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Introduction v

0.1 Introduction

The validity of kinetic models as a limit of systems of many interacting particles is
still an important open issue. The number of particles to take into account is so large
in most applications (plasma physics, galaxies formation...) that the use of continuous
models is absolutely required.

The same issues directly arise for the use of particle methods. Those methods rely
on the assumption that a large (but not too large) number of “meta-particles” correctly
represents the dynamics of a much larger number of real particles. This assumption
would be directly implied by the convergence of the system to the unique solution to
some equation.

The scaling under consideration here leads to so-called mean field limits. Those lim-
its were classically established under strong regularity assumptions for the interaction,
which are not satisfied in many physical situations of interest. We aim at describing
those classical approaches but also to present the new ideas recently developed for the
singular cases.

We consider N identical particles with positions/velocities (X;,V;) in the phase
space, interacting through the 2-body interaction kernel K (x), which leads to the

evolution equations
d
dy — v
dr i v 0.1
{jtViI{/ZjK(Xin)- (0.1)

The 1/N factor in the second equation is a scaling term so that positions, velocities
and accelerations are now of order 1.

The kernel K may take many different forms depending on the physical setting.
The guiding example and the one with the most important physical applications K (z)
is Coulomb interaction, which reads in dimension d

K(z) = =Vo(z) , ¢(z) = w% + (regular terms),

where a > 0 (resp. a < 0) corresponds to the repulsive (resp. attractive) case.
In what follows, the dynamics will be considered on the torus X; € II¢, d > 2,
mainly to simplify the exposition. Note that even then the velocities are still in R.

0.2 Well-posedness of the microscopic dynamics

The Cauchy-Lipschitz theorem applies to (0.1) if K(z) is Lipschitz, in which case there
exists an unique solution for any initial condition. In the repulsive Coulomb case, it is
still possible to apply it by remarking that the energy conservation,

i#]

implies that the |X; — X;| admit a time-independent lower bound in > : one may

therefore consider K as Lipschitz on its attainable domain for a given set of initial
conditions. One should note, however, that the form of this estimate makes it improper
to use in the N — oo limit.
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It is possible to assume less regularity on K by restricting the set of acceptable
initial conditions. In particular, results by (DiPerna and Lions, 1989), (Ambrosio,
2004) and (Hauray, 2005) apply to almost-every initial condition.

0.3 Existence of the macroscopic limit

Given a sequence of initial conditions ZN0 = (X0, .., X N0 VN0 'V IV0) with corre-
sponding solutions Z (¢), one expects the empirical density on phase space,

It z,v) Zé:c—XN ) ®d8(v— VN(t),

to converge, in some sense, as N — oo, to a limit f satisfying an evolution equation,
the "limiting dynamics”, with initial conditions f9 = limy fn (0, ).

If K is continuous or if XV(t) # XV (t) for all t and i # j, then, posing K (0) = 0,
one can write the N-body evolution in the form of a Vlasov equation :

{3th+v Vafn + (K %z pn) - Vo fn =0 0.2)
pn(t,z) = [dofn(t,z,v) . :

Then fy — f in weak-x topology (for the space of Radon measures M (I1¢ x R%)),
and f solves (0.2) for the initial conditions limy fn (0, -).

Equation (0.2) cannot be obtained from (0.1) with such an immediate method for
any kind of singular interaction K ¢ Cy. However, even for a Coulomb potential, Eq.
(0.2) is well posed provided some assumptions on the initial conditions are made, such
as f(0,-) € L' N L> and with compact support in velocities; See (Horst, 1981; Lions
and Perthame, 1991; Pfaffelmoser, 1992; Schaeffer, 1991). However, the non-linear term
(K * pN) - Vo fn makes the fy — f limit highly nontrivial for non-continuous K.

0.4 Physical space models

The above question is easier to solve in the case of hydrodynamics-related models,
which evolve according to a first-order equation of the form

S X 03

J#i
Using pn (t,z) =, nid(z — X;(t)), it can be rewritten as
Op+ Va((K*p)p) =0. (0.4)

For instance, in dimension 2, the above yields the incompressible Euler equation for
1 = £1,K(2) = 2.1 /|2?).

As a rule of thumb, the N — oo limit is easier to take in this case than in (0.1).
A crucial ingredient to the study is a bound on dp,in(t) = infi2; | X;(t) — X;(t)].
This offers direct control over the right-hand term in (0.3),which becomes regular if
dN. ~ N —1/d for singular force terms K (up to a coulombian singularity).



Macroscopic limit in the regular case vii

More precisely, assume that, up to time ¢ and for x ~ x;, there exists a locally
bounded F' such that

%ZK(x_Xj(t)) gF(i}’{%) .

]?ﬁl Wl,oo

Let (k,1) be the particles such that dpn(t) = | X — X;|. If one also assumes that
Kk = K1, then

d d 1
i = —| X — Xi| > == [ > w(K(Xy — X;) — K(X; — X;))| +0(1)
dt dt N |
J#k,l
1 > dmin
> -5 > K(x— X;(t)) dmin > dminF ( 55777 ) -
i Wioo
Hence one can apply Gronwall’s lemma to d,;n, propagating dpi, ~ N —1/d and

ensuring regularity in (0.3). For more on this kind of limits and particularly point-
vortex approximations to 2d Euler, see for example (Goodman, Hou and Lowengrub,
1990; Schochet, 1996).

Note, however, that such an approach is unapplicable in phase space : in that case,
the physical distance bound d,,;, still controls the regularity of the force terms, but
the evolution equations only control the phase space distance

d'U

= inf
main . .
i#]

(1Xi = X5 + Vi = Vj[) = dimin -
Thus one cannot obtain a closed estimate on d,,;;, .

0.5 Macroscopic limit in the regular case
0.5.1 Existence and weak solutions

If K is regular enough, it becomes possible to pass to the limit in the non-linear term
(K*pn)V, fn, thus ensuring the existence of a solution to the limiting dynamics (0.2).

Theorem 0.1 If K is continuous and if the initial conditions are uniformly bounded
in velocity (VN (0)] < R for some R), then there exists a subsequence fy(ny of fn
such that :

1. fU(N) == f in LOO(R-HMl(Hd X Rd)) ;

2. po(ny — p= [ fdv in L®(Ry, M (1Y) ;
3. f is a solution to (0.2) in the sense of distribution.

This theorem proves the existence of measure-valued solutions to (0.2), but its as-
sumptions over K are too weak to ensure their uniqueness (through the convergence
of the full sequence fy, for instance).



viii
Proof First, notice that, as (0.2) conserves probability or total mass,
/dxdvf(t,m,v) =1 Vt.

Hence fy € L®(Ry, M (I1? x R)). This space, as the dual of L*(R.,Co(IT% x R%)),

is weak-x compact : therefore f, () “=% f. By construction, it follows that one can
take the N — oo limit in both linear terms of (0.2).
Then, using

1 t
VOl € O+ 5 3 | 108 = X)) lds < R+
i

one obtains (by compacity of compact-supported continuous functions) that
Po(N) = fo(N)dU = P = ffd’l} in LOO(R+7M1(Hd))

Given that p, py € M (I1%), K x pn(t,-) is equicontinuous in x for all fixed ¢ (with
the same continuity modulus as K). Moreover, integrating (0.2) over v yields

Opn + Vg - (/Ufzvdv> =0,

which yields d;pn € LRy, W% (R%)) Vs > 1, so that finally (K  py) is equicon-
tinuous in both (z,t) over all TI¢ x [0, 7).

One may therefore apply Ascoli’s theorem : (K x py(n)) — (K * p), uniformly over
all 1 x [0, 7). Hence (K * Po(N)) fo(ny — (K % p)f in the sense of distributions, and
f is a solution of (0.2) in the same sense.

0.5.2 Stability and well-posedness

In order to obtain a stability estimate for the weak solutions derived above, it is nec-
essary to strengthen K'’s regularity (Braun and Hepp, 1977; Dobrushin, 1979; Spohn,
1991).

Theorem 0.2 If K € Wb and f!, f? € L (R, MY (I1? x RY)) are two solutions
to (0.2) with compact support in velocity, then

171 (8) = F2O)llw -1 (raxray < Cllfo = fllw-11uaxwey exp[ClIVE][z=t]  (0.5)

This stability estimate yields the convergence of the fy to the limiting dynamics,
as well as the uniqueness and well-posedness of its solutions : in practice, it acts as
a limit to the concentration of the corresponding measures. One should also note
that, although the exponential growth of this estimate is certainly not optimal, the C'
constant only depends on the total masses of f! and f2, as shown below.
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Proof For v € {1, 2}, the characteristics of each solution, defined as

%X”(t,x,v) =V7(t, z,v) for X(0,z,v) =2z
SVt z,v) = (Kxp7)(t,X7) V(0,z,v)=v ’

are well-defined by Cauchy-Lipschitz (since K € C!, p? x K is Lipschitz), and verify
the corresponding estimate

VX4 |VV7] < CeCllVEl=t (0.6)

Moreover, letting £ = {¢ € C}(TI% x R?) : [|¢]|ec < 1,||V¢|ls < 1}, one has

||f1(t) - fz(t)HW*Ll = sup/dxdvqﬁ(a:,v) (fl(ta .T,U) - f2(t,x,1}))
$eL
= sup / dadv ($(X (1), V(1) F1(0,2,0) — p(X3(1), VE(£) £2(0, 2,v))
PeL

< sup / dedvp(X (1), VI(£) | 70,2, ) — £2(0,2,0)|

deL
+ sup / ddv [6(X (), V(1)) — 6(X2(2), V2(1)| £2(0, 2, v)
PpeL
< IV VYoo 12 = 2w + X5 VY = (X2, V) oo | £2] e -

Since the first term in the above is bounded by (0.6), it is sufficient to bound
(X, V1Y) = (X2, V?)| . Given that $|X1 — Xo| < [Vi — V3| and
d
V1~ Val S UK % p)(t, XT) = (K % p?) (¢, X7)]
< (B % p")(t XT) = (K *p") (8, X2) + (K * (o' = p%))(t, X?)]
< XYV [ e [VE el = s

one obtains

d
ZI' O = FPOlw-ra < CIVE ool 1) = F2@)llw-r,

from which (0.5) is derived by Gronwall’s lemma. |

0.6 Well-posedness for singular kernels

The above establishes the well-posedness of the limiting dynamics in the case K €
C', while hinting that K € C is likely insufficient to reach a similarly satisfactory
conclusion. These kernels remain far from the Coulomb-like interactions one would
like to use in practice. It is however possible to obtain further results by exploiting the
particular nature of these kernels, namely K € C'(R¢\ {0}).



0.6.1 The weakly singular case

For kernels less singular in 0 than 1/|x| (so this never contains the Coulombian case),
it is still possible to derive well-posedness from Gronwall-type estimates (Hauray and
Jabin, 2007). Such a distinction between K = o(1/|z|) and the rest makes sense
physically as if K = —V¢ it exactly corresponds to the cases of bounded vs unbounded
potentials ¢.

Theorem 0.3 Given a kernel K € C*(R?\ {0}) such that |K (x)| ~ ﬁ with o < 1

z—0
and a sequence ZNO of initial conditions with uniform compact support such that

imin (0) = min (| XN = X0 4 [VNO — VNO)) > N7t

then there exists ¢’ > 0 such that dp;n(t) > ¢ N~z for any t > 0. Then the sequence
of N-body solutions fn converges weakly towards the unique solution f € L' N L> of
(0.2), which is compactly supported.

The a < 1 condition above is probably close to optimal, although it remains far
from the Coulomb case. This stems from the need to bound the integrals of the force
along the trajectories of close particles, which take the form

/ e _
—_— oo .
| X + V|~

Similarly, the condition on d,,;,(0) is quite remote from physical reality, as the prob-
ability of having it satisfied vanishes to 0 for sets of particles with random initial
positions and velocities. However, this does not preclude its practical use, for instance
for numerical purposes. It is a strong assumption on its own, since

f =5 f° and dynin(0) > NL = fO ek M g0 o Pl e

1
2d
A similar, stronger theorem can be proven for the physical space models (Hauray,
2008) :

Theorem 0.4 If |K(z)| ~ 1/|z|* with o < d — 1, then, for any sequence of initial
data X™O such that

donin(0) = min [ XN — X0 > eN™4
7

the dynamics (0.3) with p; =1, %Xi = % Z#iK(Xi —X;), verify dpmin(t) > ¢N~—i
forallt <T, and for allt > 0 if V-K = 0. Thus the sequence (pn) converges towards
the unique solution p to (0.4).

The condition o < d — 1 is a noticeable improvement on the Vlasov case, as the 2D
Euler equation (o = 1) is now the limiting case ; however, the assumption on d,,;,
remains just as strong.
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Proof Asshown in 0.4, the uniqueness of the limit results from the estimate on d,, ;.
Since K ~ |x|™%,

d 1
SX - X > - (K(Xi — X K(X, — X

_ % > (KX = X))| + | K(Xi — X;)))
ik

1X; — Kk| C 2C
> —
= Z \X X o X, Xj|a+1) Nd~

min

In order to bound %z#im, let N, = |{j # isuchthat |X; — X;| €
[2%din, 25 dpnin]}|. By definition of dynin, Np = 0 for any k < 0 ; furthermore,
as II has diameter 1, N, = 0 as well for k > kg = — logy dpmin. Hence

ko

Cy
< — .
NZ |X; — X jlett = N &~ a+1)d"‘+1

i min

By defintion of dpin, N < Cg2F¢ as all particles are farther than d,;, from each
other; therefore, as o + 1 < d,

Z C - @ ko Qk(dfafl) - @2]60((170471) - Cy
N - X SN & al SN al C Ndd,

Gathering the estimates yields

d C
SIX - Xl > —|Xi - X

Hence, choosing (i, k) such that dp,in = |X; — Xi|, one gets

d Cd O Nil d
7d'm1'n > dme = dm?n C Cd, ’
de " — Ndfrinzn Nd;lnzn d;jnzn ( o mln)

from which we may bound d,,;,, by Gronwall’s lemma. The rest of the theorem follows
easily from here. |

0.7 An almost-everywhere approach

Attempting to derive a stability estimate, e.g. a bound on | X} (¢, ZV%) — XN (¢, ZN0 +
d)| for small ¢, while avoiding Cauchy-Lipschitz / Gronwall-like methods, one can only
succeed for almost-all initial data, for some definition of ”almost-all”. As the dimension
N of the system of differential equations changes, quantitative estimates are needed,
unless the more traditional approaches to ODE’s. Such an estimate was derived in
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(Crippa and De Lellis, 2008) in a finite dimensional framework, and a natural idea
followed in a future work by Barré, Hauray and Jabin is to try to extend it like

N

1
dP[ZNlog | 1 + ——— XN, ZN0) — XN, ZzN0 + 5
/(deRd)N Z™0) ( NigT 2 (K022 = X2 )

+ VN, ZN0) = VN, 2N+ 6)])) < C(1+1t), (0.7)

where the measure P on initial configurations determines the meaning of ”almost-
everywhere”, and thus must be chosen carefully.

In order to prove (0.7), one has to differentiate the integral in ¢, then perform the
change of variables ZV° — ZN(t) (which has Jacobian 1) . One then needs to estimate

integrals of the form
/ dP,(ZN°)
Mmixrayy [ X7 — X9[ett’

where P; is the image of P by the flow at time ¢, which should remain finite for
a<d-—1.

Note that one has to be careful doing the estimate as a simple direct computation
would require a bound on

1 1
NO —
[Pz ma | 3 ey | = e
j#i J
The proof involves the following conditions on P :
Vt,/ P,(ZN9dxy_,..dXdVY.dVy < CF,
Hd(N—k) ><]Rd

which can be checked if P is flow-invariant, and but would be very hard to investigate
otherwise. If K derives from a potential, K = —V¢ with ¢ > 0, one such invariant is
the energy

N
Hy = 5 SV + 5 S e - x),
i=1 i#j
and one can choose P(ZN9) e~ HN(ZY) o P(ZN%) e~ NHN(Z™") The first choice
leads to an easier proof, but the corresponding sequences (f%) of initial conditions
are such that f% 2% 0, and is therefore very restrictive; the second implies that
Fn(0) %5 p(x)e~ 1" where p minimizes

/H 5 %QS(SE = y)p(x)p(y)dzdy + /H p(x)log p(z)dz .

In both cases, (0.7) can be used to perturb the dynamics instead of the initial condi-

tions. For instance, by letting f](\f ) be the evolution according to a regularized kernel
Ks = 1453 K with the same initial conditions, one gets
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1
S AP on (14 )~ A0 Ol ) < ).
qrtxmayy o

which yields the convergence of (fxn) towards a (unique) solution f of (0.2) with
f% =limy fx(0). Hence the two choices of IP prove the stability of the problem’s two
stationary solutions (zero and thermal equilibrium) by Dirac masses.

Further application of this approach would require considering non-invariant mea-
sures for P...
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