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Exercises - Chapter 0 (correction)

Exercise 1.
Find the "stiffness” matrix K for linear basis functions. If the right hand side f is piecewise
linear i.e.

n
f@)=>" fi¢(x)
=1
determine the matrix M called "mass” matrix such that : KU = MF.

Answer. The linear basis functions are given by :

T — Ti—1
h;
¢Z(x) = Tit1 — T
hity1
0,2 & [Ti—1,Tit1)

, T € [xiflal'ih

, T € [xi7$i+1],

According to the expression of the ”stiffness” matrix we can write :

1 T; z;+1 1 1
Koo = [ereae= [ @i [ e = g
Kir = Kipri— /O O4(2) B (2)de = / OL(2) By (2)dr = —

2

hit1

all the other elements being null since in all the other cases the basis functions ¢; and ¢;
cannot be simultaneously non-zero. The right hand side can be written as :

1 n 1 n 1
b = /0 f(z)¢i(x)dz = jz;fj/o ¢i(z)¢j(z)dr = jleijfja M;; = /0 ¢i(z)p;(z)dx.

Thus, the "mass” matrix is formed by the elements M;; which can be computed as follows
(by performing a variable change © = x;_1 + th in the integral on [x;_1,z;] and = = z; + th
in the integral on [z;, x;y1]) :

1 x; x;+1
Mi = [ = /z“f?(‘*)d“ /+ #2(2)d

1 h; + h;
= hi/ tht+h,~+1/ (1—t)2dt:g
0 0 3

1 .
Miix1n = My, :/o ¢i(x)Pit1(x)dx :/ ¢i(2)pit1(v)dz = hi+1/0 (1 —t)tdt = hzgl.

T

all the other elements being null since in all the other cases the basis functions ¢; and ¢,
cannot, be simultaneously non-zero.

Exercise 2.
Give the weak formulation for the two-point boundary value problem :

{ —u" +u=f2ze€(0,1),
u(0) = u(1) = 0.

4



Answer. Mutiplying the equation inside the domain by a test function v and by integrating

by parts we get :
1 1 1
/ uv +u'v' = / fu, a(u,v) := / uv + u'v’
0 0 0

The weak formulation can be written as :
find u € V = {v € L*0,1) : v(0) = v(1) = 0}, such that a(u,v) = (f,v), Yv € V.

Exercise 3.
Explain what is wrong in both variational and classical setting for the problem :

{ —u" = f,x €(0,1),
w'(0)=u'(1)=0

that is explain in both contexts why this problem is not well-posed.

Answer. For the classical setting we can see that is u is solution of the problem u + C
(where C' is a constant) is also solution. Therefore the problem is not well-posed. The weak
formulation can be written as :

1
find v € V = L*(0,1), such that / u'v' = (f,v), Vv e V.
0

If we put v = C (where C is a constant) we get that fol f = 0, that means if f doesn’t
respect this condition the problem has no solution (this is called compatibility condition). If
the condition is fulfilled, the solution is defined only up to a constant.

Exercise 4.
Show that piecewise quadratics have nodal basis consisting of values at nodes x; together
with the midpoints %(:cl + x;41). Calculate the stiffness matrix for these elements.

Answer. We denote by ¢9; the basis functions associated to z; and by ¢9;4+1 those associated
to the midpoint %(ZL‘Z + x;4+1). They are given by :

2x — Ti—1 —T; T — Tij—1 ' 4
hi . hz TE [xl_l’xz]’ 41; — I ) Ti4+1 — &
Goi(r) = 2L T T T T Tl o , 2iv1(z) = hit1 hit1
: 1
hit1 hiv1 @i, @i, 0, ¢ [xi, Tip1].
0,2 ¢ [z_1,Ti41].

, @ € [T, Tiq1],

The stiffness matrix is again symmetric, with at most 5 non-zero elements on each line which
can be computed as follows (by performing a variable change x = z;_1 + th in the integral on
[zi_1,%;] and x = x; + th in the integral on [x;, z;11]) :

x;+1

1 T
Koo = [ @@z = [ @@+ [T @@

T

1 ! 1 1 7/1 1
= — [ (4t-1)%dt+ L/4ﬁ%2ﬁ:<+ ),
hi/o ( ) hiv1 Jo ( ) 3\hi  hita

x;+1 1 1
Ky, o4 = Ky .= - L dr = /)#—3M—1ﬁ:
2i,2(i+1) 2(i+1),2i /ZI ¢22($)¢2(z+1)($) £ it Jo ( ) ) 3hiey’
AR 1! 2 16
Kanain = [ @he)de= 5 [ 16ee- 1% = "
i hit1 Jo 3hit1
z;+1 , , 1 1 8
Ko 2it1 = Koiy192i = / G (T) P11 (7)dz = / (4t —1)(4 - 8t)dt = — :
i hiv1 Jo 3hit1



Exercise 5.
Let h = maxj<j<n(2; — xj—1). Then,

lu = url| < Chllu"||, Vu € V,

where C' is independent of h and wu.
Hint : Use first the homogeneity argument, then show that :

/01 w(z)2de < 5/01 W (2)2da (1)

by utilizing the fact that w(0) = 0. How small can you make ¢ if you use both w(0) = 0 and
w(l)=07

Answer. In the following we will use the homogeneity argument as in the lecture. According
to the definition of the two norms, it is sufficient to prove the estimate piecewise, i.e :

/Ij
.,

j—1

Zj

(u —up) (z)?de < c(x; — a:j_l)2/ u”(z)dx

Tj—1

with C' = y/c. This inequality can be re-written in terms of error by denoting : e = u—wu; (note
that uy is piecewise linear and therefore its second derivative cancels) and then by performing
a variable change = z;_1 + t(z; — xj—1) (an affine mapping from the interval [z;_1, z;] to
[0,1]) as follows :

1 1
/ &(t)%dt < ¢ / & (1)t &(t) = e(w;—1 + Ha; — 25-1)).
0 0

Now, using some results of the lecture, it is enough to prove (1) for w = é. Note that
w(0) = w(1) = 0 since the interpolation error will be zero at all nodes. Therefore :

by using Schwarz’ inequality we get :

/Olw(m)Qdac /01 </0$1;w’(t)dt>2dx§/oll </Oxdt1> . </0$w'(t)2dt> dx
x- w' (1)2 x x - w'(t)? x

/01 </0 (t)df)d gl/o 1 </O (t)dt)d

= (/0 w’(t)th>-/0 xdx—Q/O w'(t)2dt,

1

IN

the constant is thus ¢ =
If w(0) = w(1) = 0, we can consider this function as periodic with period 7' = 1 and write its

[\

Fourier series as follows :
w(z) = Z ag sin(kmz) = Z ay sin(krz) = w'(z) = Z kmay, cos(kmx)

k k40 k40

Using Parseval’s equality we get :
! 1 ! 1
/ w(zx)?dr = 5 Z az, / w' (z)dx = 5 Z(kﬂr)%%,
0 k20 0 k0

which proves the optimal inequality (the best ¢ = 712) :

1 1 A
/ w(z)?de < — | w'(z)*da.
0

7T2 0



Exercise 6. )
We denote a(u,v) = / o' (2)v' (z)dx and V = {v € L*(0,1);a(v,v) < 0o,v(0) = 0}. Prove
the following coercivityoresults :
o] + |]v'||* < Ca(v,v), Vv e V
Give a value for C.

Answer. Using the previous exercise it is easy to see that :

1 5
ol < ellv'll, e = 5 = Ilol* + [V']* < (¢* + DIYI* = (¢* + Da(v,v) = C = ¢
Furthermore, if the space V were given by V = {v € L?(0,1);a(v,v) < co,v(0) = v(1) = 0},
1 4
then C' attains its optimal value C' = + 47T .
™

Exercise 7.
Consider the difference method represented by :

2 U —-U U —U
- - — fa). 2
hi + hit1 < hit1 hi > fla) @)

Prove that ug = ), U;¢; satisfies the following :

1
a(tug,v) = Q(fv), Vv € S, a(u,v) = /0 o (z)v (z)dx

where S consists of piecewise linears and () denotes the quadrature approximation based on

the trapezoidal rule :
n

Qw) = 3 MR,

, 2
1=0
We further define hg = hp+1 = 0 for simplicity of notation.

Answer. The relation (2) can be re-written as :

hi + hit1

KU=F, F=
v-F - ("

f(éUz)) , U= (Ui)i<i<n—1
1<i<n—1

If we write v as a linear combination of basis elements of S : v =), Vi¢; with V; = v(z;) and
denote V' = (v(x;))1<i<n—1 we see that by linearity of a w.r.t. al components we have :

a(iis,v) = ad_Uig, Y Vio)) =D > ale;, ¢:)UiV; = (KU, V)
i j i
n
hi + h;
= (FUV) = z; ~ () = Q(fv).

1=
The difference method is thus equivalent to a piecewise polynomial approximation where the
right hand side is approximated with a trapezoidal rule.

Exercise 8.
Let @ be give by the previous exercise. Prove that :

<oy / ' (@)|dz 3)
i=1 " Ti-1

Hint : Observe that the trapezoidal rule is exact for piecewise linears and then use exercise 5.

‘Q(w) - (e




Answer. Let w; € S be the piecewise linear interpolant of w. We have that the trapezoidal
rule is exact for wy and since wr(x;) = w(z;) we have :

1
/O wi(@)dz = Q(wr) = Q(w).

If we denote by e = w — wy the equation (3) becomes :

1 n T;
/ e(z)dzr| < ChQZ/ le” (z)|dx
0 i=1 7 Ti-1

By using the homogeneity argument it is enough to prove that :

[ e [l <c [ @

where é(t) = e(z;—1 + t(x; — xi—1)). To simplify the notations we denote w = € and we see
that w(0) = w(1) = 0 and by Rolle’s theorem there exist £ such that w(§) = 0. We further
obtain that :

< Clwi— xi_l)z/ e (@) |de

i—1

/0 1 w(x)dx| = t)dtdx| = T)drdtdx T)dT| dtdz
< 7)dr| dtdz = W (r)dr| dt
< //]w” ]det—i—/ / |w” |d7'dt</ / |w” (1) |d7'dt+/ / |w” (7)|drdt
<

e [+ - /g ' 0)lar < max{e 1 - ) [ @)l
The constant is then given by : C' = max{{,1 — &}.

Exercise 9.
Let ug the solution of a(ug,v) = (f,v),Yv € S, where S consists of piecewise linears and let
ug be as in exercise 7. Prove that :

|a(us —as, )] < CRA(F' |+ L7 1Dl + [1'[1) (4)
Hint : Apply exercise 8 and Schwarz’ inequality.

Answer. By applying exercises 7 and 8 we get :
1 1
la(ts —ug,v)] = [Q(fv) = (/, N—’() UM@SCWAKﬂWMM

- mﬂ/ P (@yo(e) + 2/ (2) (2)|da

By applying Schwarz’s inequality we further obtain :

1 1
[ 1@ +2r@v@ia < [ 1@ @l [ 19 @l [ e
< I+ 1700+ 1) < ||f”||||v|| LM+l
= suax{L, CHI el + 1711+ 1721)
< max{L, YUMol + U1+ L 00+ 17 )
< CI+ 17l + 1)



Exercise 10.
Let ug and ug be like in the exercise 9. Prove that :

lus — aslle < CRA(IF'| + LF"1)
Hint : Apply exercise 9, pick v = ug — tg and apply exercise 6.
Answer. We plug v = ug — g into (4) and we get :
lus — as||E = alus — as,us —as) < CRA(||f'[| + Lf" ) (lus — sl + us — @s])
The coercivity of a (the application of the exercise 6) gives :
lus — as|| < Cllus — as|lp and [ug — @5 < Cllus — as||e

and the conclusion follows directly.



