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Abstract. A class of variational problems arising in thin micromagnetic film or in the gradient
theory of phase transitions exhibit an hyperbolic behavior, a surprising property being given
their natural elliptic structure. These two–dimensional Ginzburg–Landau problems are, for in-
stance, characterized by energy density concentrations on a one–dimensional set - comparable
to a steady shock wave. Here we review how methods based on kinetic formulations can help to
understand some feautures of this broad and fascinating class of problems. Especially we deduce
a general regularity result and also we characterize the zero-energy states and the domains where
they can occur.
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1 Typical examples

Among the wide subject of Ginzburg-Landau variational problems, a typical problem is to study
the limit as the parameter ε vanishes, for divergence free functions in R

2 with a finite Ginzburg-
Landau energy. Namely, we consider functions uε : Ω ⊂ R

2 → R
2 (Ω a smooth domain of R

2)
such that
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div uε = 0 in Ω, uε · n = 0 on ∂Ω, (1.1)

where n denotes the outer unit normal to the boundary ∂Ω of Ω ⊂ R
2, and, in this weakly

constrained case the energy is

Eε(uε) = ε

∫

Ω
|∇uε|

2 +
1

ε

∫

Ω
(1 − |uε|

2)2. (1.2)

Roughly speaking, these models introduced in Jin & Kohn [17], Ambrosio, De Lellis & Man-
tegazza [4], DeSimone, Kohn, Müller & Otto [9]) come through dimensional reduction of a three
dimensional Ginzburg–Landau–type model in a thin film and singularly depend on the small
parameter ε proportional to the film thickness. They arise in many physical situations like
smectic liquid crystals, soft ferromagnetic films, in blister formation or — more abstractly — in
the gradient theory of phase transition (see [10] and the references therein). Due to the variety
of these situations, to the complexity of the reduction and the necessity of mathematical simpli-
fications, several other models are of interest. For instance Rivière & Serfaty [23] consider the
strongly constrained case where the constraint is given by

|u| = 1 in Ω, (1.3)

whereas the functional is

E2
ε (u) = ε

∫

Ω
|∇u|2 +

1

ε

∫

R2

|∇−1 div u|2, (1.4)

where for the last term, u has been trivially (that is, by zero) extended on all R
2. More recently

a model retaining the three dimensional aspect of these problems has been studied by Allouges,
Rivière & Serfaty [2].

Many analytical methods arise to study these kinds of problems. Especially, variational analy-
sis arises naturally, SBV -type spaces, geometrical measure theory . . . These reflects the elliptic-
ity of the problem. More surprisingly entropies, compensated compactness, kinetic formulations
and averaging lemmas also help to provide pieces of informations. These reflects the hyperbolic
feature of the limit ε→ 0.

In this paper we wish to illustrate a particular point which is why kinetic formulations arise
and what kind of information it can provide. Let us insist that alternative tools have also
been used in the above mentioned papers and most of the results explained here can be derived
differently. It seems however that the kinetic struture which arises here is fascinating enough to
have a look at it, and especially to further investigate in these terms the difference between the
two models mentioned above and also their variants.

Before doing that, we would like however to spend some time to explain the hyperbolic aspect
in the limit ε→ 0 in these problems following [9]. This formally appears very naturally because
in this limit we obtain

|u| = 1, div u = 0, (1.5)
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in Ω. In two dimensions this is typically a scalar conservation law which can be also seen as

∂cos(θ)

∂x1
+
∂sin(θ)

∂x2
= 0.

The question is to prove (or as conjectured for (1.1), (1.2), rather to disprove) that it is the
entropy solution. Another related point of view is to transform the problem in

u = ∇Tψ(x), |∇ψ| = 1.

Then the question is to know weither (or rather why not in the case of (1.1), (1.2)) ψ is the
viscosity solution to the above eikonal equation. Also notice that this one-dimensional aspect
of the singular set makes this problem very different form the usual two dimensional Ginzburg-
Landau problem [6] where point vortices appear, or of the three dimensional vortex tubes as in
Aftalion and Jerrard [1].

The paper is organized as follows. The second section explains why a kinetic formulation is
natural here, the third section shows the regularity that can be deduced from averaging lemmas,
the last section is devoted to the characterization of zero energy states.

2 kinetic formulation

The kinetic formulation arises naturally in the limit as ε vanishes in the problem (1.1), (1.2).
The original motivation comes from an argument developed in [9] and which is based on a
family of entropies adapted to the limit as written in (1.5) (different entropies are also built in
[17] which produce somewhat different properties). And, the kinetic formulations introduced in
Lions, Perthame and Tadmor [19], [20] aim exactly to represent a full family of entropies by a
single generating ‘equilibrium’ function, denoted by χ below, by means of integration of an extra
variable. This has the advantage to replace an infinite family of inequalities by a single equation
in a higher dimension space. The extra variable, denoted by ξ in this paper, is homogeneous to a
velocity and is thus called the kinetic variable. In the context of Line–energy Ginzburg–Landau
models it can be introduced drectly through a simple and general lemma which proof can be
found in Jabin and Perthame [14].

Lemma 2.1 For any smooth function u defined on Ω, and with the notation

χ(ξ, u) = 1I{ξ·u>0}, (2.1)

we have, in the sense of distribution in ξ,

|u| ξ · ∇xχ(ξ, u) + |ξ|2
[

∇x|u| − divu
u

|u|

]

· ∇ξχ = 0. (2.2)

The equation (2.2) above enters the class of classical kinetic equations. It is very close to the
Vlasov equation describing the motion of particles in a force fields, see Glassey [12] for instance.
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Coming back to the variational problem (1.1), (1.2), the term divu disappears in the above
formula, and |u| ≈ 1, therefore we can expect that simplications arise then. This is indeed the
case and we have

Theorem 2.2 Any sequence uε which satisfies (1.1) and with finite energy in (1.2), is relatively
compact in L2(Ω). After extraction of a subsequence, the limit u satisfies (1.5) and

ξ · ∇xχ(ξ, u) =
∑

( 1

β
∂ξi

(|ξ|2∂ξj
(mβ

ikjξk)) −
3 + β

β
ξj∂ξi

(mβ
jkiξk)

)

(2.3)

where the sum is taken for i, j, k equal to 1, 2 and β is any real number with 0 < β ≤ 1, the
mβ

ijk(ξ, x) are measures such that
∫

Ω
sup
ξ∈R2

|mβ
ijk(ξ, x)| dx ≤ liminfEε(uε)/2,

∑

i

mβ
iij = 0,

∑

k

ξk∇ξm
β
ijk = 0, (2.4)

∫

Ω×B(R)
|∇ξm

β
ijk(ξ, x)| dx dξ ≤ C(R) liminfEε(uε), for allR > 0. (2.5)

The righthand side measure here appears as a measure of the singular set (shock location)
where the above limit is not strong enough (derivatives do not converge strongly). For that
reason it is called the kinetic entropy defect measure and very similar to that appering int he
kinetic formulation of conservation laws (see [19], [21]). This singular set is expected to be one
dimensional as built in several examples ([17]). Such a property is not proved but a corollary is
as follows

Proposition 2.1 Additionally, we have for any bounded open subset O of Ω and any r > 1
i) u ∈W s,q for all 0 ≤ s < 1

3 , q <
3
2 .

ii) If ∇uε is uniformly bounded in Lr(O), then mβ
ijk = 0 on O.

iii) If ∇x|uε| is uniformly bounded in Lr(O), then
∑

j m
β
ijj = 0.

4) If |uε| → 1 in L∞(O), then 1
βm

β
ijk = mijk does not depend on β,

∑

j m
β
ijj = 0 and

ξ · ∇xχ(ξ, u) =
∑

i,j,k

|ξ|2ξk∂ξi
∂ξj
mikj on O. (2.6)

We refer again to [14] for a proof of these results. We would like however to explain, in next
section, the point (i) of this proposition. Here it is improved compared to the original result
written in [14] and this regularity was obtained in [15]. Of course it is certainly not optimal
and many reasons lead to think that very particular spaces related to spaces of functions with
bounded variations play a role here ([5], [17]).

Also we would like to comment that the case of (1.3), (1.4) leads to a much stronger kinetic
structure and a sign of the kinetic defect mesure can be proved. This makes the case closer to
Scalar Conservation laws and is related to the fact that then u is the classical entropy solution
to the hyperbolic equation (1.5), or in other words that ψ is the viscosity solution, see Ambroso,
Lecumberry & Rivière [3].
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3 A generic regularity result

One of the important tools in kinetic equations consists in deriving regularity in x for averages
in ξ through the so called averaging lemmas. This idea applies to equations arising from kinetic
physics but also to macroscopic equations with a kinetic formulation as scalar conservation laws
[19] and systems like isentropic (barotropic) gas dynamics with γ = 3 [20], or more generally to
a class introduced by Brenier and Corrias [7]. The basic averaging lemmas apply to solutions of
a transport equation, that we only state in the stationary case although the evolution is more
relevant for hyperbolic balance laws,

ξ · ∇xf(x, ξ) = ∆α/2
x g(x, ξ), x ∈ R

d, ξ ∈ R
d. (3.1)

Now we choose a φ ∈ C∞
c (Rd) and define

u(x) =

∫

Rd

f(x, ξ)φ(ξ)dξ. (3.2)

Assume that

g ∈ Lp(Rd, W β,p
ξ (Rd)), 1 < p ≤ 2, β ≤

1

2
,

f ∈ Lq(Rd, W γ,q
ξ (Rd)), 1 < q ≤ 2, 1 −

1

q
< γ ≤

1

2
.

(3.3)

Theorem 3.1 [15] (Case 0 ≤ α < 1) Let f , g satisfy (3.1) and (3.3), then we have for s ′ <
s = θ(1 − α) and r′ < r with 1

r = θ
p + 1−θ

q and

θ =
1 + γ − 1/q

1 + γ − β + 1/p− 1/q
. (3.4)

‖u‖
W s′,r′

loc

≤ C

(

‖g‖
Lp

xW β,p
ξ

+ ‖f‖Lq
xW γ,q

ξ

)

.

For γ = 0, β ≤ 0, we are in a case included in standard averaging lemmas (see in particular
[11]). However our statement here is not optimized and thus does not recover the limiting case
(s′ = s, r′ = r . . . ) as can be done following for instance Bouchut in [8], see also Perthame
and Souganidis [22]. Also a very surprising phenomena arises for β or γ larger than 1/2. Then
the corresponding formulas for the win of regularity do not yield the optimal gain of regularity
and the usual method of proof does not work. In [15] we gave an improved regularity result
which uses a frequency decomposition also in the ξ variable, which is not necessary in the case
mentioned above.

The new point here compared to [11] is to take into account for possible regularity of f
in the ξ variable. This wins extra x regularity by the same process which leads to loose x
derivatives to pay for negative ξ derives on the righthand side g. Concerning the applications to
macroscopic laws as Brenier-Corrias systems or line-energy Ginzburg-Landau system, it allows
to win regularity compared to previously known, and in the case of Scalar Balance laws to
simplify the proof).
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We do not wish to prove Theorem 3.1, and we rather refer to [15], we just indicate that its
proof relies, following [22] in a perturbation of the transport operator which allows to recover an
invertible operator in H1 (product Hardy space) and to use classical Lions-Peetre interpolation
being given that in L2 Fourier analysis allows to prove regularizing effects simply as in the
original proof of averaging lemmas in [13].

We just indicate how it is possible to derive from it the point (i) in Proposition 2.1. We define,
for ξ ∈ R, the function f(x, ξ) in (2.1) and use its kinetic formulation (2.3). First of all, we
notice that u being in the unit sphere, the localization φ in (3.2) does not appear and we can
equivalently use

u(x) =

∫

Rd

f(x, ξ)ξ dξ, f(x, ξ) = χ(ξ;u(x)).

Next, we know, from the estimate (2.5), that the right hand side is the derivative in ξ of a
bounded Radon measure in (x, ξ). A measure belongs to any Sobolev space W −α,(1−α/(d+2))−1

with α > 0. Therefore, we may equivalently write the equation (3.1) in place of (2.3), and choose
in (3.1), (3.3) any α > 0, β = −α − 1, p = (1 − α/(2d + 1))−1. On the other hand, since the
derivative in ξ of f is a bounded measure and f belongs to L∞, by interpolation we know that
f belongs to Lq

xW
γ,q
ξ for any q < 2 and γ < 1

2 . Applying Theorem 3.1, with γ ≈ 1
2 , q ≈ 2, α ≈ 0,

p ≈ 1, β ≈ −1, we immediately deduce the regularity result (i) in Proposition 2.1.

4 Vortices and zero energy states

In this section we consider again a family uε in the variational problem (1.1), (1.2). We wish
more precisely to study the possible limits u of sequences {uε}ε↓0 such that limε↓0Eε(uε) = 0
(“zero–energy states”). We follow the presentation in Jabin, Otto and Perthame [16].

Roughly speaking, we prove that the limit u is either a constant vector field (and the domain
is either the whole space or a strip) or a vortex (and the domain is either the whole space or a
disk), but more general conclusions can also be carried out locally. This conclusions are not at
all obvious when considered directly at the level of (1.1), (1.2). It is interesting to notice that
the variant model (1.3), (1.3) does not lead to same zero energy states. Namely vortices do not
exist in this model due to the stronger constraint |uε| = 1, a feature that changes completely
the possible singularities, see Lecumberry and Rivière [18].

A first step towards the result is the following obvious consequence of Section §2. The only
variant in the kinetic formulation is that now we may, without loosing information, consider
that the kinetic variable ξ belongs to the sphere.

Proposition 4.2 Consider any zero–energy state u, then it satisfies

|u(x)| = 1 for a. e. x ∈ Ω, (4.1)

div u = 0 distributionally in R
2 if trivially extended, (4.2)

ξ · ∇χ(·, ξ) = 0 distributionally in Ω for all ξ ∈ S1. (4.3)
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Notice that the statement (4.2) is another way to state that u · n = 0 on ∂Ω, as it obviously
follows from (1.1).

In [16], we derive from this equation the following characterization of zero energy states

Theorem 4.1 (Case Ω = R
2) Consider any measurable function u, satisfying (4.1) and (4.3)

with Ω = R
2. Then either u is constant, that is, there exists an u0 ∈ S1 such that

u(x) = u0 for a. e. x ∈ R
2,

or u is a vortex, that is, there exists a point O ∈ R
2 and a sign α ∈ {−1, 1} such that

u(x) = α
(x−O)⊥

|x−O|
for a. e. x ∈ R

2,

where ⊥ denotes the counter clockwise rotation by π
2 .

Theorem 4.2 (General Ω) Let Ω satisfy the following property

Ω 6= R
2 is connected, C2, and either Ω is a strip or ∃ ỹ, z̃ ∈ ∂Ω

such that the normal lines issued from ỹ, z̃ are different and

intersect in Ω before crossing ∂Ω.

(4.4)

Assume that the measurable function u satisfies (4.1), (4.2) and (4.3). Then Ω is either a disk
and u is a vortex, or Ω is a strip and u is a constant.

We point out that any regular, simply connected domain satisfies Property (4.4). In any simply
connected domain there is always a ball of radius at least the minimal radius of curvature of the
boundary. But also, for instance, the domain included between two balls which do not have the
same center is possible by our condition.

Again, we do not wish to give here a full proof of this theorem and rather refer to [16] for
the details. One of the technical difficulty arises from the only L∞ regularity of u which does
not allow to have well defined traces a priori. We can formally explain the argument towards
Theorem 4.1 assuming they exist.

Formal proof of theorem 4.1. As a first step we notice that, being given a point x0, and
denoting by L(x0) the line passing by x0 and orthogonal to u(x0), then for x ∈ L(x0), u(x) is
orthogonal to L(x0). To see this, we can think ofthe direction ξ0 of L(x0) as the discontinuity
line in ξ of χ(x0; ξ), where its value is 1/2 say. By the method of characteristics, χ(x0 − sξ0; ξ0)
is constant along this line, and thus it is the ’1/2’-discontinuity level set i.e. u(x0 − sξ0) is
perpendicular to ξ0 i.e. to L(x0).

In a second step, we assume that u is not constant on R
2 and we prove that it cannot be

constant up to a sign. Indeed, assume we had u(x) = ±u0 ∈ S1 for every x ∈ R
2. Then for

every couple x, y such that x− y is not orthogonal to u0, we would have u(x) = u(y) thanks to
the method of characteristics which implies that

χ(x− sξ; ξ) = χ(x; ξ). (4.5)
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Indeed it is enough to choose s and ξ such that y = x− sξ. From this it follows that u(x) is in
fact constant.

m(y  )0

L1L2

O

x 0

y
0

m(x  )0

x

Figure 1: Values of u(x) on the line L(x0) compatible with u(y0). Following the characteristic
from y0 to any x, we indeed deduce that u(x) belongs to the drawn half-sphere.

In a third step, we assume that u is not constant on R
2 and we precise the ‘signs’ of u(x) along

with the construction in figure (4). From the second step, there exist two points x0 and y0 in
R

2 with

u(x0) 6= u(y0) and u(x0) 6= −u(y0). (4.6)

We denote L(x0) and L(y0) the lines orthogonal to u(x0) (resp. u(y0)) and passing through the
points x0 (resp. y0). According to (4.6), these lines intersect in a point that we denote by O,
the origin after translation. Notice that this proves that the function u is not continuous, since
we know from the first step that u(O) ⊥ L(x0) and u(O) ⊥ L(y0), this remark motivates the
technical questions on traces of u which are solved in [16] and some non-trivial counterexample
on averaging lemmas in [15]. Let us continue the argument still forgetting about regularity
issues. We claim, again as a trivial consequence of the method of characterisitcs (4.5) that on
the four half lines L(x0), L(y0) delimited by O, u(x) is constant and takes opposite values on
both side of O, which determines the right sign because we already know from the first step
that u(x) ∈ S1 and u(x) ⊥ L. To do that, it is enough to join a given point y1 of a half L(y0)
line to any of the point x of L(x0) and use ξ = (x− y1)/|x− y1|, then we notice that χ(u(y1), ξ)
is constant for all such ξ (the point y1 = y0 is chosen in figure (4)).

In a fourth step, we assume that u is not constant on R
2 and we prove that it is a vortex.

Consider now a third point z0 ∈ R
2. Then, we have u(z0) 6= ±u(x0) (otherwise we have

u(z0) 6= ±u(y0) and this does not change the end of the argument). As before, let L(z0) be
the line through z0 normal to u(z0). Then earlier arguments apply, and they imply that L(z0)
intersect L(x0), and that this again occurs at the origin. Indeed, reproduce the construction
in step 3 and notice that the intersection point separates again L(x0) in two segments where u
is constant and takes opposite values. A careful analysis of the values (and their orientation)
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based again on the method of characteristics now leads to the conclusion that u is a vortex of
center O. This completes the proof of Theorem 4.1.
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Norm. Sup.(4), 31 (1998), 591–598.

[23] T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromag-
netics. Comm. Pure Appl. Math., 54 (2001), 294–338.

[24] T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem
related to micromagnetics. To appear in Comm. in PDE.

10


