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Exercise 1.
(a) Let I =]0,], | € R. Show that

3C1) >0, ullory < CW) llullzr(ry, Yue D). (1)

Let u € D(I). Let =,y € I. The fondamental theorem of analysis gives

which leads to

1
()] < [u(y)] + /O [ (s)] ds

By means of Cauchy-Schwarz inequality, one gets

N —

)] < fut)l + v ( [ l () s )

Integrating the above inequality over [0,!] in the y variable, and applying once again the

Cauchy-Schwarz inequality, give
! 2
+z\/2</ [/ (s)| ds> ,
0

o) < max (11 V1) (Jallza + oz )

N | —
N | —

()] < Vi ( / | \u<y>|2dy)

or equivalently

By using the the Cauchy-Schwarz inequality in R?, denoting C'(I) = v/2 max <1 /N1, \/Z>,

and taking the supremum on z € I, one obtains the result.
Conclude that H!(I) c C°(I) in dimension 1.

Let u € H}(I) Since D(I) is dense in H'(I) for the norm || || 1y, there exists a sequence
(tn)n>0 € D(I) which converges to u in H'(I) for the norm || | z71(r)- Then the inequality (1)
holds for each fonction wu,,:

30(1) > 0, Jualleo < CW) luallmq . ¥n > 0. (2)

Since (uy)n>o is a Cauchy sequence in H!(I), the sequence (uy,),>o is Cauchy in C9([)
for the uniform norm || [|co(s) by the inequality (2). The space C%(I) equipped with the norm
| llco(ry is complete: there exists w € C°(I) such that (un)n>0 converges to w in C°(I) for
the norm | [[co(p)-



On the one hand (uy, ), >0 converges to w in CO(I) for the norm || l|cory implies [|un||co(ry —
[wllco(ry, and (up)n>o converges to u in H(I) for the norm || ||g1(p) leads [lunllgr(ry —
HUHHl(I)-

On the other hand (uy,),>0 converges to u in H'(I) for the norm || | z1(1), leads to up, —
u a.e.. The sequence (uy)n,>0 converges to v in CY(I) for the norm || | co(r), implies up, — w
in each point of I. This implies © = w a.e.. Then w is the continuous representant of
the class v in H!(I). Finally H'(I) C C°(I) in dimension 1.

(b) Let Q = B(0,1/2) be the ball of radius 1/2 about the origine (0,0) in R?. Let v
be the function defined on () by

k
keR.

v(z) = |Inf|z]

Study the continuity of v in the neighbourhood of the origine (0,0), and then
prove that for k < 1/2, v € H'(Q). Conclude.

Continuity

li{(r)lo) = +o00 implies v is not bounded in the neighbourhood of the origine (0,0) for
z—(0,

k > 0. Then v is continuous in Q = B(0,1/2) for k < 0.

Inf[z]]

Regarding the belonging of v to H'(Q)
k—1

0 i
The derivative of v with respect to z;, ¢ = 1,2, is —v(a:) = sign(In||z||) k i In||z||

O [Edl
By the change of variables from cartesian coordinates to polar coordinates B(0,1/2) —
]07 1/2[X]07 27T[7 L= (:1:171:2) = (Ta 9)7 one gets

1/2 2k 1/2
||v||%11(1) =27 / rdr + 2rk? /
0 0

. liH(l]r =0 and for all « € R, ¢ # 0, lin%) r(lnr)* = 0, imply the first integral is finite for all
ke R.

e The second integral is finite if only if 2k —2+1 <0 i.e. k< 1/2.

e Then for k < 1/2, v € H(Q).

Finally k¥ < 1/2, v € H'(2) and v is not continuous in .

2k—2
Inr

Inr rdr.

r2

Exercise 2.
Let be the following boundary value problem

—"(x) = f(x) on [0,1],
u(0) =0, 3)
() =a,
where f is a given function of L?(0,1) and a € R.
1
(a) Let V = {v € H'(0,1),v(0) = 0}. Prove that |v]; o = <fQ |’U/(.1‘)|2d.1‘>2, where

=10,1], is a norm on V and V is a Hilbert space.



N —

e The critical point to prove that |v|;o = (fﬂ \v’(m)\de> is a norm, is to show that

lv|1.0 = 0 implies v = 0 in H'(0,1).

Let v to be such a function. Then v' = 0 a.e. which implies v = constant a.e.. In dimension 1,
v has a continuous representant, let call it w. Since v(0) = 0, one has w(0) = 0 = constant
and w = 0. Therefore v = w = 0a.e..

e The norm |v]1,q is equivalent to the norm ||v|| g1 o 1y0n H'(0,1).

2
\U\LQ < <‘U‘%Q + v %2(0,1)> = ||U||H1(0,1)-

The converse inequality is obtained as follows. Let v € V, then v € H'(0,1) in dimension
1 and v owns a continuous representant, let call it v. Then one has

v(z) =v(0) + /0:B V' (y)dy, Vre|0,1],

which implies

N —

|w@hmé(éﬁww9@)  Vrelo],

Taking the square of the above inequality and then integrating in = over (0, 1), one gets

1 ) 1 1 )
[ w@Pdr<; [Py,
0 0

which leads to

[l o0 < 5 lia- (4)

N w

e Let y be the mapping v : H'(0,1) — R, v — v(0). Since H'(0,1) C C°([0,1]) in dimension
1, the mapping v is well-defined. The mapping ~ is linear and

Iy ()| = [v(0)| < [[vllcogo,) < C vllE1(0,1 -

where C' > 0. This shows that v is continuous. Then V' = Ker~ is a closed subset of the
Hilbert H'(0,1). Therefore V is a Hilbert space.

(b) Give the variational problem and show that it has a unique solution.

The variational problem
Let v € D([0,1]). Multiplying the PDE (3) by v and integrating over [0, 1], one gets

/0 1 —u(z)v(z) dx = /0 1 F(@)v(z) d .

Integrating by part the left-hand side, one gets

l[wmw@m_@umn—mwwg:AVQM@M'

By taking v € V' et using u/(1) = «, one obtains
1 1
/ o () (z) dz = av(1) —I—/ f(@)v(x)dx.
0 0

3



Let a:V xV =R, fo r)dr, L:V - R, v— av( )+f01f(a:)v(:1:)da:.
The variational problem is the followmg

Find u € V solution of
Yo eV, a(u,v) = L(v).

The solution of the variational problem
e The space V is a Hilbert space.
e The mapping a is a bilinear symmetric, continuous, coercive form on V:

la(u,v)| < [ulug lole Va,v eV,
la(v,0)] = o2 Vo eV .
e The mapping L is a linear continuous form on V:
IL()] < [elo(D)] + £l 20,1 1] 2(0,1)
<lalllvlleoqo, 1) + 1 lz20,0) 1ol a1 0,1)
< la|C vl 0,1y + I F L2000l 10,1

< max(|o| C, || | z20,0)) vl 1 0,1)
< ﬁ‘v‘l,ﬂa Vv € V7

. 3
with = /% mas(al €, 1201

Finally thanks to Lax-Milgram theorem, there exists a unique solution w for the above vari-
ational problem.

(c) Recover formally the initial problem.

Recovering the PDE
Let u be the solution of the variational problem (5).
Let one takes v € D(]0,1]) C V in the variational problem (5).

1 1
/0 u' () (z) de = av(1) —l—/o f(z)v(z) dx

Since v € D(]0, 1[), one has v(1) = 0 and

1 1
/0 u'(x)v'(z) dx :/0 f(z)v(z)dx. (6)

One has also f € L?(0,1) € D'(]0,1[), v’ € L?(0,1) € D'(]0,1]). Then (6) rewrites as

e

U V) prpoap = (Fs VDo oy »

or (—u", v >D’D qo,1) = =(f,v >D’D (10,1) >

/\/\/\

or

—u" = f, v)ppgoap = 0-

Then the PDE is
—u" — f=0 in D'(]0,1]).

Since f € L?(0,1), the above PDE turns into

—u” = f in L*(0,1) a.e.. (7)



Recovering the boundary conditions
Let one takes v € V, multiplying (7) by v and integrating one gets

/01 —u" () (z) do = /01 f(@)v(x)dx

Then integrating by part and using v(0) = 0, one obtains

1 1
/0 ' (z)v' (z)de —u' (v(l) = /0 f(@x)v(x)dx

The comparison of the above equation with the variational problem (5) gives u'(1) = .
Obviously one has u(0) = 0 since u € V.
Therefore the boundary value problem is

—u = f a.e. on [0,1],
(0) = (8)
/

IS
E

I

Q

where f is a given function of L?(0,1) and a € R.

Exercise 3.
(a) Give the variational formulation of the boundary value problem

—u(x )—l—u(a:):f(a:) on [0,1],
u'(0)
u'(1) =

where f is a given function of L?(0,1).

Let V = H'(0,1).
Leta:VxV—>R, (u,v)Hfolu/()(dx—i—fO (x)dz, L : V — R, v —

Jo £ (@)o(x) de.
The Varlatlonal problem of the PDE (3) is the following:

Find u € V solution of
VoeV, a(u,v) = L(v).

(b) Show that the variational problem has a unique solution.

The solution of the variational problem

e The space V = H'(0,1) is a Hilbert space.

e The mapping a is a bilinear symmetric, continuous, coercive form on V:
la(u, v)| < ||U,HL2(0,1) HU,HLQ(O,l) + ||UHL2(0,1) ||U||L2(0,1) ; by Cauchy-Schwarz

inequality in L2(0,1)

1/2 1/2
< (HUH%%O,D + HU/||%2(071)> <||u\|%2(071) + ||u'\|%2(0,1)> , by Cauchy-Schwarz

inequality in R?
= llullzr o vl o) Yu,v eV,
la(v,0)| = ol 00y Yo EV .



e The mapping L is a linear continuous form on V:

IL()| < [ fll2ollvllzz0,0) < N fll2o,0) vl a0y, Vv eV .

By Lax-Milgram theorem, there exists a unique solution u for the above variational problem.
(c) Recover formally the initial problem.

Recovering the PDE
Let u be the solution of the variational problem (9).
Let one takes v € D(]0,1]) C V in the variational problem (9).
Since f € L%(0,1) c D'(]0,1[), v’ € L?(0,1) C D'(]0, 1[), the variational problem (9) turns to
(u, UI>D/D(}0,1[) + (u, U>D/D qo,1)) — =(f,v >D’D( 0,1])
or (—u”, U>D’D(]O 1)) + (u, U>D/D Jo,1)) — =(fiv >D’D (0,1]) »
or (—u"+u—f, v V) prp(op = 0-

Then the PDE is
—u"+u—f=0 in D'(J0,1]).

Since f € L%(0,1) and u € L?(0,1), one has u” € L?(0,1) and the above PDE turns into
—u” 4 u=f in L?(0,1) a.e.. (10)

Recovering the boundary conditions
Let one takes v € V = H'(0,1), multiplying (9) by v and integrating one gets

/01 —u" () (z) do = /01 f(@)v(x) dx

Then integrating by part gives

/0 1 u'(x)v' () dz — <u'(1)v(1) - u/(O)v(0)> - /O 1 Fla)o(z) da

e Then the comparison of the above equation with the variational problem (9) gives u/(0) = 0
when taking v € V = H'(0,1) with v(1) = 0 and v(0) # 0.

e Then when taking v € V = H(0,1) with v(0) # 0, one gets u’(0) = 0.

Therefore the boundary value problem is

—u"+u=f ae on [0,1],
W'(0)=0, (11)
w'(1) =0,

where f is a given function of L%(0,1).

Exercise 4.
Let ) be a bounded subset of R” where n > 1, with regular boundary 0f2.
Let be the following problem:

Find u € H} () solution of

Vv e H(Q), /Vu-Vvda::/fvda: (12)
Q Q

where f is a given function of L*(Q).
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Show that this problem has a unique solution and give the associated initial
boundary value problem.

The solution of the variational problem

Let a: H}(Q) x HJ(Q) — R, (u,v) — [o Vu-Vodz, L: Hj(Q) - R, v [, fvdaz.

e The space V = H}() is a Hilbert space.

The trace mapping o : H(Q2) — L2(09), u — ulsq is linear continuous. Its kernel Keryy =

H} () is a closed subset of the Hilbert space H!({2). Therefore H}(f2) is a Hilbert space.
1/2

Thanks to Poincaré theorem, the mapping u — |u|1.o = (fQ |[Vu(x)| da:) is a norm

equivalent to the norm || || g1y on Hj(€2).

e The mapping a is a bilinear symmetric, continuous, coercive form on H}(€):

la(u,v)| < [Vull2@) [Voll2) = [ulelulie, Yu,v e Hy(Q),
a(v,v) = vllf o Vv € Hy(Q).

e The mapping L is a linear continuous form on H}(Q):

L) < 1 f 2@ vllz2@) < Ifllz2@) ollan @) < Cllfllzz@) lvlie, Vo € Hy(€Q) .

By Lax-Milgram theorem, there exists a unique solution u for the above variational problem.

Recovering the PDE

Let u be the solution of the variational problem (12).

Let one takes v € D(Q) C H(9) in the variational problem (12).

Since f € L*(Q) C D'(Q), v’ € L*(Q) C D'(Q), the variational problem (12) turns to

<Ul, UI>'D/ <f¢ >D/D(Q
or (—u” >D’D = <f¢ > "D(Q) >
or (—u"—f, v >D’D(Q =0.

Then the PDE is
—u" — f=0 in D'(Q).

Since f € L2(Q) and u € L*(Q), one has u” € L?(2) and the above PDE turns into
—u" = f in L*(Q) a.e.. (13)

Recovering the boundary conditions
The solution of the the variational problem (12) u € H}(2), then u = 0 on 9.

Therefore the boundary value problem is

—u" = f a.e. in Q,
u=0 on 09,

where f is a given function of L%(Q).



