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Exercises - Chapter 0 (correction)

Exercise 1.
Find the ”stiffness” matrix K for linear basis functions. If the right hand side f is piecewise
linear i.e.

f(x) =
n∑

j=1

fjφj(x)

determine the matrix M called ”mass” matrix such that : KU = MF.

Answer. The linear basis functions are given by :

φi(x) =


x− xi−1

hi
, x ∈ [xi−1, xi],

xi+1 − x

hi+1
, x ∈ [xi, xi+1],

0, x /∈ [xi−1, xi+1].

According to the expression of the ”stiffness” matrix we can write :

Kii =
∫ 1

0
(φ′i)

2(x)dx =
∫ xi

xi−1

(φ′i)
2(x)dx +

∫ xi+1

xi

(φ′i)
2(x)dx =

1
hi

+
1

hi+1
.

Ki,i+1 = Ki+1,i =
∫ 1

0
φ′i(x)φ′i+1(x)dx =

∫ xi+1

xi

φ′i(x)φ′i+1(x)dx = − 1
hi+1

.

all the other elements being null since in all the other cases the basis functions φi and φj

cannot be simultaneously non-zero. The right hand side can be written as :

bi =
∫ 1

0
f(x)φi(x)dx =

n∑
j=1

fj

∫ 1

0
φi(x)φj(x)dx =

n∑
j=1

Mijfj , Mij =
∫ 1

0
φi(x)φj(x)dx.

Thus, the ”mass” matrix is formed by the elements Mij which can be computed as follows
(by performing a variable change x = xi−1 + th in the integral on [xi−1, xi] and x = xi + th
in the integral on [xi, xi+1]) :

Mii =
∫ 1

0
φ2

i (x)dx =
∫ xi

xi−1

φ2
i (x)dx +

∫ xi+1

xi

φ2
i (x)dx

= hi

∫ 1

0
t2dt + hi+1

∫ 1

0
(1− t)2dt =

hi + hi+1

3

Mi,i+1 = Mi+1,i =
∫ 1

0
φi(x)φi+1(x)dx =

∫ xi+1

xi

φi(x)φi+1(x)dx = hi+1

∫ 1

0
(1− t)tdt =

hi+1

6
.

all the other elements being null since in all the other cases the basis functions φi and φj

cannot be simultaneously non-zero.

Exercise 2.
Give the weak formulation for the two-point boundary value problem :{

−u′′ + u = f, x ∈ (0, 1),
u(0) = u(1) = 0.
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Answer. Mutiplying the equation inside the domain by a test function v and by integrating
by parts we get : ∫ 1

0
uv + u′v′ =

∫ 1

0
fv, a(u, v) :=

∫ 1

0
uv + u′v′

The weak formulation can be written as :

find u ∈ V = {v ∈ L2(0, 1) : v(0) = v(1) = 0}, such that a(u, v) = (f, v), ∀v ∈ V.

Exercise 3.
Explain what is wrong in both variational and classical setting for the problem :{

−u′′ = f, x ∈ (0, 1),
u′(0) = u′(1) = 0

that is explain in both contexts why this problem is not well-posed.

Answer. For the classical setting we can see that is u is solution of the problem u + C
(where C is a constant) is also solution. Therefore the problem is not well-posed. The weak
formulation can be written as :

find u ∈ V = L2(0, 1), such that
∫ 1

0
u′v′ = (f, v), ∀v ∈ V.

If we put v = C (where C is a constant) we get that
∫ 1
0 f = 0, that means if f doesn’t

respect this condition the problem has no solution (this is called compatibility condition). If
the condition is fulfilled, the solution is defined only up to a constant.

Exercise 4.
Show that piecewise quadratics have nodal basis consisting of values at nodes xi together
with the midpoints 1

2(xi + xi+1). Calculate the stiffness matrix for these elements.

Answer. We denote by φ2i the basis functions associated to xi and by φ2i+1 those associated
to the midpoint 1

2(xi + xi+1). They are given by :

φ2i(x) =


2x− xi−1 − xi

hi
· x− xi−1

hi
x ∈ [xi−1, xi],

2x− xi − xi+1

hi+1
· x− xi+1

hi+1
, x ∈ [xi, xi+1],

0, x /∈ [xi−1, xi+1].

, φ2i+1(x) =

 4
x− xi

hi+1
· xi+1 − x

hi+1
, x ∈ [xi, xi+1],

0, x /∈ [xi, xi+1].

The stiffness matrix is again symmetric, with at most 5 non-zero elements on each line which
can be computed as follows (by performing a variable change x = xi−1 + th in the integral on
[xi−1, xi] and x = xi + th in the integral on [xi, xi+1]) :

K2i,2i =
∫ 1

0
(φ′2i)

2(x)dx =
∫ xi

xi−1

(φ′2i)
2(x)dx +

∫ xi+1

xi

(φ′2i)
2(x)dx,

=
1
hi

∫ 1

0
(4t− 1)2dt +

1
hi+1

∫ 1

0
(4t− 3)2dt =

7
3

(
1
hi

+
1

hi+1

)
,

K2i,2(i+1) = K2(i+1),2i =
∫ xi+1

xi

φ′2i(x)φ′2(i+1)(x)dx =
1

hi+1

∫ 1

0
(4t− 3)(4t− 1)dt =

1
3hi+1

,

K2i+1,2i+1 =
∫ xi+1

xi

(φ′2i+1)
2(x)dx =

1
hi+1

∫ 1

0
16(2t− 1)2dt =

16
3hi+1

,

K2i,2i+1 = K2i+1,2i =
∫ xi+1

xi

φ′2i(x)φ′2i+1(x)dx =
1

hi+1

∫ 1

0
(4t− 1)(4− 8t)dt = − 8

3hi+1
.
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Exercise 5.
Let h = max1≤i≤n(xi − xi−1). Then,

‖u− uI‖ ≤ Ch‖u′′‖, ∀u ∈ V,

where C is independent of h and u.
Hint : Use first the homogeneity argument, then show that :∫ 1

0
w(x)2dx ≤ c̃

∫ 1

0
w′(x)2dx (1)

by utilizing the fact that w(0) = 0. How small can you make c̃ if you use both w(0) = 0 and
w(1) = 0 ?

Answer. In the following we will use the homogeneity argument as in the lecture. According
to the definition of the two norms, it is sufficient to prove the estimate piecewise, i.e :∫ xj

xj−1

(u− uI)′(x)2dx ≤ c(xj − xj−1)2
∫ xj

xj−1

u′′(x)dx

with C =
√

c. This inequality can be re-written in terms of error by denoting : e = u−uI (note
that uI is piecewise linear and therefore its second derivative cancels) and then by performing
a variable change x = xj−1 + t(xj − xj−1) (an affine mapping from the interval [xj−1, xj ] to
[0, 1]) as follows : ∫ 1

0
ẽ(t)2dt ≤ c

∫ 1

0
ẽ′′(t)dt, ẽ(t) = e(xj−1 + t(xj − xj−1)).

Now, using some results of the lecture, it is enough to prove (1) for w = ẽ. Note that
w(0) = w(1) = 0 since the interpolation error will be zero at all nodes. Therefore :

w(x) =
∫ x

0
w′(t)dt

by using Schwarz’ inequality we get :∫ 1

0
w(x)2dx =

∫ 1

0

(∫ x

0
1 · w′(t)dt

)2

dx ≤
∫ 1

0

(∫ x

0
dt

)
·
(∫ x

0
w′(t)2dt

)
dx

≤
∫ 1

0
x ·

(∫ x

0
w′(t)2dt

)
dx ≤

∫ 1

0
x ·

(∫ 1

0
w′(t)2dt

)
dx

=
(∫ 1

0
w′(t)2dt

)
·
∫ 1

0
xdx =

1
2

∫ 1

0
w′(t)2dt,

the constant is thus c̃ = 1
2 .

If w(0) = w(1) = 0, we can consider this function as periodic with period T = 1 and write its
Fourier series as follows :

w(x) =
∑

k

ak sin(kπx) =
∑
k 6=0

ak sin(kπx) ⇒ w′(x) =
∑
k 6=0

kπak cos(kπx)

Using Parseval’s equality we get :∫ 1

0
w(x)2dx =

1
2

∑
k 6=0

a2
k,

∫ 1

0
w′(x)2dx =

1
2

∑
k 6=0

(kπ)2a2
k,

which proves the optimal inequality (the best c̃ = 1
π2 ) :∫ 1

0
w(x)2dx ≤ 1

π2

∫ 1

0
w′(x)2dx.
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Exercise 6.

We denote a(u, v) =
∫ 1

0
u′(x)v′(x)dx and V = {v ∈ L2(0, 1); a(v, v) < ∞, v(0) = 0}. Prove

the following coercivity results :

‖v‖2 + ‖v′‖2 ≤ Ca(v, v), ∀v ∈ V

Give a value for C.

Answer. Using the previous exercise it is easy to see that :

‖v‖ ≤ c‖v′‖, c =
1
2
⇒ ‖v‖2 + ‖v′‖2 ≤ (c2 + 1)‖v′‖2 = (c2 + 1)a(v, v) ⇒ C =

5
4

Furthermore, if the space V were given by V = {v ∈ L2(0, 1); a(v, v) < ∞, v(0) = v(1) = 0},

then C attains its optimal value C =
1 + π4

π4
.

Exercise 7.
Consider the difference method represented by :

− 2
hi + hi+1

(
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

)
= f(xi). (2)

Prove that ũS =
∑

i Uiφi satisfies the following :

a(ũS , v) = Q(fv), ∀v ∈ S, a(u, v) =
∫ 1

0
u′(x)v′(x)dx

where S consists of piecewise linears and Q denotes the quadrature approximation based on
the trapezoidal rule :

Q(w) =
n∑

i=0

hi + hi+1

2
w(xi).

We further define h0 = hn+1 = 0 for simplicity of notation.

Answer. The relation (2) can be re-written as :

KU = F, F =
(

hi + hi+1

2
f(xi)

)
1≤i≤n−1

, U = (Ui)1≤i≤n−1

If we write v as a linear combination of basis elements of S : v =
∑

i Viφi with Vi = v(xi) and
denote V = (v(xi))1≤i≤n−1 we see that by linearity of a w.r.t. al components we have :

a(ũS , v) = a(
∑

i

Uiφi,
∑

j

Vjφj) =
∑

i

∑
j

a(φj , φi)UiVj = (KU, V )

= (FU, V ) =
n∑

i=0

hi + hi+1

2
f(xi)v(xi) = Q(fv).

The difference method is thus equivalent to a piecewise polynomial approximation where the
right hand side is approximated with a trapezoidal rule.

Exercise 8.
Let Q be give by the previous exercise. Prove that :∣∣∣∣Q(w)−

∫ 1

0
w(x)dx

∣∣∣∣ ≤ Ch2
n∑

i=1

∫ xi

xi−1

|w′′(x)|dx (3)

Hint : Observe that the trapezoidal rule is exact for piecewise linears and then use exercise 5.
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Answer. Let wI ∈ S be the piecewise linear interpolant of w. We have that the trapezoidal
rule is exact for wI and since wI(xi) = w(xi) we have :∫ 1

0
wI(x)dx = Q(wI) = Q(w).

If we denote by e = w − wI the equation (3) becomes :∣∣∣∣∫ 1

0
e(x)dx

∣∣∣∣ ≤ Ch2
n∑

i=1

∫ xi

xi−1

|e′′(x)|dx

By using the homogeneity argument it is enough to prove that :∣∣∣∣∣
∫ xi

xi−1

e(x)dx

∣∣∣∣∣ ≤ C(xi − xi−1)2
∫ xi

xi−1

|e′′(x)|dx ⇔
∣∣∣∣∫ 1

0
ẽ(t)dt

∣∣∣∣ ≤ C

∫ 1

0
|ẽ′′(t)|dt

where ẽ(t) = e(xi−1 + t(xi − xi−1)). To simplify the notations we denote w = ẽ and we see
that w(0) = w(1) = 0 and by Rolle’s theorem there exist ξ such that w(ξ) = 0. We further
obtain that :∣∣∣∣∫ 1

0
w(x)dx

∣∣∣∣ =
∣∣∣∣∫ 1

0

∫ x

0
w′(t)dtdx

∣∣∣∣ =
∣∣∣∣∫ 1

0

∫ x

0

∫ t

ξ
w′′(τ)dτdtdx

∣∣∣∣ ≤ ∫ 1

0

∫ x

0

∣∣∣∣∫ t

ξ
w′′(τ)dτ

∣∣∣∣ dtdx

≤
∫ 1

0

∫ 1

0

∣∣∣∣∫ t

ξ
w′′(τ)dτ

∣∣∣∣ dtdx =
∫ 1

0

∣∣∣∣∫ t

ξ
w′′(τ)dτ

∣∣∣∣ dt

≤
∫ ξ

0

∫ ξ

t
|w′′(τ)|dτdt +

∫ 1

ξ

∫ t

ξ
|w′′(τ)|dτdt ≤

∫ ξ

0

∫ ξ

0
|w′′(τ)|dτdt +

∫ 1

ξ

∫ 1

ξ
|w′′(τ)|dτdt

≤ ξ

∫ ξ

0
|w′′(τ)|dτ + (1− ξ)

∫ 1

ξ
|w′′(τ)|dτ ≤ max{ξ, 1− ξ}

∫ 1

0
|w′′(x)|dx

The constant is then given by : C = max{ξ, 1− ξ}.

Exercise 9.
Let uS the solution of a(uS , v) = (f, v),∀v ∈ S, where S consists of piecewise linears and let
ũS be as in exercise 7. Prove that :

|a(uS − ũS , v)| ≤ Ch2(‖f ′‖+ ‖f ′′‖)(‖v‖+ ‖v′‖) (4)

Hint : Apply exercise 8 and Schwarz’ inequality.

Answer. By applying exercises 7 and 8 we get :

|a(ũS − uS , v)| = |Q(fv)− (f, v)| =
∣∣∣∣Q(fv)−

∫ 1

0
(fv)(x)

∣∣∣∣ ≤ Ch2

∫ 1

0
|(fv)′′(x)|dx

= Ch2

∫ 1

0
|f ′′(x)v(x) + 2f ′(x)v′(x)|dx

By applying Schwarz’s inequality we further obtain :∫ 1

0
|f ′′(x)v(x) + 2f ′(x)v′(x)|dx ≤

∫ 1

0
|f ′′(x) · v(x)|dx +

∫ 1

0
|f ′(x) · v′(x)|dx +

∫ 1

0
|1 · f ′(x)v′(x)|dx

≤ ‖f ′′‖‖v‖+ ‖f ′‖‖v′‖+ ‖f ′v′‖ ≤ ‖f ′′‖‖v‖+ ‖f ′‖‖v′‖+ C‖(f ′v′)′‖

= max{1, C}(‖f ′′‖‖v‖+ ‖f ′‖‖v′‖+ ‖f ′′v′‖)

≤ max{1, C}(‖f ′′‖‖v‖+ ‖f ′‖‖v′‖+ ‖f ′′‖‖v′‖+ ‖f ′‖‖v‖)

≤ C(‖f ′‖+ ‖f ′′‖)(‖v‖+ ‖v′‖)
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Exercise 10.
Let uS and ũS be like in the exercise 9. Prove that :

‖uS − ũS‖E ≤ Ch2(‖f ′‖+ ‖f ′′‖)

Hint : Apply exercise 9, pick v = uS − ũS and apply exercise 6.

Answer. We plug v = uS − ũS into (4) and we get :

‖uS − ũS‖2
E = a(uS − ũS , uS − ũS) ≤ Ch2(‖f ′‖+ ‖f ′′‖)(‖uS − ũS‖+ ‖u′S − ũ′S‖)

The coercivity of a (the application of the exercise 6) gives :

‖uS − ũS‖ ≤ C‖uS − ũS‖E and ‖u′S − ũ′S‖ ≤ C‖uS − ũS‖E

and the conclusion follows directly.
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