Exercises - Chapter 3 (Correction)

Exercise 1.

Let \mathcal{P}_k denote the set of all polynomials of degree less than or equal to k in one variable.

Let $\widehat{K} = [0,1]$, the following triplets $(\widehat{K},\widehat{\mathcal{P}},\widehat{\mathcal{N}})$ are they finite elements? In the favorable case, give the nodal basis of $\widehat{\mathcal{P}}$.

(a)
$$\widehat{P} = P_1$$
, $\widehat{N} = \{N_1, N_2\}$ where $N_1(v) = v(0)$ and $N_2(v) = v(1)$.

Answer

- $\hat{K} \subset \mathbb{R}$ is a bounded closed set, $\hat{K} \neq \emptyset$, $\partial \hat{K}$ is smooth.
- dim $\mathcal{P}_1 = 2$.
- dim $\mathcal{N} = 2 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_1 .

Let α_1 , α_2 be reals such that $\alpha_1 N_1(v) + \alpha_2 N_2(v) = 0 \ \forall v \in \widehat{\mathcal{P}}$. Then, for $v \in \widehat{\mathcal{P}}$ such that $v(0) \neq 0$ and v(1) = 0, one gets $\alpha_1 = 0$. By choosing $v \in \widehat{\mathcal{P}}$ such that v(0) = 0 and $v(1) \neq 0$, one gets $\alpha_2 = 0$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$.

Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $(\hat{\phi}_1, \hat{\phi}_2)$ can be calculated by using the barycentric coordinates $\hat{\lambda}_1, \hat{\lambda}_2$ associated to the nodes $\hat{a}_1 = 0, \hat{a}_2 = 1$, that is

$$\begin{cases} \widehat{\lambda}_1(\widehat{x}) + \widehat{\lambda}_2(\widehat{x}) = 1, \\ \widehat{\lambda}_1(\widehat{x}) O \widehat{a}_1 + \widehat{\lambda}_2(\widehat{x}) O \widehat{a}_2 = O \widehat{M} = \widehat{x}, \end{cases}$$

where O is the origine, $O\widehat{a}_i$ the vector whose ends are O and \widehat{a}_i , $O\widehat{M}$ the vector whose ends are O and \widehat{M} , \widehat{M} being the current point.

Since $O\widehat{a}_1 = 0$ and $O\widehat{a}_2 = 1$, on gets $\widehat{\lambda}_2(\widehat{x}) = \widehat{x}$ and $\widehat{\lambda}_1(\widehat{x}) = 1 - \widehat{x}$. Therefore the nodal basis $(\widehat{\phi}_1, \widehat{\phi}_2)$ is given by

$$\begin{cases}
\widehat{\phi}_1(\widehat{x}) &= \widehat{\lambda}_1(\widehat{x}) &= 1 - \widehat{x} \\
\widehat{\phi}_2(\widehat{x}) &= \widehat{\lambda}_2(\widehat{x}) &= \widehat{x}
\end{cases}
\iff
\begin{cases}
\widehat{\phi}_1 &= \widehat{\lambda}_1, \\
\widehat{\phi}_2 &= \widehat{\lambda}_2.
\end{cases}$$

(b)
$$\widehat{\mathcal{P}} = \mathcal{P}_2$$
, $\widehat{\mathcal{N}} = \{N_1, N_2, N_3\}$ where $N_1(v) = v(0)$, $N_2(v) = v(1)$ and $N_3(v) = v(1/2)$.

Δηςωρη

- $\widehat{K} \subset \mathbb{R}$ is a bounded closed set, $\mathring{\widehat{K}} \neq \emptyset$, $\partial \widehat{K}$ is smooth.
- dim $\mathcal{P}_2 = 3$.
- dim $\mathcal{N} = 3 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_2 .

Let α_1 , α_2 , α_3 be reals, $v \in \mathcal{P}_2$, $v(\widehat{x}) = \alpha_3 \widehat{x}^2 + \alpha_2 \widehat{x} + \alpha_1$ such that $N_1(v) = 0$, $N_2(v) = 0$, $N_3(v) = 0$. Then

$$\left\{ \begin{array}{l} \alpha_1=0 \\ \alpha_3+\alpha_2=0 \\ \frac{1}{4}\,\alpha_3+\frac{1}{2}\,\alpha_2=0 \end{array} \right. \iff \left\{ \begin{array}{l} \alpha_1=0 \\ \alpha_2=0 \\ \alpha_3=0 \end{array} \right. \implies v=0 \, .$$

Then the mapping $\widehat{\mathcal{P}} \to \mathbb{R}^3$, $v \mapsto (N_1(v), N_2(v), N_3(v))$ is one-by-one, in turn $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$.

Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $(\widehat{\phi}_1, \widehat{\phi}_2, \widehat{\phi}_3)$ can be computed by using the characterization $\widehat{N}_i(\widehat{\phi}_j) = \delta_{ij}$ the Krönecker symbole. This is equivalent to

$$\begin{cases} \widehat{\phi}_1(0) &= 1 \\ \widehat{\phi}_1(1) &= 0 \\ \widehat{\phi}_1(1/2) &= 0 \end{cases}; \begin{cases} \widehat{\phi}_2(0) &= 0 \\ \widehat{\phi}_2(1) &= 1 \\ \widehat{\phi}_2(1/2) &= 0 \end{cases} \text{ and } \begin{cases} \widehat{\phi}_3(0) &= 0 \\ \widehat{\phi}_3(1) &= 0 \\ \widehat{\phi}_3(1/2) &= 1 \end{cases}$$

Then

$$\begin{cases} \widehat{\phi}_1(\widehat{x}) = 2\left(\widehat{x} - 1\right)\left(\widehat{x} - \frac{1}{2}\right) \\ \widehat{\phi}_2(\widehat{x}) = 2\,\widehat{x}\left(\widehat{x} - \frac{1}{2}\right) \\ \widehat{\phi}_3(\widehat{x}) = -4\,\widehat{x}\left(\widehat{x} - 1\right) \end{cases} \iff \begin{cases} \widehat{\phi}_1 = 2\,\widehat{\lambda}_1\left(\widehat{\lambda}_1 - \frac{1}{2}\right), \\ \widehat{\phi}_2 = \widehat{\lambda}_2\left(\widehat{\lambda}_2 - \frac{1}{2}\right), \\ \widehat{\phi}_3 = 4\,\widehat{\lambda}_1\,\widehat{\lambda}_2, \end{cases}$$

where $\hat{\lambda}_1$, $\hat{\lambda}_2$ are the barycentric coordinates associated to the nodes $\hat{a}_1 = 0$, $\hat{a}_2 = 1$.

(c)
$$\widehat{\mathcal{P}} = \mathcal{P}_3$$
, $\widehat{\mathcal{N}} = \{N_1, N_2, N_3, N_4\}$ where $N_1(v) = v(0)$, $N_2(v) = v(1)$, $N_3(v) = v(1/3)$ and $N_4(v) = v(2/3)$.

Answer

- $\widehat{K} \subset \mathbb{R}$ is a bounded closed set, $\mathring{K} \neq \emptyset$, $\partial \widehat{K}$ is smooth.
- dim $\mathcal{P}_3 = 4$.
- dim $\mathcal{N} = 4 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_3 .

Let α_1 , α_2 , α_3 and α_4 be reals, $v \in \mathcal{P}_3$, $v(\widehat{x}) = \alpha_4 \widehat{x}^3 + \alpha_3 \widehat{x}^2 + \alpha_2 \widehat{x} + \alpha_1$ such that $N_1(v) = 0$, $N_2(v) = 0$, $N_3(v) = 0$ and $N_4(v) = 0$. Then v = 0 since $v \in \mathcal{P}_3$ owns 4 distinct zeros 0, 1/3, 1/2, 1. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$.

Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $(\widehat{\phi}_1\,,\widehat{\phi}_2\,,\widehat{\phi}_3\,,\widehat{\phi}_4)$ is given by

$$\begin{cases} \widehat{\phi}_{1}(\widehat{x}) = \frac{9}{2} (\widehat{x} - \frac{1}{3}) (\widehat{x} - \frac{2}{3}) (\widehat{x} - 1) \\ \widehat{\phi}_{2}(\widehat{x}) = \frac{9}{2} \widehat{x} (\widehat{x} - \frac{1}{3}) (\widehat{x} - \frac{2}{3}) \\ \widehat{\phi}_{3}(\widehat{x}) = \frac{27}{2} \widehat{x} (\widehat{x} - \frac{2}{3}) (\widehat{x} - 1) \\ \widehat{\phi}_{4}(\widehat{x}) = \frac{27}{2} \widehat{x} (\widehat{x} - \frac{1}{3}) (\widehat{x} - 1) \end{cases} \iff \begin{cases} \widehat{\phi}_{1} = \frac{9}{2} \widehat{\lambda}_{1} (\widehat{\lambda}_{1} - \frac{1}{3}) (\widehat{\lambda}_{1} - \frac{2}{3}), \\ \widehat{\phi}_{2} = \frac{9}{2} \widehat{\lambda}_{2} (\widehat{\lambda}_{2} - \frac{1}{3}) (\widehat{\lambda}_{2} - \frac{2}{3}), \\ \widehat{\phi}_{3} = \widehat{\lambda}_{1} \widehat{\lambda}_{2} (\frac{27}{2} \widehat{\lambda}_{1} - \frac{9}{2}), \\ \widehat{\phi}_{4} = \widehat{\lambda}_{1} \widehat{\lambda}_{2} (\frac{27}{2} \widehat{\lambda}_{2} - \frac{9}{2}), \end{cases}$$

where $\hat{\lambda}_1$, $\hat{\lambda}_2$ are the barycentric coordinates associated to the nodes $\hat{a}_1 = 0$, $\hat{a}_2 = 1$.

(d)
$$\widehat{\mathcal{P}} = \mathcal{P}_0$$
, $\widehat{\mathcal{N}} = \{N_1\}$ where $N_1(v) = \int_0^1 v(x) dx$.

Answer

- $\hat{K} \subset \mathbb{R}$ is a bounded closed set, $\hat{K} \neq \emptyset$, $\partial \hat{K}$ is smooth.
- dim $\mathcal{P}_0 = 1$.
- dim $\mathcal{N} = 1 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_0 .

Let α_1 be a real, $v \in \mathcal{P}_0$, $v(\widehat{x}) = \alpha_1$ such that $N_1(v) = 0$. Then v = 0 since $0 = \int_0^1 \alpha_1 dx = \alpha_1$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$.

Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $\{\widehat{\phi}_1\}$ where

$$\widehat{\phi}_1(\widehat{x}) = 1$$
.

(e) $\widehat{\mathcal{P}} = \mathcal{P}_3$, $\widehat{\mathcal{N}} = \{N_1, N_2, N_3, N_4\}$ where $N_1(v) = v(0)$, $N_2(v) = v(1)$, $N_3(v) = v'(0)$ and $N_4(v) = v'(1)$.

Answer

- $\hat{K} \subset \mathbb{R}$ is a bounded closed set, $\hat{K} \neq \emptyset$, $\partial \hat{K}$ is smooth.
- dim $\mathcal{P}_3 = 4$.
- dim $\mathcal{N} = 4 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_3 .

Let α_1 , α_2 , α_3 and α_4 be reals, $v \in \mathcal{P}_3$, $v(\widehat{x}) = \alpha_4 \widehat{x}^3 + \alpha_3 \widehat{x}^2 + \alpha_2 \widehat{x} + \alpha_1$ such that $N_1(v) = 0$, $N_2(v) = 0$, $N_3(v) = 0$. Then v = 0 since $v \in \mathcal{P}_3$ owns zeros 0, 1, the multiplicity order of each zero is 2. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$.

Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $(\widehat{\phi}_1, \widehat{\phi}_2, \widehat{\phi}_3, \widehat{\phi}_4)$ is given by

$$\begin{cases}
\widehat{\phi}_{1}(\widehat{x}) = (2\widehat{x} + 1)(\widehat{x} - 1)^{2} \\
\widehat{\phi}_{2}(\widehat{x}) = (-2\widehat{x} + 3)\widehat{x}^{2} \\
\widehat{\phi}_{3}(\widehat{x}) = \widehat{x}(\widehat{x} - 1)^{2}
\end{cases}
\iff
\begin{cases}
\widehat{\phi}_{1} = \widehat{\lambda}_{1}^{2}(3 - 2\widehat{\lambda}_{1}), \\
\widehat{\phi}_{2} = \widehat{\lambda}_{2}^{2}(3 - 2\widehat{\lambda}_{2}), \\
\widehat{\phi}_{3} = \widehat{\lambda}_{1}^{2}\widehat{\lambda}_{2}, \\
\widehat{\phi}_{4} = \widehat{\lambda}_{1}\widehat{\lambda}_{2}^{2}
\end{cases}$$

where $\hat{\lambda}_1$, $\hat{\lambda}_2$ are the barycentric coordinates associated to the nodes $\hat{a}_1 = 0$, $\hat{a}_2 = 1$.

Let a, b be reals and K = [a, b]. In each above example where $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element, give a finite element $(K, \mathcal{P}, \mathcal{N})$ affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$.

Answer

Let F_K be the following mapping $\widehat{K} \to K$, $\widehat{x} \mapsto x = F_K(\widehat{x}) = (b-a)\widehat{x} + a$. The mapping F_K is affine.

One has $F_K(0) = a$, $F_K(1) = b$.

 $F_K(\widehat{K}) = K \colon \widehat{K}$ and K are affine equivalent.

Regarding the evaluation of a function v on K, one can use the following scheme

$$\widehat{K} \xrightarrow{F_K} K \xrightarrow{v} \mathbb{R}$$
,

so that

$$\widehat{v}(\widehat{x}) = (v \circ F_K)(\widehat{x}) = v(F_K(\widehat{x})) = v(x).$$

Then $\widehat{v}(\widehat{a_i}) = v(a_i)$ where $F_K(\widehat{a_i}) = a_i$.

From $\widehat{v}(\widehat{x}) = (v \circ F_K)(\widehat{x})$ the derivatives can be computed as follows

$$\widehat{v}'(\widehat{x}) = v'(F_K(\widehat{x})) \cdot F_K'(\widehat{x}) = v'(F_K(\widehat{x})) \cdot (b-a).$$

Then $\widehat{v}'(\widehat{a}_i) = v'(a_i) \cdot (b-a)$ where $F_K(\widehat{a}_i) = a_i$

The barycentric coordinates associated to the edges a and b of K are defined by

$$\lambda(x) = (\widehat{\lambda} \circ F_K^{-1})(x) = \widehat{\lambda}(F_K^{-1}(x)) = \widehat{\lambda}\left(\frac{x-a}{b-a}\right).$$

The above formula uses the scheme $K \xrightarrow{F_K^{-1}} \widehat{K} \xrightarrow{\widehat{\lambda}} \mathbb{R}$.

$$\begin{cases} \lambda_1(x) = 1 - \frac{x - a}{b - a}, \\ \lambda_2(x) = \frac{x - a}{b - a}, \end{cases}$$

Therefore

(a) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where

• $\mathcal{P} = \mathcal{P}_1$, and the nodal basis (ϕ_1, ϕ_2) is given by,

$$\begin{cases} \phi_1(x) = \lambda_1(x), \\ \phi_2(x) = \lambda_2(x), \end{cases}$$

where λ_1 , λ_2 are the barycentric coordinates associated to the nodes a, b.

• $\mathcal{N} = \{N_1, N_2\}$ with $N_1(v) = v(a)$ and $N_2(v) = v(b)$.

(b) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where

• $\mathcal{P} = \mathcal{P}_2$, and the nodal basis (ϕ_1, ϕ_2, ϕ_3) is given by,

$$\begin{cases} \phi_1 = 2 \,\lambda_2 \,(\lambda_1 - \frac{1}{2}) \,, \\ \phi_2 = 2 \,\lambda_2 \,(\lambda_2 - \frac{1}{2}) \,, \\ \phi_3 = 4 \,\lambda_1 \,\lambda_2 \,, \end{cases}$$

where λ_1 , λ_2 are the barycentric coordinates associated to the nodes a, b.

• $\mathcal{N} = \{N_1, N_2, N_3\}$ with $N_1(v) = v(a)$, $N_2(v) = v(b)$ and $N_3(v) = v\left(\frac{a+b}{2}\right)$.

(c) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where

• $\mathcal{P} = \mathcal{P}_3$, and the nodal basis $(\phi_1, \phi_2, \phi_3, \phi_4)$ is given by,

$$\begin{cases} \phi_1 = \frac{9}{2} \lambda_1 \left(\lambda_1 - \frac{1}{3} \right) \left(\lambda_1 - \frac{2}{3} \right), \\ \phi_2 = \frac{9}{2} \lambda_2 \left(\lambda_2 - \frac{1}{3} \right) \left(\lambda_2 - \frac{2}{3} \right) \\ \phi_3 = \lambda_1 \lambda_2 \left(\frac{27}{2} \lambda_1 - \frac{9}{2} \right), \\ \phi_4 = \lambda_1 \lambda_2 \left(\frac{27}{2} \lambda_2 - \frac{9}{2} \right), \end{cases}$$

where λ_1 , λ_2 are the barycentric coordinates associated to the nodes a, b.

• $\mathcal{N} = \{N_1, N_2, N_3, N_4\}$ with

$$N_1(v) = v(a), N_2(v) = v(b), N_3(v) = v\left(a + \frac{1}{3}(b-a)\right) \text{ and } N_4(v) = v\left(a + \frac{2}{3}(b-a)\right).$$

(d) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where

• $\mathcal{P} = \mathcal{P}_0$, and the nodal basis ϕ_1 is given by,

$$\phi_1 = 1$$
.

•
$$\mathcal{N} = \{N_1\}$$
 where $N_1(v) = \frac{\int_a^b v(x) dx}{b-a}$.

(e) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where

• $\mathcal{P} = \mathcal{P}_3$, and the nodal basis $(\phi_1, \phi_2, \phi_3, \phi_4)$ is given by,

$$\begin{cases} \phi_1 = \lambda_1^2 (3 - 2\lambda_1), \\ \phi_2 = \lambda_2^2 (3 - 2\lambda_2), \\ \phi_3 = \lambda_1^2 \lambda_2, \\ \phi_4 = \lambda_1 \lambda_2^2, \end{cases}$$

where λ_1 , λ_2 are the barycentric coordinates associated to the nodes a, b.

• $\mathcal{N} = \{N_1, N_2, N_3, N_4\}$ with $N_1(v) = v(a), N_2(v) = v(b), N_3(v) = v'(a) \cdot (b-a)$ and $N_4(v) = v'(b) \cdot (b-a)$.

Exercise 2.

Let \widehat{K} be the triangle whose vertices are the points $\widehat{a}_1 = (0,0)$, $\widehat{a}_2 = (1,0)$ and $\widehat{a}_3 = (0,1)$ *i.e.* $\widehat{K} = \{(0,0),(1,0),(0,1)\}$, \widehat{m}_i denote the midpoints of his edges, according to \widehat{m}_1 is the midpoint of the edge $(\widehat{a}_2,\widehat{a}_3)$, \widehat{m}_2 is the midpoint of $(\widehat{a}_3,\widehat{a}_1)$, \widehat{m}_3 is the midpoint of $(\widehat{a}_1,\widehat{a}_2)$.

The following triplets $(\widehat{K},\widehat{\mathcal{P}},\widehat{\mathcal{N}})$ are they finite elements? In the favorable case, give the nodal basis of $\widehat{\mathcal{P}}$.

(a)
$$\widehat{P} = P_1$$
, $\widehat{N} = \{N_1, N_2, N_3\}$ where $N_i(v) = v(\widehat{a}_i), i = 1, 2, 3$.

Answer

- $\hat{K} \subset \mathbb{R}^2$ is a bounded closed set, $\hat{K} \neq \emptyset$, $\partial \hat{K}$ is smooth.
- dim $\mathcal{P}_1 = 3$.
- dim $\mathcal{N} = 3 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_1 .

Let α_1 , α_2 , α_3 be reals, $v \in \mathcal{P}_1$, $v(\widehat{x}, \widehat{y}) = \alpha_3 \widehat{x} + \alpha_2 \widehat{y} + \alpha_1$ such that $N_1(v) = 0$, $N_2(v) = 0$, $N_3(v) = 0$. Then $\alpha_1 = 0$, $\alpha_2 = 0$ and $\alpha_3 = 0$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$. Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $(\widehat{\phi}_1, \widehat{\phi}_2, \widehat{\phi}_3)$ is given by

$$\begin{cases} \widehat{\phi}_1(\widehat{x},\widehat{y}) = 1 - \widehat{x} - \widehat{y} \\ \widehat{\phi}_2(\widehat{x},\widehat{y}) = \widehat{x} \\ \widehat{\phi}_3(\widehat{x},\widehat{y}) = \widehat{y} \end{cases} \iff \begin{cases} \widehat{\phi}_1 = \widehat{\lambda}_1, \\ \widehat{\phi}_2 = \widehat{\lambda}_2, \\ \widehat{\phi}_3 = \widehat{\lambda}_3, \end{cases}$$

where $\hat{\lambda}_1$, $\hat{\lambda}_2$ and $\hat{\lambda}_3$ are the barycentric coordinates associated to the nodes $\hat{a}_1 = (0,0)$, $\hat{a}_2 = (1,0)$ and $\hat{a}_3 = (0,1)$.

(b)
$$\widehat{P} = P_1$$
, $\widehat{N} = \{N_1, N_2, N_3\}$ where $N_i(v) = v(\widehat{m}_i), i = 1, 2, 3$.

Answer

- $\widehat{K} \subset \mathbb{R}^2$ is a bounded closed set, $\widehat{K} \neq \emptyset$, $\partial \widehat{K}$ is smooth.
- dim $\mathcal{P}_1 = 3$.
- dim $\mathcal{N} = 3 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_1 .

Let α_1 , α_2 , α_3 be reals, $v \in \mathcal{P}_1$, $v(\widehat{x}, \widehat{y}) = \alpha_3 \widehat{x} + \alpha_2 \widehat{y} + \alpha_1$ such that $N_1(v) = 0$, $N_2(v) = 0$, $N_3(v) = 0$. Then $\alpha_1 = 0$, $\alpha_2 = 0$ and $\alpha_3 = 0$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$. Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $(\widehat{\phi}_1, \widehat{\phi}_2, \widehat{\phi}_3)$ is given by

$$\begin{cases} \widehat{\phi}_1(\widehat{x},\widehat{y}) = 2\widehat{x} + 2\widehat{y} - 1 \\ \widehat{\phi}_2(\widehat{x},\widehat{y}) = -2\widehat{x} + 1 \\ \widehat{\phi}_3(\widehat{x},\widehat{y}) = -2\widehat{y} + 1 \end{cases} \iff \begin{cases} \widehat{\phi}_1 = 1 - 2\widehat{\lambda}_1, \\ \widehat{\phi}_2 = 1 - 2\widehat{\lambda}_2, \\ \widehat{\phi}_3 = 1 - 2\widehat{\lambda}_3, \end{cases}$$

where $\hat{\lambda}_1$, $\hat{\lambda}_2$ and $\hat{\lambda}_3$ are the barycentric coordinates associated to the nodes $\hat{a}_1 = (0,0)$, $\hat{a}_2 = (1,0)$ and $\hat{a}_3 = (0,1)$.

(c)
$$\widehat{\mathcal{P}} = \mathcal{P}_2$$
, $\widehat{\mathcal{N}} = \{N_1, N_2, N_3, N_4, N_5, N_6\}$ where $N_i(v) = v(\widehat{a}_i), i = 1, 2, 3$ and $N_i(v) = v(\widehat{m}_{i-3}), i = 4, 5, 6$.

Answer

- $\widehat{K} \subset \mathbb{R}^2$ is a bounded closed set, $\mathring{K} \neq \emptyset$, $\partial \widehat{K}$ is smooth.
- dim $\mathcal{P}_2 = 6$.
- dim $\mathcal{N} = 6 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_2 .

Let L_1 , L_2 , L_3 , L_4 , L_5 , L_6 be linear functions which define the edges $(\widehat{a}_1, \widehat{a}_2)$, $(\widehat{a}_2, \widehat{a}_3)$, $(\widehat{m}_1, \widehat{m}_2)$, $(\widehat{m}_2, \widehat{m}_3)$, $(\widehat{m}_3, \widehat{m}_1)$, respectively, that is $L_i(\widehat{x}, \widehat{y}) = 0$ for i = 1, ..., 6 on the corresponding edge. The functions L_i are

$$L_1(\widehat{x},\widehat{y}) = \widehat{y}, L_2(\widehat{x},\widehat{y}) = 1 - \widehat{x} - \widehat{y}, L_3(\widehat{x},\widehat{y}) = \widehat{x}, L_4(\widehat{x},\widehat{y}) = \frac{1}{2} - \widehat{y}, L_5(\widehat{x},\widehat{y}) = \frac{1}{2} - \widehat{x} - \widehat{y},$$

$$L_6(\widehat{x},\widehat{y}) = \frac{1}{2} - \widehat{x}.$$

Let $v \in \mathcal{P}_2$ such that $N_1(v) = 0$, $N_2(v) = 0$, $N_3(v) = 0$, $N_4(v) = 0$, $N_5(v) = 0$, $N_6(v) = 0$ i.e. $v(\widehat{a}_i) = 0$, i = 1, 2, 3 and $v(\widehat{m}_i) = 0$, i = 1, 2, 3. The polynomial v vanishes at two points of edges $(\widehat{a}_2, \widehat{a}_3)$, $(\widehat{m}_2, \widehat{m}_3)$. Then there exists a constant c such that $v = cL_2L_5$. But v vanishes at \widehat{a}_1 :

$$0 = v(0,0) = c L_2(0,0) L_5(0,0) \Longrightarrow c = 0$$

since $L_2(0,0) \neq 0$ and $L_5(0,0) \neq 0$.

Then v = 0 and $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$.

Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $(\widehat{\phi}_1, \widehat{\phi}_2, \widehat{\phi}_3, \widehat{\phi}_4, \widehat{\phi}_5, \widehat{\phi}_6)$ is given by

$$\begin{cases} \widehat{\phi}_{1}(\widehat{x},\widehat{y}) = 2\left(\frac{1}{2} - \widehat{x} - \widehat{y}\right)\left(1 - \widehat{x} - \widehat{y}\right) \\ \widehat{\phi}_{2}(\widehat{x},\widehat{y}) = -2\left(\frac{1}{2} - \widehat{x}\right)\widehat{x} \\ \widehat{\phi}_{3}(\widehat{x},\widehat{y}) = -2\widehat{y}\left(\frac{1}{2} - \widehat{y}\right) \\ \widehat{\phi}_{4}(\widehat{x},\widehat{y}) = 4\widehat{x}\widehat{y} \\ \widehat{\phi}_{5}(\widehat{x},\widehat{y}) = 4\widehat{x}\left(1 - \widehat{x} - \widehat{y}\right) \\ \widehat{\phi}_{6}(\widehat{x},\widehat{y}) = 4\widehat{x}\left(1 - \widehat{x} - \widehat{y}\right) \end{cases} \iff \begin{cases} \widehat{\phi}_{1} = \widehat{\lambda}_{1}\left(2\widehat{\lambda}_{1} - 1\right), \\ \widehat{\phi}_{2} = \widehat{\lambda}_{2}\left(2\widehat{\lambda}_{2} - 1\right), \\ \widehat{\phi}_{3} = \widehat{\lambda}_{3}\left(2\widehat{\lambda}_{3} - 1\right), \\ \widehat{\phi}_{4} = 4\widehat{\lambda}_{2}\widehat{\lambda}_{3}, \\ \widehat{\phi}_{5} = 4\widehat{\lambda}_{3}\widehat{\lambda}_{1}, \\ \widehat{\phi}_{6} = 4\widehat{\lambda}_{1}\widehat{\lambda}_{2}, \end{cases}$$

where $\hat{\lambda}_1$, $\hat{\lambda}_2$ and $\hat{\lambda}_3$ are the barycentric coordinates associated to the nodes $\hat{a}_1 = (0,0)$, $\hat{a}_2 = (1,0)$ and $\hat{a}_3 = (0,1)$.

(d)
$$\widehat{\mathcal{P}} = \mathcal{P}_0$$
, $\widehat{\mathcal{N}} = \{N_1\}$ where $N_1(v) = \frac{\int_{\widehat{K}} v(\widehat{x}, \widehat{y}) \, d\widehat{x} \, d\widehat{y}}{|\widehat{K}|}$.

Answer

- $\hat{K} \subset \mathbb{R}$ is a bounded closed set, $\hat{K} \neq \emptyset$, $\partial \hat{K}$ is smooth.
- dim $\mathcal{P}_0 = 1$.
- dim $\mathcal{N} = 1 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_0 .

Let α_1 be a real, $v \in \mathcal{P}_0$, $v(\widehat{x}, \widehat{y}) = \alpha_1$ such that $N_1(v) = 0$. Then v = 0 since $0 = \int_0^1 \alpha_1 d\widehat{x} d\widehat{y} = \alpha_1$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$.

Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $\{\widehat{\phi}_1\}$ where

$$\widehat{\phi}_1(\widehat{x},\widehat{y}) = 1$$
.

(e) $\widehat{\mathcal{P}} = \mathcal{P}_2$, $\widehat{\mathcal{N}} = \{N_1, N_2, N_3, N_4, N_5, N_6\}$ where $N_i(v) = v(\widehat{a}_i), i = 1, 2, 3$ and $N_i(v) = \nabla v(\widehat{m}_{i-3}) \cdot \widehat{m}_{i-3} \widehat{a}_{i-3}, i = 4, 5, 6$, with ∇ the gradient operator, $\widehat{m}_{i-3} \widehat{a}_{i-3}$ the vector whose ends are $\widehat{m}_{i-3}, \widehat{a}_{i-3}$ for i = 4, 5, 6.

Answer

- $\widehat{K} \subset \mathbb{R}^2$ is a bounded closed set, $\widehat{K} \neq \emptyset$, $\partial \widehat{K}$ is smooth.
- dim $\mathcal{P}_2 = 6$.
- dim $\mathcal{N} = 6 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{P}_2 .

Let α_1 , α_2 , α_3 , α_4 , α_5 , α_6 be reals, $v \in \mathcal{P}_2$, $v(\widehat{x}, \widehat{y}) = \alpha_6 \widehat{x}^2 + \alpha_5 \widehat{y}^2 + \alpha_4 \widehat{x} \widehat{y} + \alpha_3 \widehat{x} + \alpha_2 \widehat{y} + \alpha_1$ such that $N_1(v) = 0$, $N_2(v) = 0$, $N_3(v) = 0$, $N_4(v) = 0$, $N_5(v) = 0$, $N_6(v) = 0$. Then $\alpha_1 = 0$, $\alpha_2 = 0$, $\alpha_3 = 0$, $\alpha_4 = 0$, $\alpha_5 = 0$ and $\alpha_6 = 0$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$. Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $(\widehat{\phi}_1, \widehat{\phi}_2, \widehat{\phi}_3, \widehat{\phi}_4, \widehat{\phi}_5, \widehat{\phi}_6)$ is given by

$$\begin{cases} \widehat{\phi}_1(\widehat{x}\,,\widehat{y}) = \frac{1}{2}\widehat{x}^2 + \frac{1}{2}\widehat{y}^2 + 2\widehat{x}\,\widehat{y} - \frac{3}{2}\widehat{x} - \frac{3}{2}\widehat{y} + 1 \\ \widehat{\phi}_2(\widehat{x}\,,\widehat{y}) = \frac{1}{2}\widehat{x}^2 - \widehat{y}^2 - \widehat{x}\,\widehat{y} + \frac{1}{2}\widehat{x} + \widehat{y} \\ \widehat{\phi}_3(\widehat{x}\,,\widehat{y}) = -\widehat{x}^2 + \frac{1}{2}\widehat{y}^2 - \widehat{x}\,\widehat{y} + \widehat{x} + \frac{1}{2}\widehat{y} \\ \widehat{\phi}_4(\widehat{x}\,,\widehat{y}) = -\widehat{x}^2 - \widehat{y}^2 - 2\widehat{x}\,\widehat{y} + \widehat{x} + \widehat{y} \\ \widehat{\phi}_5(\widehat{x}\,,\widehat{y}) = -\widehat{x}^2 + \widehat{x} \\ \widehat{\phi}_6(\widehat{x}\,,\widehat{y}) = -\widehat{y}^2 + \widehat{y} \end{cases} \iff \begin{cases} \widehat{\phi}_1 = \frac{1}{2}(\widehat{\lambda}_1^2 + 2\,\widehat{\lambda}_2\widehat{\lambda}_3 + \widehat{\lambda}_1)\,, \\ \widehat{\phi}_2 = \frac{1}{2}(\widehat{\lambda}_2^2 + 2\,\widehat{\lambda}_3\widehat{\lambda}_1 + \widehat{\lambda}_2)\,, \\ \widehat{\phi}_3 = \frac{1}{2}(\widehat{\lambda}_3^2 + 2\,\widehat{\lambda}_1\widehat{\lambda}_2 + \widehat{\lambda}_3)\,, \\ \widehat{\phi}_4 = -\widehat{\lambda}_1^2 + \widehat{\lambda}_1\,, \\ \widehat{\phi}_5 = -\widehat{\lambda}_2^2 + \widehat{\lambda}_2\,, \\ \widehat{\phi}_6 = -\widehat{\lambda}_3^2 + \widehat{\lambda}_3\,, \end{cases}$$

where $\hat{\lambda}_1$, $\hat{\lambda}_2$ and $\hat{\lambda}_3$ are the barycentric coordinates associated to the nodes $\hat{a}_1 = (0,0)$, $\hat{a}_2 = (1,0)$ and $\hat{a}_3 = (0,1)$.

Let a_1, a_2, a_3 be points in \mathbb{R}^2 and K the triangle whose vertices are the points whose vertices are a_1, a_2, a_3 : $K = \{a_1, a_2, a_3\}$. In each above example where $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element, give a finite element $(K, \mathcal{P}, \mathcal{N})$ affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$.

Answer

Let F_K be the following mapping $\widehat{K} \to K$, $(\widehat{x}, \widehat{y}) \mapsto (x, y) = F_K(\widehat{x}, \widehat{y})$,

$$F_K(\widehat{x},\widehat{y}) = A_K \left(\begin{array}{c} \widehat{x} \\ \widehat{y} \end{array} \right) + b = \left(\begin{array}{cc} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{array} \right) \left(\begin{array}{c} \widehat{x} \\ \widehat{y} \end{array} \right) + \left(\begin{array}{c} x_1 \\ y_1 \end{array} \right)$$

where
$$a_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$, $a_3 = \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$.

If the triangle $K = \{a_1, a_2, a_3\}$ is non-degenerate the mapping F_K is invertible. One has $\det(A_K) = 2 \operatorname{Area}(K)$.

The barycentric coordinates $\lambda_i: K \to \mathbb{R}$ associated to the edges a_i of K can be computed by using the scheme $K \xrightarrow{F_K^{-1}} \widehat{K} \xrightarrow{\widehat{\lambda}} \mathbb{R}$. Then the barycentric coordinates are defined by

$$\lambda(x\,,y) = (\widehat{\lambda}\circ F_K^{-1})(x\,,y) = \widehat{\lambda}(F_K^{-1}(x\,,y)) = \widehat{\lambda}(\widehat{x}\,,\widehat{y})\,.$$
 From $\left(\begin{array}{c} x\\y \end{array}\right) = A_K \left(\begin{array}{c} \widehat{x}\\\widehat{y} \end{array}\right) + \left(\begin{array}{c} x_1\\y_1 \end{array}\right)$, one gets $\left(\begin{array}{c} \widehat{x}\\\widehat{y} \end{array}\right) = A_K^{-1} \left(\begin{array}{c} x-x_1\\y-y_1 \end{array}\right)$. Since $A_K^{-1} = \frac{1}{\det A_K} \left(\begin{array}{c} y_3-y_1 & -(x_3-x_1)\\-(y_2-y_1) & x_2-x_1 \end{array}\right)$, one gets
$$\lambda_2(x\,,y) = \widehat{\lambda}_1(\widehat{x}\,,\widehat{y}) = \widehat{x} = \frac{1}{\det A_K} \left[(y_3-y_1)(x-x_1) - (x_3-x_1)(y-y_1)\right],$$

$$\lambda_3(x\,,y) = \widehat{\lambda}_2(\widehat{x}\,,\widehat{y}) = \widehat{y} = \frac{1}{\det A_K} \left[-(y_2-y_1)(x-x_1) + (x_2-x_1)(y-y_1)\right],$$

$$\lambda_1(x\,,y) = 1 - \widehat{x} - \widehat{y} = \frac{1}{\det A_K} \left[(y_2-y_3)(x-x_2) - (x_2-x_3)(y-y_2)\right].$$

Straightforward computations lead to the desired affine equivalents finite elements.

Exercise 3. Let $Q_k = \left\{ \sum_j c_j \, p_j(x) \, q_j(y) \text{ such that } p_j \, , q_j \text{ are polynomials of degrees } \leq k \right\}$.

Let \widehat{K} be the squarre whose vertices are the points $\widehat{a}_1=(0\,,0),\,\widehat{a}_2=(1\,,0),\,\widehat{a}_3=(1\,,1)$ and $\widehat{a}_4=(0\,,1),\,$ i.e. $\widehat{K}=\{(0\,,0)\,,(1\,,0)\,,(1\,,1)\,,(0\,,1)\}$. The midpoints of the edges of this squarre are denoted by $\widehat{a}_i,\,i=5\,,6\,,7\,,8$, according to \widehat{a}_5 is the midpoint of the edge $(\widehat{a}_1\,,\widehat{a}_2),\,\widehat{a}_6$ is the midpoint of $(\widehat{a}_2\,,\widehat{a}_3),\,\widehat{a}_7$ is the midpoint of the edge $(\widehat{a}_3\,,\widehat{a}_4),\,\widehat{a}_8$ is the midpoint of $(\widehat{a}_4\,,\widehat{a}_1)$. The center of the squarre is denoted by \widehat{a}_9 .

(a) Let $\widehat{\mathcal{P}} = \mathcal{Q}_1$, $\widehat{\mathcal{N}} = \{N_1, \dots, N_4\}$ where $N_i(v) = v(\widehat{a}_i)$, i = 1, 2, 3, 4. Show that $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

Answer

Let us recall that the dimension of the space Q_k is

$$\dim \mathcal{Q}_k = (\dim \mathcal{P}_k)^2 = (k+1)^2.$$

where \mathcal{P}_k denote the set of all polynomials of degree less than or equal to k in one variable.

- $\hat{K} \subset \mathbb{R}^2$ is a bounded closed set, $\hat{K} \neq \emptyset$, $\partial \hat{K}$ is smooth.
- dim $Q_1 = (1+1)^2 = 4$.
- dim $\mathcal{N} = 4 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{Q}_1 .

Let L_1 , L_2 , L_3 , L_4 be linear functions in one variable which define edges of the squarre, (\hat{a}_1, \hat{a}_2) , (\hat{a}_2, \hat{a}_3) , (\hat{a}_3, \hat{a}_4) , (\hat{a}_4, \hat{a}_1) , respectively,

 $L_1(\widehat{x},\widehat{y}) = \widehat{y}, L_2(\widehat{x},\widehat{y}) = 1 - \widehat{x}, L_3(\widehat{x},\widehat{y}) = 1 - \widehat{y}, L_4(\widehat{x},\widehat{y}) = \widehat{x}.$

Let $v \in \mathcal{Q}_1$ such that $N_1(v) = 0$, $N_2(v) = 0$, $N_3(v) = 0$, $N_4(v) = 0$ i.e. $v(\widehat{a}_i) = 0$, i = 1, 2, 3, 4. The polynomial v vanishes at two points \widehat{a}_1 , \widehat{a}_2 of the edge $(\widehat{a}_1, \widehat{a}_2)$. The polynomial v vanishes also at two points \widehat{a}_2 , \widehat{a}_3 of the edge $(\widehat{a}_2, \widehat{a}_3)$. Then there exists a constant c such that $v = c L_1 L_2$. But v vanishes at \widehat{a}_4 :

$$0 = v(0,1) = cL_1(0,1)L_2(0,1) \Longrightarrow c = 0,$$

since $L_1(0,1) \neq 0$ and $L_2(0,1) \neq 0$. Then v = 0 and $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$. Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

• The nodal basis $(\widehat{\phi}_1, \widehat{\phi}_2, \widehat{\phi}_3, \widehat{\phi}_4)$ is given by

$$\begin{cases}
\widehat{\phi}_{1}(\widehat{x},\widehat{y}) &= (1-\widehat{x})(1-\widehat{y}) &= \widehat{\lambda}_{1}(\widehat{x},\widehat{y}) \\
\widehat{\phi}_{2}(\widehat{x},\widehat{y}) &= \widehat{x}(1-\widehat{y}) &= \widehat{\lambda}_{2}(\widehat{x},\widehat{y}) \\
\widehat{\phi}_{3}(\widehat{x},\widehat{y}) &= \widehat{x}\widehat{y} &= \widehat{\lambda}_{3}(\widehat{x},\widehat{y}) \\
\widehat{\phi}_{4}(\widehat{x},\widehat{y}) &= (1-\widehat{x})\widehat{y} &= \widehat{\lambda}_{2}(\widehat{x},\widehat{y})
\end{cases}
\iff
\begin{cases}
\widehat{\phi}_{1} &= \widehat{\lambda}_{1}, \\
\widehat{\phi}_{2} &= \widehat{\lambda}_{2}, \\
\widehat{\phi}_{3} &= \widehat{\lambda}_{3}, \\
\widehat{\phi}_{4} &= \widehat{\lambda}_{4},
\end{cases}$$

where $\hat{\lambda}_1$, $\hat{\lambda}_2$, $\hat{\lambda}_3$ and $\hat{\lambda}_4$ are introduced for commodity.

(b) Let $\widehat{\mathcal{P}} = \mathcal{Q}_2$, $\widehat{\mathcal{N}} = \{N_1, \dots, N_9\}$ where $N_i(v) = v(\widehat{a}_i), i = 1, \dots, 9$. Show that $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- $\hat{K} \subset \mathbb{R}^2$ is a bounded closed set, $\hat{K} \neq \emptyset$, $\partial \hat{K}$ is smooth.
- dim $Q_2 = (2+1)^2 = 9$.
- dim $\mathcal{N} = 4 = \dim \widehat{\mathcal{P}}'$ the dual of \mathcal{Q}_2 .

Let L_1 , L_2 , L_3 , L_4 , L_5 , L_6 be linear functions in one variable which define the edges, $(\widehat{a}_1, \widehat{a}_2)$, $(\widehat{a}_2, \widehat{a}_3)$, $(\widehat{a}_3, \widehat{a}_4)$, $(\widehat{a}_4, \widehat{a}_1)$, $(\widehat{a}_5, \widehat{a}_7)$, $(\widehat{a}_8, \widehat{a}_6)$, respectively,

$$L_{1}(\widehat{x},\widehat{y}) = \widehat{y}, \ L_{2}(\widehat{x},\widehat{y}) = 1 - \widehat{x}, \ L_{3}(\widehat{x},\widehat{y}) = 1 - \widehat{y}, \ L_{4}(\widehat{x},\widehat{y}) = \widehat{x}, \ L_{5}(\widehat{x},\widehat{y}) = \frac{1}{2} - \widehat{x},$$

$$L_{6}(\widehat{x},\widehat{y}) = \frac{1}{2} - \widehat{y}.$$

Let $v \in \mathcal{Q}_1$ such that $N_1(v) = 0$, $N_2(v) = 0$, $N_3(v) = 0$, $N_4(v) = 0$, $N_5(v) = 0$, $N_6(v) = 0$, $N_7(v) = 0$, $N_8(v) = 0$, $N_9(v) = 0$ i.e. $v(\widehat{a}_i) = 0$, $i = 1, \dots, 9$. The polynomial v vanishes at two points of edges $(\widehat{a}_1, \widehat{a}_2)$, $(\widehat{a}_2, \widehat{a}_3)$, $(\widehat{a}_5, \widehat{a}_7)$, $(\widehat{a}_8, \widehat{a}_6)$. Then there exists a constant c such that $v = c L_1 L_2 L_5 L_6$. But v vanishes at \widehat{a}_4 :

$$0 = v(0,1) = c L_1(0,1) L_2(0,1) L_5(0,1) L_6(0,1) \Longrightarrow c = 0,$$

since $L_1(0,1) \neq 0$, $L_2(0,1) \neq 0$, $L_5(0,1) \neq 0$ and $L_6(0,1) \neq 0$. Then v = 0 and $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}'$.

Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

Therefore (K, P, N) is a finite element.

• The nodal basis $(\widehat{\phi}_1, \widehat{\phi}_2, \widehat{\phi}_3, \widehat{\phi}_4, \widehat{\phi}_5, \widehat{\phi}_6, \widehat{\phi}_7, \widehat{\phi}_8, \widehat{\phi}_9)$ is given by

$$\begin{cases} \widehat{\phi}_{1}(\widehat{x},\widehat{y}) = (1-\widehat{x})(1-\widehat{y})(1-2\widehat{x})(1-2\widehat{y}) \\ \widehat{\phi}_{2}(\widehat{x},\widehat{y}) = -\widehat{x}(1-\widehat{y})(1-2\widehat{x})(1-2\widehat{y}) \\ \widehat{\phi}_{3}(\widehat{x},\widehat{y}) = \widehat{x}\,\widehat{y}(1-2\widehat{x})(1-2\widehat{y}) \\ \widehat{\phi}_{4}(\widehat{x},\widehat{y}) = -(1-\widehat{x})\,\widehat{y}(1-2\widehat{x})(1-2\widehat{y}) \\ \widehat{\phi}_{5}(\widehat{x},\widehat{y}) = 4\widehat{x}(1-\widehat{x})(1-\widehat{y})(1-2\widehat{y}) \\ \widehat{\phi}_{6}(\widehat{x},\widehat{y}) = -4\widehat{x}\,\widehat{y}(1-2\widehat{x})(1-2\widehat{y}) \\ \widehat{\phi}_{8}(\widehat{x},\widehat{y}) = 4\widehat{y}(1-\widehat{x})(1-2\widehat{y}) \\ \widehat{\phi}_{9}(\widehat{x},\widehat{y}) = 16\,\widehat{x}\,\widehat{y}(1-\widehat{x})(1-\widehat{y}) \end{cases} \iff \begin{cases} \widehat{\phi}_{1} = \widehat{\lambda}_{1}\,(\widehat{\lambda}_{1}-\widehat{\lambda}_{2}+\widehat{\lambda}_{3}-\widehat{\lambda}_{4})\,, \\ \widehat{\phi}_{2} = -\widehat{\lambda}_{2}\,(\widehat{\lambda}_{1}-\widehat{\lambda}_{2}+\widehat{\lambda}_{3}-\widehat{\lambda}_{4})\,, \\ \widehat{\phi}_{3} = \widehat{\lambda}_{3}\,(\widehat{\lambda}_{1}-\widehat{\lambda}_{2}+\widehat{\lambda}_{3}-\widehat{\lambda}_{4})\,, \\ \widehat{\phi}_{4} = -\widehat{\lambda}_{4}\,(\widehat{\lambda}_{1}-\widehat{\lambda}_{2}+\widehat{\lambda}_{3}-\widehat{\lambda}_{4})\,, \\ \widehat{\phi}_{5} = 4\,\widehat{\lambda}_{1}\,(\widehat{\lambda}_{2}-\widehat{\lambda}_{3})\,, \\ \widehat{\phi}_{5} = 4\,\widehat{\lambda}_{1}\,(\widehat{\lambda}_{2}-\widehat{\lambda}_{3})\,, \\ \widehat{\phi}_{6} = 4\,\widehat{\lambda}_{2}\,(\widehat{\lambda}_{3}-\widehat{\lambda}_{4})\,, \\ \widehat{\phi}_{7} = 4\,\widehat{\lambda}_{3}\,(\widehat{\lambda}_{4}-\widehat{\lambda}_{1})\,, \\ \widehat{\phi}_{8} = 4\,\widehat{\lambda}_{4}\,(\widehat{\lambda}_{1}-\widehat{\lambda}_{2})\,, \\ \widehat{\phi}_{9} = 16\,\widehat{\lambda}_{1}\,\widehat{\lambda}_{3} = 16\,\widehat{\lambda}_{2}\widehat{\lambda}_{4}\,, \end{cases}$$

where $\hat{\lambda}_1$, $\hat{\lambda}_2$, $\hat{\lambda}_3$ and $\hat{\lambda}_4$ are already introduced in (a).

Exercise 4.

(a) Given a finite element $(K, \mathcal{P}, \mathcal{N})$, let the set $\{\phi_i : 1 \leq i \leq k\} \cap \mathcal{P}$ be the basis dual of \mathcal{N} . If v is a function for which all $N_i \in \mathcal{N}$, i = 1, ..., k, are defined, then we defined the local interpolant by

$$\mathcal{I}_K v = \sum_{i=1}^k N_i(v)\phi_i .$$

Prove that the local interpolant is linear.

Answer

Let v be a function for which all $N_i \in \mathcal{N}$, i = 1, ..., k, are defined. Then, $v \mapsto N_i(v)$ is linear for all $N_i \in \mathcal{N}$, i = 1, ..., k. Therefore the local interpolant \mathcal{I}_K is linear for such function v.

(b) Let T_1 be the triangle whose vertices are $a_1 = (0,0)$, $a_2 = (1,0)$ and $a_3 = (0,1)$, T_2 be the triangle whose vertices are $a_2 = (1,0)$, $a_4 = (1,1)$ and $a_3 = (0,1)$. Following finite elements are considered:

 $(T_1\,,\mathcal{P}_1\,,\mathcal{N}_1)$ with $\mathcal{N}_1=\{N_1\,,N_2\,,N_3\}$ where $N_i(v)=v(a_i)\,,i=1\,,2\,,3$; $(T_2\,,\mathcal{P}_1\,,\mathcal{N}_2)$ with $\mathcal{N}_2=\{N_4\,,N_5\,,N_6\}$ where $N_4(v)=v(a_2)\,,N_5(v)=v(a_4)\,,N_6(v)=v(a_3)$. Finally let f and g be functions in \mathbb{R}^2 : $f(x,y)=e^{xy}$ and $g(x,y)=\sin{(\pi(x+y)/2)}$. Compute the local interpolations $\mathcal{I}_K f$ and $\mathcal{I}_K g$ where $K=T_1\,,T_2$.

Answer

The nodal basis of the finite element $(T_1, \mathcal{P}_1, \mathcal{N}_1)$ is $\{\phi_1, \phi_2, \phi_3\}$ defined by $\phi_1(x, y) = 1 - x - y$, $\phi_2(x, y) = x$, $\phi_3(x, y) = y$. Then

 $\mathcal{I}_K f = N_1(f)(1-x-y) + N_2(f)x + N_3(f)y$

$$= f(0,0) \times (1 - x - y) + f(1,0) \times x + f(0,1) \times y$$

$$= 1 \times (1 - x - y) + 1 \times x + 1 \times y$$

$$= 1,$$

$$\mathcal{I}_K g = N_1(g)(1 - x - y) + N_2(g)x + N_3(g)y$$

$$= g(0,0) \times (1 - x - y) + g(1,0) \times x + g(0,1) \times y$$

$$= 0 \times (1 - x - y) + 1 \times x + 1 \times y$$

$$= x + y.$$

The nodal basis of the finite element $(T_2, \mathcal{P}_1, \mathcal{N}_2)$ is $\{\phi_4, \phi_5, \phi_6\}$ defined by $\phi_4(x, y) = 1 - y$, $\phi_5(x, y) = x + y - 1$, $\phi_6(x, y) = 1 - x$. Then

$$\mathcal{I}_{K}f = N_{4}(f)(1-y) + N_{5}(f)(x+y-1) + N_{6}(f)(1-x)$$

$$= f(1,0) \times (1-y) + f(1,1) \times (x+y-1) + f(0,1) \times (1-x)$$

$$= 1 \times (1-y) + e \times (x+y-1) + 1 \times (1-x)$$

$$= (e-1)(x+y) + 2 - e,$$

$$\mathcal{I}_{K}g = N_{4}(g)(1-y) + N_{5}(g)(x+y-1) + N_{6}(g)(1-x)$$

$$= g(1,0) \times (1-y) + g(1,1) \times (x+y-1) + g(0,1) \times (1-x)$$

$$= 1 \times (1-y) + 0 \times (x+y-1) + 1 \times (1-x)$$

$$= 2 - x - y.$$

Exercise 5.

Let \mathcal{P}_k^n denote the space of polynomials of degree $\leq k$ in n variables.

Prove that dim $(\mathcal{P}_k^n)=\left(\begin{array}{c} n+k \\ k \end{array}\right)$, where the latter is the binomial coefficient.

Answer

The dimension of the space of polynomials in n variables being exactly of degree $l \in \mathbb{N}$ is the number of combination with repetition of l objects within a set of n objects, that is $\binom{n+l-1}{l}$.

Then the dimension of the space of polynomials of degree $\leq k$ in n variables is

$$\dim \mathcal{P}_k^n = \sum_{l=0}^k \left(\begin{array}{c} n+l-1 \\ l \end{array} \right) = \left(\begin{array}{c} n+k \\ k \end{array} \right) = \frac{(n+k)!}{k! \; n!} \; , \text{thanks to Pascal's triangle} \; .$$

When \mathbb{R}^n denotes the physical space the above formula turns into

$$\dim \mathcal{P}_k^n = \binom{n+k}{k} = \binom{n+k}{k} = \binom{k+1}{2} (k+1)(k+2) \quad \text{if} \quad n = 1,$$

$$\frac{1}{2}(k+1)(k+2) \quad \text{if} \quad n = 2,$$

$$\frac{1}{6}(k+1)(k+2)(k+3) \quad \text{if} \quad n = 3.$$