
Hydrodynamic Limit

for the Vlasov-Navier-Stokes Equations.

Part II: Fine Particles Regime

coro Thierry Goudon1, Pierre-Emmanuel Jabin2 and Alexis Vasseur3

1 Labo. Paul Painlevé, UMR 8524
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2 Département de Mathématiques et Applications, ENS
45, rue d’Ulm,
F-75232 Paris

jabin@dma.ens.fr

3 Labo. J.A. Dieudonné, UMR 6621
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Abstract

The paper is devoted to the analysis of a hydrodynamic limit for
the Vlasov-Navier-Stokes equations.This system is intended to model
the evolution of particles interacting with a fluid. The coupling arises
from the force terms. The limit problem is the Navier-Stokes sys-
tem with non constant density. The density which is involved in this
system is the sum of the (constant) density of the fluid and of the
macroscopic density of the particles. The proof relies on a relative
entropy method.
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1 Introduction

In this paper, we investigate models of particles dispersed in an incompress-
ible viscous fluid. The particles are described through a density function
f(t, x, v) ≥ 0. The evolution of f is governed by the following Vlasov-type
equation

∂tf + divx(vf) + divv(Ff) = r∆vf. (1.1)

The particles evolve in a fluid which is described by its velocity field u(t, x) ∈
RN . The cloud of particules is assumed highly dilute so that we can suppose
that the density of the gas remains constant. Accordingly, u verifies the
following incompressible Navier-Stokes equation{

∂tu + Divx(u⊗ u) +∇xp−∆xu = F,
divx(u) = 0.

(1.2)

Here and below, for u = (u1, ...uN) ∈ RN , we use the notation u⊗u to denote
the matrix with components uiuj whereas, A being a matrix valued function,

Divx(A) =
∑N

j=1 ∂xj
Aij ∈ RN . In view of the incompressibility condition, we

have of course (at least if u is regular) Divx(u⊗ u) = (u · ∇x)u.

Here, equation (1.1) and (1.2) are written in dimensionless form. We refer
to the companion paper [15] for a dimension analysis. In (1.1), F (t, x, v)
is associated to the forces acting on the particle while the right hand side
models Brownian motion. In (1.2) the function F(t, x) is associated to the
density of forces exerted on the fluid. Equations (1.1) and (1.2) are coupled
through these force terms. The forces acting on the particles are supposed to
reduce to the friction force exerted by the fluid, assumed to be proportional
to the relative velocity

F = F0(u− v), F0 > 0.

The right hand side for the fluid equation is therefore given by the sum

F = −
∫

RN

Ff dv = F0

∫
RN

f(v − u) dv. (1.3)

This paper is devoted to the study of the asymptotic behavior of this coupled
system when both the force terms and the brownian effects are very strong,
namely:

r = F0 = 1/ε � 1.
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Coming back to the identification of dimensionless physical parameters in
[15] (see also [4]), the scaling corresponds to suppose that:
- the size of the particles is small compared to the observation length scale
(L � a with the notation of [15]),
- the densities of the fluid phase and of the particles have the same order
(ρp ≈ ρg),
- a certain relaxation time, which depends on the physical characteristics of
the fluid and the particles, is small compared to the observation time scale
(T � τ).
We refer for dimensionless form of the equations to [15] where another or-
dering is dealt with. More details on the model can be found in Caflisch-
Papanicolaou [4], and Williams [27] for the physical framework of combustion
theory. Slightly different models describing fluid-particles interactions are
presented in Jabin-Perthame [21], Herrero-Lucquin-Perthame [18], Russo-
Smerecka [25], Clouet-Domelevo [5], Gavrilyuck-Teshukhov [10]. Readers
interested in mathematical studies of the system (1.1, 1.2) should consult
Hamdache [16], who also introduced singular perturbation problems in [17].
Asymptotic results concerning some simplified situations can be found in
Berthonnaud [1], Domelevo-Roquejoffre [8], Domelevo-Vignal [9], Goudon
[14], Jabin [19, 20]...
coro
Hence, we aim at describing the behavior of (f ε, uε) solution of the following
system

∂tf
ε + v · ∇xf

ε = −1

ε
divv

(
(uε − v)f ε −∇vf

ε
)
,

∂tu
ε + Divx(u

ε ⊗ uε) +∇xp
ε −∆xu

ε =
1

ε

(∫
RN

vf ε dv − uε

∫
RN

f ε dv

)
,

divx(u
ε) = 0,

f ε
|t=0 = f ε

0 , uε
|t=0 = uε

0

(1.4)
as the small parameter ε goes to 0. The paper is organized as follows. First,
we present heuristically the limit problem which can be expected. It consists
of the Navier Stokes system with non constant density. The density which
is involved in this system is the sum of the (constant) density of the fluid
and the macroscopic density of the particles. To justify the asymptotics
we use the relative entropy method (see [28], [11]). Section 3 introduces
a relative entropy which is intended to compare (f ε, uε) to the solution of
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the limit problem. Then, we will state precisely the result of convergence,
whose proof can be found in Section 4. We work on weak solutions f ε ∈
C0([0, T ]; L1(RN ×RN)), uε ∈ C0([0, T ]; L2(RN)) ∩ L2(0, T ; H1(R2)) of (1.4)
verifying certain energy estimate (see section 4). We refer on existence of
such solutions to [16].

2 Formal Derivation of the Limit Problem

It is worth rewriting the right hand side in the kinetic equation in (1.4) as

−1

ε
divv

(
(uε − v)f ε −∇vf

ε
)

=
1

ε
divv

(
M ε ∇v

( f ε

M ε

))
where M ε is the (normalized) Maxwellian with velocity uε:

M ε(t, x, v) = (2π)−N/2 exp(−|v − uε|2/2).

Let us introduce the quantity

dε = (v − uε)
√

f ε + 2∇v

√
f ε = 2

√
M ε∇v

(√
f ε

M ε

)
. (2.1)

The cornerstone of the analysis relies on the fact that dε is O(
√

ε) in L2:∫ T

0

∫
RN

∫
RN

|dε|2 dv dx dt ≤ Cε. (2.2)

It will appear as the dissipation of some free energy associated to the system
(1.4). Formally, this estimate illustrates the trend of the kinetic equation
to relax to the Maxwellian with the velocity of the fluid. If we assume that
uε → u, then, we can expect that

f ε → Mρ,u(t, x, v) =
ρ(t, x)

(2π)N/2
exp(−|v − u(t, x)|2/2),

with ρ the limit (which is supposed to exist) of
∫

RN f ε dv. Now, we aim at
describing the limit equations satisfied by (ρ, u).

Let us introduce the macroscopic density, velocity and kinetic pressure asso-
ciated to the particles

ρε(t, x) =

∫
RN

f ε dv, Jε(t, x) =

∫
RN

vf ε dv, Pε(t, x) =

∫
RN

v ⊗ vf ε dv.
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Integration of the kinetic equation with respect to v yields the following
moment equations {

∂tρ
ε + divx(J

ε) = 0,

∂tJ
ε + Divx(Pε) =

1

ε

(
ρεuε − Jε

)
.

(2.3)

By using the fluid equation, the current equation can be rewritten as

∂t(u
ε + Jε) + Divx(u

ε ⊗ uε + Pε) +∇xp
ε −∆uε = 0.

Then, we remark that the kinetic pressure can be split as follows

Pε =

∫
RN

dε⊗ v
√

f ε dv +

∫
RN

uε⊗ v f ε dv− 2

∫
RN

∇v

√
f ε⊗ v

√
f ε dv. (2.4)

After integration with respect to x, by combining the Cauchy-Schwarz in-
equality to (2.2), we see that the first term in (2.4) is O(

√
ε) provided the

kinetic energy
∫∫

v2f ε dv dx can be bounded uniformly with respect to ε.
Besides, the last integral in (2.4) is nothing but ρεI and the second one is
uε ⊗ Jε. Hence, we have

∂t(u
ε + Jε) + Divx(u

ε ⊗ (uε + Jε)) +∇x(p
ε + ρε)−∆uε = O(

√
ε). (2.5)

On the other hand, we remark that

Jε − ρεuε =

∫
RN

f ε(v − uε) dv =

∫
RN

√
f ε dε dv.

Hence, (2.2) implies that Jε− ρεuε tends to 0, as ε → 0. Consequently, if we
assume that ρε and uε admit limits ρ, u, and the product also passes to the
limit

ρεuε → ρu

then, we deduce that Jε → ρu too. Passing also to the limit formally in
the product uε ⊗ (uε + Jε) we are finally led to the following incompressible
Navier-Stokes system, with ρ̃ = 1 + ρ,

∂tρ̃ + divx(ρ̃u) = 0,
∂t(ρ̃u) + Divx(ρ̃u⊗ u)−∆u +∇xP = 0,
divx(u) = 0.

(2.6)

5



We shall prove, under an assumption of preparation of the data, that:

‖ρε − (ρ̃− 1)‖L∞(0,T ;L1(RN )) −−→
ε→0

0,

‖uε − u‖L∞(0,T ;L2(RN )) −−→
ε→0

0,

where (ρ̃, u) is solution to (2.6). The precise statement can be found in the
following section.

3 Entropy Method

Here, it seems far from obvious to justify by a compactness argument the
convergence of (ρε, uε) to (ρ̃−1, u), with (ρ̃, u) solution of (2.6): the difficulty
relies on the non linear passage to the limit in the products ρεuε and, much
more difficult, ρεuε ⊗ uε. The estimates we are able to derive for the system
(1.4) are not sufficient to obtain the needed strong convergences. Instead
we shall use a relative entropy method. Starting from a smooth initial data
(ρ̃0, u0), the limit problem (2.6) admits a smooth solution (ρ̃, u) at least on a
small interval of time [0, T ]. We refer on this aspect to the up-to-date review
by Danchin [7]. We set ρ = ρ̃ − 1 > 0 on this time interval. We aim at
comparing in some sense the sequence (ρε, uε) to (ρ̃ − 1, u). This method
has been introduced by Yau [28]. It is reminiscent to weak-strong uniqueness
principle (see Dafermos [2] and Lions [24]). It has been successfully used to
derive the incompressible Euler equation from the Vlasov-Poisson system by
Brenier [3], to investigate hydrodynamic limits of the Boltzmann equation
by Golse-Levermore-Saint-Raymond [12], Saint-Raymond [26] or to study gy-
rokinetic limits by Brenier [3] and Golse-Saint-Raymond [13].

Let h : R → R be a strictly convex function. The quantity

H(x|y) = h(x)− h(y)− h′(y)(x− y)

can be used as a way to evaluate how far x is from y. Indeed, by convexity,
we have

H(x|y) =

∫ x

y

(
h′(z)− h′(y)

)
dz =

∫ x

y

∫ z

y

h′′(r) dr dz ≥ 0

and it vanishes iff x = y. Let Mρ,u stand for the Maxwellian with density
ρ = ρ̃− 1 and velocity u

Mρ,u(t, x, v) = (2π)−N/2 ρ(t, x) exp(−|v − u(t, x)|2/2).
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Let us introduce the relative entropy

H(f ε, uε) =

∫
RN

∫
RN

H(f ε|Mρ,u) dv dx +
1

2

∫
RN

|uε − u|2 dx.

The former integral evaluates how far f ε is from the Maxwellian Mρ,u, while
the latter is nothing but the (squared) L2 norm between uε and u. We have
in mind to obtain a relation looking like

H(f ε, uε)(t) ≤ H(f ε, uε)(0) + K

∫ t

0

H(f ε, uε)(s) ds + rε(t), (3.1)

with a constant K which does not depend on ε. Then, the conclusion follows
by means of an application of the Gronwall lemma provided:
- the initial data is well prepared in the sense that H(f ε, uε)(0) → 0 as ε
goes to 0,
- the remainder rε tends to 0 as ε → 0. This will appear as a consequence of
the dissipation estimate (2.2).

Now, let us precise the definition of the relative entropy. Obviously, h(s) = s2

can be used to define the relative entropy. Here, it is well adapted to use
instead s = s ln(s). Accordingly, we have

H(f ε|Mρ,u) = f ε ln
( f ε

Mρ,u

)
+ Mρ,u − f ε = Mρ,u h

( f ε

Mρ,u

)
,

with h(s) = s ln(s)− s + 1 ≥ 0. As a preliminary, let us discuss some prop-
erties of the relative entropy which will be useful for our purposes. First,
we remark that the relative entropy between macroscopic quantities is dom-
inated by the relative entropy of microscopic quantities. Second, we are
interested in estimates of |x− y| in terms of H(x|y).

Lemma 1 For i ∈ {1, 2}, let fi : RN → R+. We set ρi =
∫

RN fi dv. Then,
we have

H(ρ1|ρ2) ≤
∫

RN

H(f1|f2) dv.

Proof. We write

H(ρ1|ρ2) = ρ2 h(ρ1/ρ2) = ρ2 h

(∫
RN

f1

f2

f2

ρ2

dv

)
.
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Since f2

ρ2
dv is a probability measure, the Jensen inequality applies and we

get

H(ρ1|ρ2) ≤ ρ2

∫
RN

h
(f1

f2

) f2

ρ2

dv =

∫
RN

H(f1|f2) dv.

Lemma 2 Let x, y ≥ 0. There exists a constant C such that{
If |x− y| ≤ y, then |x− y|2 ≤ C y H(x|y),
If |x− y| ≥ y, then |x− y| ≤ C H(x|y).

Proof. We start by rewriting H(x|y) = yh(x/y) so that these estimates can
be deduced from elementary properties of the function

h(z) =

∫ z

1

ln(s) ds.

First, consider z ≥ 2 so that (z + 1)/2 ≥ 3/2 ≥ 1 and

h(z) ≥
∫ z

(z+1)/2

ln(s) ds ≥ ln(3/2)
z − 1

2
.

Next, for 0 ≤ z ≤ 2, we get

h(z) =

∫ z

1

∫ s

1

1

r
dr ds ≥ 1

2

∫ z

1

∫ s

1

dr ds =
|z − 1|2

4
.

We can now state precisely the main result of the paper.

Theorem 1 Let (f ε
0 , uε

0) be initial data for (1.4) such that f ε
0 ≥ 0 and

sup
ε>0

(∫
RN

∫
RN

f ε
0 (1 + x2 + v2 + | ln(f ε

0 )| dv dx +

∫
RN

|uε
0|2 dx

)
≤ C < ∞.

(3.2)
Let (ρ̃0, u0) be C∞(RN) initial data for the limit problem (2.6) such that
ρ̃0 > 1 and ∫

RN

(ρ̃0 − 1) dx =

∫
RN

∫
RN

f ε
0 dv dx = C0.
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Let (ρ̃, u) be the corresponding smooth solution on [0, T ]. Finally, we suppose
that

H(f ε
0 , uε

0) =

∫
RN

∫
RN

H(f ε
0 |Meρ0−1,u0) dv dx +

1

2

∫
RN

|uε
0 − u0|2 dx −−→

ε→0
0.

Then, we have
sup

0≤t≤T
H(f ε, uε) −−→

ε→0
0.

Remark 1 In view of the Csiszar-Kullback-Pinsker inequality [6], [22], the
integral

∫
RN

∫
RN H(f ε|Mρ,u) dv dx dominates the square of the L1 norm of

f ε − Mρ,u. Hence, we have the convergences f ε → Mρ,u and uε → u in
L∞(0, T ; L1(RN×RN)) and L∞(0, T ; L2(RN)) norms respectively. Combining
Lemma 1 and the Csiszar-Kullback-Pinsker inequality with the convergence
in Theorem 1, we have also ρε → ρ = ρ̃− 1 strongly in L∞(0, T ; L1(RN)).

Remark 2 We shall see that the remainder rε in (3.1) is O(
√

ε), which
gives the rate of convergence, up to the initial data term.

4 Proof of Theorem 1

We divide the proof into two parts. First, we discuss the a priori estimates
satisfied by the solutions of (1.4). Second, we establish relation (3.1) for the
relative entropy, the remainder rε being O(

√
ε).

4.1 A priori Estimates

We start by establishing preliminaries estimates on the microscopic quantity
f ε and the velocity field uε. The crucial estimate (2.2) is also contained in
this statement. Throughout the paper, we use the convention that C denotes
a constant depending on (3.2), ρ̃0, u0 and T but not on ε, even if the value
of the constant may vary from a line to another.

Proposition 1 Let (f ε, uε) be the solution of (1.4) associated to initial data
verifying (3.2). Let 0 < T < ∞. Then, the following assertions hold
i) f ε(1 + x2 + v2 + | ln(f ε)|) is bounded in L∞(0, T ; L1(RN × RN)),
ii) uε is bounded in L∞(0, T ; L2(RN)) and in L2(0, T ; H1(RN)),
iii) The quantity 1√

ε

(
(v−uε)

√
f ε+2∇v

√
f ε

)
= 1√

ε
dε is bounded in L2((0, T )×

RN × RN)).
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Proof. Let us derive formally these estimates; the rigorous proof can be
obtained with an appropriate approximate argument, or in the construction
of the solution, see [16]. Of, course, the total mass is conserved∫

RN

∫
RN

f ε dv dx =

∫
RN

∫
RN

f ε
0 dv dx,

which gives immediately the L1 bound on f ε. (Note that it is assumed to be
equal to

∫
RN (ρ̃0 − 1) dx.)

Next, we consider the evolution of the following free energy associated to the
system (1.4):

E(f ε, uε) =

∫
RN

∫
RN

f ε
(v2

2
+ ln(f ε)

)
dv dx +

∫
RN

|uε|2

2
dx.

It is the sum of the entropy of the particles with the kinetic energy of the
particles and the fluid. We shall show that this quantity is dissipated, due
to nice combinations between the fluid and the kinetic equation in (1.4); the
dissipation rate is precisely given by the L2 norm of dε/

√
ε plus those of

∇xu
ε. We have

d

dt
E(f ε, uε) +

∫
RN

|∇xu
ε|2 dx

=
1

ε

∫
RN

∫
RN

(
(uε − v)f ε −∇vf

ε
)
·
(
v +

∇vf
ε

f ε

)
dv dx

+
1

ε

∫
RN

∫
RN

(v − uε)f ε · uε dv dx

and we realize that the right hand side is nothing but

−1

ε

∫
RN

∫
RN

∣∣dε
∣∣2 dv dx.

Therefore, integration with respect to time gives the following fundamental
relation

E(f ε, uε)(t) +

∫ T

0

∫
RN

|∇xu
ε|2 dx ds +

1

ε

∫ T

0

∫
RN

∫
RN

∣∣dε
∣∣2 dv dx ds = E(f ε

0 , uε
0).

(4.1)
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Besides, we have

d

dt

∫
RN

∫
RN

x2 f ε dv dx = 2

∫
RN

∫
RN

x · v f ε dv dx

≤
∫

RN

∫
RN

x2 f ε dv dx +

∫
RN

∫
RN

v2 f ε dv dx.

Therefore, Gronwall’s lemma yields∫
RN

∫
RN

x2 f ε dv dx ≤ eT
( ∫

RN

∫
RN

x2 f ε
0 dv dx +

∫ T

0

∫
RN

∫
RN

v2 f ε dv dx ds
)
.

(4.2)
Then, we use classical tricks of kinetic theory (see e.g. [23]). We write
s| ln(s)| = s ln(s)− 2s ln(s)χ0≤s≤1. Let ω ≥ 0. We split

−s ln(s)χ0≤s≤1 = −s ln(s)χe−ω≤s≤1 − s ln(s)χe−ω≥s

≤ sω + C
√

sχe−ω≥s ≤ sω + Ce−ω/2.

We use these relations with s = f ε, ω = (x2 + v2)/8. We are led to∫
RN

∫
RN

f ε| ln(f ε)| dv dx ≤
∫

RN

∫
RN

f ε ln(f ε) dv dx

+
1

4

∫
RN

∫
RN

(x2 + v2) f ε dv dx + 2C

∫
RN

∫
RN

e−(x2+v2)/16 dv dx.

Then, combining this to (4.1) and (4.2) yields∫
RN

∫
RN

f ε(1 + | ln(f ε)|) dv dx +
1

4

∫
RN

∫
RN

(x2 + v2) f ε dv dx

+
1

2

∫
RN

∣∣uε
∣∣2 dx +

1

ε

∫ T

0

∫
RN

∫
RN

∣∣dε
∣∣2 dv dx ds +

∫ T

0

∫
RN

∣∣∇xu
ε
∣∣2 dx

≤ E(f ε, uε)(t) +
1

2

∫
RN

∫
RN

x2f ε dv dx

+C +
1

ε

∫ T

0

∫
RN

∫
RN

∣∣dε
∣∣2 dv dx ds +

∫ T

0

∫
RN

∣∣∇xu
ε
∣∣2 dx

≤ E(f ε, uε)(0) + C + C

∫ T

0

∫
RN

∫
RN

v2 f ε dv dx ds,

where C depends on (3.2) and T . We conclude by using the Gronwall lemma.

Next, we wish to discuss some estimates on the macroscopic quantities asso-
ciated to f ε. To this end, it is convenient to establish the following claim.
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Corollary 1 The quantity |uε − v|2f ε is bounded in L1((0, T )× RN × RN).

Proof. We rewrite∫
RN

|v − uε|2f ε dv =

∫
RN

(∣∣dε
∣∣2 − 4

∣∣∇v

√
f ε

∣∣2 − 4∇v

√
f ε · (v − uε)

√
f ε

)
dv

≤
∫

RN

∣∣dε
∣∣2 dv + 2N

∫
RN

f ε dv,

where we used an integration by parts for the last term. Hence the result
follows from Proposition 1.

Corollary 2 Let the assumptions of Proposition 1 be fulfilled. Then, the
following assertions hold
i) ρε is bounded in L∞(0, T ; L1(RN)),

ii) ρε
∣∣uε

∣∣2 (and ρεuε) is bounded in L1((0, T )× RN),
iii) Jε − ρεuε, Pε − ρε(I + uε ⊗ uε) and (Jε − ρεuε) ⊗ uε are O(

√
ε) in

L1((0, T )× RN) norm.

Proof. The bound on ρε is an immediate consequence of Proposition 1-i).
Actually, it can be shown, see e.g. [23], that ρε(1 + x2 + | ln(ρε)|) is bounded
in L∞(0, T ; L1(RN)). This is well known to imply weak compactness in L1,
but we shall not use such kind of information.

Next, we remark that

ρε
∣∣uε

∣∣2 =

∫
RN

f ε
∣∣uε

∣∣2 dv ≤ 2

∫
RN

f ε
(
|v − uε|2 + v2

)
dv

and ii) follows from Proposition 1 and Corollary 1.

As mentioned in Section 2, we have

Jε − ρεuε =

∫
RN

√
f ε dε dv,
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so that we conclude by applying the Cauchy-Schwarz inequality. Similarly,
we rewrite

Pε − ρε(I + uε ⊗ uε) =

∫
RN

(v ⊗ v − I− uε ⊗ uε)f ε dv

=

∫
RN

(
dε ⊗ v

√
f ε + uε

√
f ε ⊗ dε − If ε

−2∇v

√
f ε ⊗ v

√
f ε − 2uε

√
f ε ⊗∇v

√
f ε

)
dv

=

∫
RN

(dε ⊗ v
√

f ε + uε
√

f ε ⊗ dε) dv.

After integration with respect to t, x it can be estimated by(∫ T

0

∫
RN

∫
RN

∣∣dε
∣∣2 dv dx dt

)1/2 (∫ T

0

∫
RN

∫
RN

(
v2 +

∣∣uε
∣∣2)f ε dv dx dt

)1/2

.

We conclude by combining Proposition 1 and and ii).

Finally, we treat similarly the expression

(Jε − ρεuε)⊗ uε =

∫
RN

(v − uε)⊗ uεf ε =

∫
RN

dε ⊗ uε
√

f ε dv.

This statement makes rigorous the argument presented in Section 2. Coming
back to the momentum equation (2.5), we are led to

∂t(u
ε + ρεuε) + Divx

(
uε ⊗ (uε + ρεuε)

)
+∇x(p

ε + ρε)−∆uε −−→
ε→0

0

at least in the distributions sense. Furthermore, we know that each term
involved in this relation admits a limit (at least for a subsequence) but the
obtained estimates are not enough to identify the limits by passing to the
limit in the non linear terms.

4.2 Evolution of the Relative Entropy

We recall that (ρ̃, u) is the solution of (2.6), smooth on the time interval
[0, T ], ρ̃ > 1, which corresponds to the initial data (ρ̃0, u0), see e.g. [7]. We
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set ρ = ρ̃ − 1 and we aim at comparing uε to u and f ε to the Maxwellian
Mρ,u in the sense of the relative entropy

H(f ε, uε) =

∫
RN

∫
RN

(
f ε ln

( fε

Mρ,u

)
− f ε + Mρ,u

)
dv dx +

1

2

∫
RN

∣∣uε − u
∣∣2 dx.

Hence, the objective in this section is to justify the following claim, which
immediately leads to the conclusion of Theorem 1.

Proposition 2 There exists a constant C, depending on (3.2), ρ̃0, u0 and
T such that

H(f ε, uε)(t) ≤ C
(
H(f ε, uε)(0) +

√
ε
)
.

Indeed, the time evolution of the relative entropy can be evaluated as follows.

Lemma 3 The relative entropy satisfies

H(f ε, uε)(t) +
1

ε

∫ t

0

∫
RN

∫
RN

|dε|2 dv dx ds +

∫ t

0

∫
RN

|∇x(u
ε − u)|2 dx ds

≤ H(f ε, uε)(0) +

∫ t

0

∣∣Aε + Bε + Cε + Dε
∣∣ ds

(4.3)
with 

Aε = −
∫

RN

∫
RN

f ε(v − u)⊗ (v − u) : ∇xu dv dx

Bε = −
∫

RN

(uε − u)⊗ (uε − u) : ∇xu dx

Cε =

∫
RN

∫
RN

f ε(v − uε) · (F −∇x ln(ρ)) dv dx

Dε =

∫
RN

∫
RN

(ρε − ρ)(uε − u) · (F −∇x ln(ρ)) dx

where we used the notation F (t, x) = (∇xP −∆u)/(1 + ρ) = (∇xP −∆u)/ρ̃.

Therefore, we obtain Proposition 2 by a simple application of the Gronwall
lemma once we are able to establish that∫ t

0

|Aε| ds,

∫ t

0

|Bε| ds,

∫ t

0

|Cε| ds,

∫ t

0

|Dε| ds ≤ C
(√

ε+

∫ t

0

H(f ε, uε) ds
)

(4.4)
holds.
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Remark 3 Coming back to Lemma 3 and keeping in mind the term∫ t

0

∫
RN

|∇(uε − u)|2 dx ds

in (4.3), we also proved that

uε −−→
ε→0

u strongly in L2(0, T ; H1(RN)).

Proof of Lemma 3. We compute the time derivative of H(f ε, uε). By using
the mass conservation∫

RN

∫
RN

f ε dv dx =

∫
RN

∫
RN

f ε
0 dv dx =

∫
RN

ρ dx =

∫
RN

∫
RN

Mρ,u dv dx

we remark that

d

dt

(∫
RN

∫
RN

H(f ε|Mρ,u) dv dx

)
=

d

dt

(∫
RN

∫
RN

f ε
(

ln(f ε) +
|v − u|2

2

)
dv dx−

∫
RN

ρε ln(ρ) dx

)
.

Then, by using the equations satisfied by f ε and u and integration by parts,
we are led to

d

dt

(∫
RN

∫
RN

f ε
(

ln(f ε) +
|v − u|2

2

)
dv dx

)
=

1

ε

∫
RN

∫
RN

(
(uε − v)f ε −∇vf

ε
)
·
(∇vf

ε

f ε
+ (v − u)

)
dv dx

+

∫
RN

∫
RN

f ε(v − u) · F dv dx−
∫

RN

(v − u)⊗ (v − u)f ε : ∇xu dv dx.

(4.5)
The first term in the right hand side recasts as

−1

ε

∫
RN

∫
RN

∣∣dε
∣∣2 dv dx +

1

ε

∫
RN

∫
RN

(
(uε − v)f ε −∇vf

ε
)
· (uε − u) dv dx

= −1

ε

∫
RN

∫
RN

∣∣dε
∣∣2 dv dx +

1

ε

∫
RN

∫
RN

(uε − v) · (uε − u)f ε dv dx.

(4.6)
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Next, we have

d

dt

(∫
RN

ρε ln(ρ) dx

)
=

∫
RN

(Jε − ρεu) · ∇x ln(ρ) dx

=

∫
RN

∫
RN

f ε(v − uε) · ∇x ln(ρ) dv dx +

∫
RN

ρε(uε − u) · ∇x ln(ρ) dx

=

∫
RN

∫
RN

f ε(v − uε) · ∇x ln(ρ) dv dx +

∫
RN

(ρε − ρ)(uε − u) · ∇x ln(ρ) dx,

(4.7)
where the incompressibility condition divxu = 0 = divxu

ε has been used to
obtain the last equality.

Finally, for the fluid part, we get

d

dt

(
1

2

∫
RN

|uε − u|2 dx

)
=

1

ε

∫
RN

∫
RN

f ε(v − uε) · (uε − u) dv dx

+

∫
RN

(uε − u) · F dx +

∫
RN

(uε − u) · (u · ∇xu− uε · ∇xu
ε) dx

+

∫
RN

(uε − u) ·∆uε dx.

(4.8)

The first term in (4.8) will compensate the last one in (4.6). In the last term
of (4.8), we expand ∆uε = ∆u + ∆(uε − u). Then, by incompressibility we
have ∫

RN

(uε − u) ·∆u dx = −
∫

RN

(uε − u) · F (1 + ρ) dx.

Therefore, we can rewrite

d

dt

(
1

2

∫
RN

|uε − u|2 dx

)
=

1

ε

∫
RN

∫
RN

f ε(v − uε) · (uε − u) dv dx−
∫

RN

|∇x(u
ε − u)|2 dx.

−
∫

RN

(uε − u) · Fρ dx−
∫

RN

(uε − u)⊗ (uε − u) : ∇xu dx.

(4.9)

Putting all the pieces (4.5), (4.6), (4.7), (4.9) together yields the announced
equality.

We are thus left with the task of evaluating Aε, Bε, Cε, Dε. The easiest part
is the following.
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Lemma 4 We have
|Bε| ≤ ‖∇xu‖∞

∫
RN

|uε − u|2 dx ≤ CH(f ε, uε)∫ t

0

|Cε| ds ≤ C
√

ε.

Proof. The estimate on Bε is immediate. Let us set G(t, x) = F −∇x ln(ρ).
We evaluate Cε by remarking that

Cε =

∫
RN

∫
RN

dε ·G
√

f ε dv dx

and we conclude by using the Cauchy-Schawarz inequality and Proposition 1.

Estimations of the other terms in Lemma 3 require intermediate manipula-
tions.

Lemma 5 We have∫ t

0

|Aε| ds ≤ C

(√
ε +

∫ t

0

∫
RN

ρε|u− uε|2 dx ds

)
.

Proof. We split Aε into four pieces by expanding

(v − u)⊗ (v − u) = (v − uε)⊗ (v − uε) + (v − uε)⊗ (uε − u)
+(uε − u)⊗ (v − uε) + (uε − u)⊗ (uε − u).

Let us denote by Iε
1 , ..., I

ε
4 the corresponding integrals. We evaluate readily

|Iε
4 | ≤ ‖∇xu‖∞

∫ t

0

∫
RN

ρε|u− uε|2 dx ds.

Next, we show that the other terms are of order
√

ε. To this end, we use the
entropy dissipation dε. Indeed, for the crossed terms, we have

Iε
2 =

∫ t

0

∫
RN

∫
RN

dε ⊗ (uε − u)
√

f ε : ∇xu dv dx ds.

Hence, we deduce that

|Iε
2 | ≤ ‖∇xu‖∞

√
ε

(∫ T

0

∫
RN

∫
RN

(|u|2 + |uε|2)ρε dv dx ds

)1/2

≤ C
√

ε
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where we used the estimates in Proposition 1 and Corollary 2-i), ii). Integrals
Iε
3 , as well as Iε

1 (by using the incompressiblity of u), can be treated similarly.

We shall combine Lemma 5 with the following claim.

Lemma 6 The following estimate∫ t

0

∫
RN

ρε|uε − u|2 dx ds ≤ C
√

ε +

∫ t

0

∫
RN

∫
RN

H(f ε|Meρ,u) dv dx ds

holds.

Proof. The proof relies on the following expansion∫ T

0

∫
RN

ρε|uε − u|2 dx ds

=

∫ T

0

∫
RN

∫
RN

(
|uε − u|2 − |v − u|2 + |v − uε|2

)
f ε dv dx ds

+

∫ T

0

∫
RN

∫
RN

(
ln(f ε) + |v − u|2

)
f ε dv dx ds

−
∫ T

0

∫
RN

∫
RN

(
ln(f ε) + |v − uε|2

)
f ε dv dx ds

= −2

∫ T

0

∫
RN

∫
RN

(uε − u) · (v − uε)f ε dv dx ds

+

∫ T

0

∫
RN

∫
RN

(
H(f ε|Mρ,u)−H(f ε|Mρ,uε)

)
dv dx ds.

The first integral can be shown to be of order
√

ε by using the entropy
dissipation as in the proof of Lemma 5. Remarking that H(f ε|Mρ,uε) ≥ 0
ends the proof.

Eventually, we end the proof of (4.4) with the following statement.

Lemma 7 We have∫ t

0

|Dε| ds ≤ C

(√
ε +

∫ t

0

H(f ε, uε) ds

)
.
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Proof. The proof uses the fundamental properties of the relative entropy
discussed in Lemma 1 and 2. Let us split the integral as follows∫ t

0

|Dε| ds ≤ ‖G‖∞
∫ t

0

∫
RN

|ρε − ρ| |uε − u| dx ds

≤ ‖G‖∞
(∫

|ρ−ρε|≤ρ

. . . dx ds +

∫
|ρ−ρε|≥ρ

. . . dx ds

)
.

Cauchy-Schwarz and Young inequalities yield∫
|ρ−ρε|≤ρ

. . . dx ds ≤ 1

2

(∫ t

0

∫
|ρ−ρε|≤ρ

|ρε − ρ|2 dx ds +

∫ t

0

∫
RN

|uε − u|2 dx ds

)
≤ C

∫ t

0

∫
RN

ρ H(ρε|ρ) dx ds +

∫ t

0

∫
RN

1

2
|uε − u|2 dx ds,

by using Lemma 2. On the other hand, we get∫
|ρ−ρε|≥ρ

. . . dx ds ≤
∫
|ρ−ρε|≥ρ, |uε−u|≤1

. . . dx ds +

∫
|uε−u|≥1

. . . dx ds

≤
∫
|ρ−ρε|≥ρ

|ρε − ρ| dx ds +

∫ t

0

∫
RN

(ρε + ρ)|uε − u|2 dx ds

≤ C

∫ t

0

∫
RN

H(ρε|ρ) dx ds + ‖ρ‖∞
∫ t

0

∫
RN

|uε − u|2 dx ds

+

∫ t

0

∫
RN

ρε|uε − u|2 dx ds.

We note that the last integral in the right hand side can be evaluated by
using Lemma 6. Then, an application of Lemma 1 ends the proof.

Now, we are in position of concluding. Combining Lemma 4, 5, 6 and 7
proves (4.4). Coming back to Lemma 3, we are led to

H(f ε, uε)(t) ≤ H(f ε, uε)(0) + C

∫ t

0

H(f ε, uε)(s) ds + C
√

ε.

Applying the Gronwall lemma finishes the proof of Proposition 2.
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