)n2(t) + β21A1(t)

)
≥ (α12 + β12)n∗2.

These are exactly the two conditions given in Prop. 5.1.

6.3 Proof of Lemma 5.1

It is easy to see that the estimates given in the Lemma 5.1 are formally true. For a
rigorous proof we refer to Lemma 5.5 in [5].

6.4 Proof of Lemma 5.2

Let us consider equation (4.2) for the distribution f2 and the characteristics

U(t, u) = u× e
R t
0 A(s) ds

where A(s) = α25A5(s)− α21A1(s). Then the equation for f2 along the characteristics
is given by

d

dt

[
f2(t, U(t, u))

]
∂tf2(t, U(t, u)) + ∂tU(t, u)∂uf2(t, U(t, u))

= ∂tf2(t, U(t, u)) +A(t)U(t, u)∂uf2(t, U(t, u))
= [β21U(t, u)A1(t) +A(t)]f2(t, U(t, u)),

so that
f2(t, U(t, u)) = f0

2 (u)× e
R t
0 [β21U(s,u)A1(s)+A(s)] ds

and hence∫
Uf2(t, U) dU

=
∫
u× e

R t
0 A(s) ds × f0

2 (u)× e
R t
0 [β21U(s,u)A1(s)+A(s)] ds × e

R t
0 A(s) ds du.

Consequently we get for A2 the expression

A2(t) =
( ∫

u f0
2 (u)× e

R t
0 [β21U(s,u)A1(s)] ds du

)
× e

R t
0 A(s) ds. (6.2)
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Let us now consider

0 ≤
∫ t

0
β21U(s, u)A1(s) dsβ21u×

∫ t

0
e

R s
0 A(τ) dτ ds =: β21u I(t)

and

α21I(t) = −
∫ t

0
e

R s
0 A(τ) dτ ×A(s) ds+ α25

∫ t

0
e

R s
0 A(τ) dτ ×A5(s) ds =: I1(t) + I2(t).

For the first integral we have

I1(t) = −
∫ t

0
∂s

[
e

R s
0 A(τ) dτ

]
ds1− e

R s
0 A(τ) dτ ≤ 1,

while from (6.2) we deduce that

A2(t) ≥
( ∫

u f0
2 (u) du

)
× e

R t
0 A(τ) dτA0

2 e
R t
0 A(τ) dτ .

Therefore

0 ≤ I2(t) ≤
α25

A0
2

×
∫ t

0
A2(s)A5(s) ds

α25

α52A0
2

(A0
5 −A5(t)),

where the last equality is obtain from Eq. (5.7). Finally,

0 ≤ I2(t) ≤
α25A

0
5

α52A0
2

,

and

α21I(t) ≤ 1 +
α25A

0
5

α52A0
2

so that we obtain

A0
2e

R t
0 A(s) ds ≤ A2(t) ≤

( ∫
u eCu f0

2 (u) du
)
× e

R t
0 A(s) ds,

where C =
β21

α21
+
β21α25A

0
5

α21α52A0
2

, which proves Lemma 5.2.

6.5 Proof of Proposition 5.2

The proof of Prop. 5.2 will be carried out in two steps. The first step consists in showing
that

∀K, ∃A0
5 and ∃ t0 ≤ 1 s.t. A2(t0) > K.

Given any differentiable function λ(t), let us define

J(t) =
∫
eλ(t)u f1(t, u) du.
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From Eq. (4.1) we have

d

dt
J(t) ≤ λ′(t)

∫
u eλ(t)u f1(t, u) du+ (α13λ(t) + β13)A3(t)

∫
u eλ(t)u f1(t, u) du.

Now we choose λ s.t. λ′(t) = −(α13λ(t) + β13)A0
3 , and this implies

d

dt
J(t) ≤ 0 and λ(t) = Ce−α13A0

3 t − β13

α13
,

where C is an arbitrary constant. Now we take C s.t. λ(1) = 1 and consider the
following estimate, ∀ t ≤ 1,∫

eu f1(t, u) du ≤
∫
eλ(t)u f1(t, u) du = J(t) ≤ J(0)

∫
e

(
C− β13

α13

)
u
f0
1 (u) du. (6.3)

Now

i) A3(t) ≤ A0
3, ∀ t ≤ 1, from (5.5).

ii) A2(t) ≥ A0
2 e

R t
0

(
α25A5(s)−α21A1(s)

)
ds, from (5.8),

iii) A1(s) ≤
∫
euf1(s, u) du ≤

1
α21

C̃(A0
3, f

0
1 ), from (6.3),

and using property iii) in ii), we have

A2(t) ≥ A0
2 e

R t
0 α25A5(s) ds− C̃t ≥ A0

2 e
−C̃ e

R t
0 α25A5(s) ds, ∀ t ≤ 1. (6.4)

Assume now that ∃K s.t. ∀A0
5, A2(t) ≤ K, ∀ t ≤ 1.

Recalling Eq. (5.7) we get
A5(t) ≥ A0

5 e
−α52Kt

and

A2(t) ≥ A0
2 e
−C̃ e

α25A0
5

α52K
×[1−e−α52k] −→ +∞, as A0

5 → +∞

but this is a contradiction and the first step is proved.
Now, the second step consists in showing that we can choose α ≤ 1 and K s.t. A0

2 ≥ K
implies A2(t) ≥ αK.
Let us choose α, K s.t. A0

2 ≥ K and α ≤ 1. Define T the first time (if it exists) s.t.
A2(t) = αK. Then, ∀ t ∈ [0, T ], A2(t) ≥ αK.
By Eq. (4.1) we obtain

d

dt

∫
eλuf1(t, u) du =(

λα13A3(t) + β13A3(t)− λα12A2(t)
)

×
∫
ueλuf1(t, u) du− β12A2(t)

∫
eλuf1(t, u) du
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If we choose λ s.t.
A0

3

α13λ+ β13

α12λ
≤ αK, (6.5)

then we have ∫
eλuf1(t, u) du ≤ e−β12αKt

∫
eλuf0

1 (u) du,

and we use this estimate to deduce that

A1(t) ≤
1
λ

∫
eλuf1(t, u) du ≤

1
λ
e−β12αKt

∫
eλuf0

1 (u) du.

Using the previous computations and the relation

d

dt
A2(t) ≥ −α21A1(t)A2(t),

that we obtain from Eq. (4.2), we have the following estimate for A2(t)

A2(t) ≥ A0
2 × e−α21

1
λ

(
R t
0 e−β12αKs ds)×

R
eλuf0

1 (u) du

K × exp

(
− α21

β12λαK
×

∫
eλuf0

1 (u) du
)
> αK

provided

exp

(
− α21

β12λαK
×

∫
eλuf0

1 (u) du
)
> α. (6.6)

Summarizing, we can choose α, K s.t. (6.5) and (6.6) are satisfied, and in this case we
get the contradiction that A2(t) > αK, and this proves the second step of the proof of
Proposition 5.2.

6.6 Proof of Proposition 5.3

Take the equation for A3 in Lemma 5.1, multiply it by β43, and subtract it from the
equation for A4 in the same lemma, multiplied by α34, to obtain

d

dt
(α34A4 − β43A3) = β43(α31 + β31)A1A3 ≥ 0.

As a consequence α34A4 is larger than K = α34A
0
4 − β43A

0
3, and this constant as high

as we want provided A0
4 is high enough. Since

d

dt
A3 ≤ −α34A4A3,

we deduce that
A3(t) ≤ A0

3 e
−Kt. (6.7)

Now let us write down the characteristics for (4.1), which read

∂tU(t, u) = (α13A3 − α12A2)U(t, u), U(0, u) = u.
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Thanks to (6.7), we have that

U(t, u) = u× e
R t
0 (α13A3(s)−α12A2(s)) ds ≤ u× e

R t
0 α13A3(s) ds ≤ Γu (6.8)

with
Γ = eα13 A0

3/K .

On the other hand

∂t(f1(t, U(t, u))) ≤ (β31A3(t)U(t, u) + α12A2 − α13A3) f1(t, U(t, u)),

and consequently

f1(t, u) ≤ f0
1 (u e−

R t
0 (α13A3(s)−α12A2(s)) ds)× eΛu × e−

R t
0 (α13A3(s)−α12A2(s)) ds,

where Λ is uniformly bounded in terms of A0
4, provided this last quantity is bounded

away enough from 0 since

Λ = β13
α13A

0
3

K
eα13 A0

3/K .

From the inequality on f1 and (6.8), we may deduce that∫
(u+ u2)f1(t, u) du ≤

∫
(U(t, u) + |U(t, u)|2) eΛU(t,u) f0(u) du

≤ 2 Γ2

∫
(u+ u2) eΛΓu f0(u) ≤ C,

(6.9)

where C does not depend on A0
4, provided A0

4 is large enough (so that K > 1 for
instance).
To conclude the proof, we write that

d

dt
((α12 + β12)n2 + β21A1) = β21

(
α13A3A1 + β13A3

∫
u2 f1(t, u) du

)
.

Thanks to (6.7), we get

(α12 + β12)n2(t) + β21A1(t) ≤ (α12 + β21)n0
2 + β12A

0
1 +

C̃

K
,

with C̃ uniformly bounded if K > 1. Consequently we may choose A0
4 large enough

such that
limsupt→∞ ((α12 + β12)n2(t) + β21A1(t)) < (α12 + β12)n∗2.

Applying again the main result of [5], as in the proof of Prop. 5.1, we know that A1

(and n1) converges toward zero whereas A2 is bounded away from 0, since the limit of
n2 is strictly less than n∗2.

Before turning to another proof, we mention that if we had initially that

(α12 + β12)n0
2 + β21A

0
1 ≥ (α12 + β12)n∗2,
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then, no matter what are the values of A3 and A4, but provided f5 = 0, we know that

d

dt
((α12 + β12)n2 + β21A1) ≥ 0.

We also know that the limit of A1 is either non zero or that the limit of n2 is n∗2. This
guarantees that A2 converges toward 0.

6.7 Proof of Lemma 5.3

From Eq. (5.7) we have

β52

∫ t

0
A2(s)A5(s) ds = A0

5 −A5(t) ≤ A0
5, ∀ t

and Eq. (5.9) is proved. In the same way, we derive Eq. (5.10) from Eq. (5.6). From
Eq. (5.5) we obtain

(α31 + β31)
∫ t

0
A1(s)A3(s) ds = A0

3 −A3(t)− α34

∫ t

0
A3(s)A4(s) ds ≤ Const, ∀ t,

and this proves Eq. (5.11).

6.8 Proof of Theorem 5.2

As it was already observed, from Eq. (5.5) we have two possible cases: either A3 → 0
or ∃ c > 0 s.t. A3(t) ≥ c, ∀ t.

1) Let us start with the case A3 bounded from below. From Eq. (5.5) we know that∫ +∞
0 A1(t) dt < +∞ and, as a consequence,∫ t

0
A(s) ds ≥ −α21

∫ +∞

0
A1(t) dt.

Using this inequality in the left hand side of Eq. (5.8), we have

A2(t) ≥ A0
2 e
−α21

R +∞
0 A1(t) dt

and this proves that A2 is bounded from below. From Eq. (5.9), we have that∫ +∞
0 A5(t) dt < +∞.

2) Let now consider the case A3 → 0. From Eq. (5.5) we know that∫ +∞

0
A1(t) dt = +∞. (6.10)

We analyze the following three subcases
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(a)
∫ t
0 A(s) ds bounded from below, i.e. ∃ c ∈ R s.t∫ t

0
A(s) ds ≥ c, ∀ t ∈ R+.

This implies that A2(t) ≥ A0
2e

c, so from Eq. (5.7) we deduce the inequality
A5(t) ≤ A0

5e
−α52A0

2ect and as consequence
∫ +∞
0 A5(s) ds < +∞.

Therefore, from Eq. (6.10),
∫ t
0 A(s) ds −→ −∞, as t → +∞, but this is a

contradiction, and
∫ t
0 A(s) ds cannot be bounded from below.

(b)
∫ t
0 A(s) ds converges to −∞, as t→ +∞: from Eq (5.8) this directly implies

A2(t) −→ 0, as t→ +∞,

q.e.d.

(c)
∫ t
0 A(s) ds be neither bounded from below nor converging to −∞.

We may construct two sequences {tn} and {t̃n} s.t.

tn ≤ t̃n ≤ tn+1,

∫ tn

0
A(s) ds ≤ −n and

∫ t̃n

0
A(s) ds ≥ c

with c constant.
We show that A5(t) −→ 0, as t→ +∞. Let sn ∈ [tn, t̃n] be the first time s.t.∫ sn

0
A(s) ds = c− 1 and

∫ t

0
A(s) ds ≥ c− 1, ∀ t ∈ [sn, t̃n].

As
d

dt

∫ t

0
A(s) ds = A(t) ≤ α25A5(t) ≤ α25A

0
5,

we know that t̃n− sn ≥
1

α25A0
5

. Moreover, ∀ t ∈ [sn, t̃n], A2(t) ≥ A0
2e

c−1 and
so

A5(t̃n) ≤ A5(sn)× eα52A0
2ec−1(α25A0

5)−1
.

Consequently A5(t̃n) −→ 0 and this implies A5(t) −→ 0, since A5 is decreas-
ing.
We now show that A2(t) −→ 0, as t→ +∞. From Eq (5.8) we know that:

A2(t) ≤
( ∫

u eCu f0
2 (u) du

)
× e

R t
0 A(s) ds ≤ K eα25

R t
0 A(s) ds.

Given any t1 ≤ t2, we have

A2(t1) ≥ A0
2 e

R t1
0 A(s) ds and A2(t2) ≤ K e

R t2
0 A(s) ds,
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so

A2(t2) ≤
K

A0
2

A2(t1) e
R t2

t1
A(s) ds

≤ K̃A2(t1) exp
(
α25A5(t1)

∫ t2

t1

e
−α52

R s
t1

A2(τ) dτ
ds

)
Now we prove the following inequality

A2(t2) ≤ K̃A2(t1) exp
(
α25A5(t1)
α52A2(t1)

)
, (6.11)

for t1 fixed and ∀ t ≥ t1. If it is not true, then ∃ t2 with

A2(t2) > K̃A2(t1) exp
(
α25A5(t1)
α52A2(t1)

)
.

Define t0 as the largest time t ≤ t2 with A2(t) = A2(t1).
Clearly t1 ≤ t0 ≤ t2 and ∀ t ∈ [t0, t2] : A2(t) ≥ A2(t1). Therefore

A2(t2) ≤ K̃A2(t0) exp
(
α25A5(t0)

∫ t2

t0

e−α52(s−t0)A2(t1)ds

)
≤ K̃A2(t1) exp

(
α25A5(t0)
α52A2(t1)

)
≤ K̃A2(t1) exp

(
α25A5(t1)
α52A2(t1)

)
,

as A5 is decreasing, but this is a contradiction, and Eq. (6.11) is proved.
Now we know that A5 −→ 0 and take tn ≤ t̃n ≤ tn+1 such that A2(tn) −→ 0
and A2(t̃n) is bounded from below.

We can find a sequence rn s.t. A2(rn) −→ 0 and
A5(rn)
A2(rn)

≤ α52

α25
.

Then ∀ t ≥ rn, from Eq. (6.11), A2(t) ≤ K̃A2(rn) e and A2 −→ 0, but this
contradicts the fact that A2(t̃n) is bounded from below. So it is proved that
A2 −→ 0.

6.9 Proof of Proposition 5.4

We are in the case ∃ c > 0 s.t. A3(t) ≥ c, ∀ t. From Eq. (5.6) we have

A4(t) ≤ A0
4 e
−β43ct, hence

∫ +∞

0
A4(t) dt < +∞,

and because of Eq. (5.5) this implies∫ +∞

0
A1(t) dt < +∞.
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We also have, by definition,∫ t

0
A(t) dt ≥ −α21

∫ t

0
A1(s) ds ≥ −α21

∫ +∞

0
A1(s) ds,

and from Eq. (5.8)
A2(t) ≥ A0

2 e
−α21

R +∞
0 A1(s) ds,

so A2 is bounded from below. Finally, from Eq. (5.9) we have
∫ +∞
0 A5(t) dt < +∞ and

this concludes the proof.
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