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Abstract. Chemotaxis models are typically able to develop blow-up in finite times.
For some specific models, we obtain some estimates on the set of concentration of cells
(defined roughly as the points where the density of cells is infinite with a non vanishing
mass). More precisely we consider models without diffusion for which the cells’ velocity
decreases if the concentration of the chemical attractant becomes too large. We are
able to give a lower bound on the Hausdorff dimension of the concentration set, one in
the ”best” situation where the velocity exactly vanishes for too large concentrations of
attractant. This in particular implies that the solution may not form any Dirac mass.
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1. Introduction

The study of cell movement is the center of interest of many researchers. In par-
ticular a special interest is given to the study of chemotaxis which is one of the
simplest mechanisms of aggregation of biological species as it refers to a situation
where organisms move in the direction of high concentrations of a chemical which
they secrete.
Chemotaxis plays an important role in many biological processes: Unicellular organ-
isms such as bacteria or amoeba use chemotaxis to avoid harmful substances or to
form cell aggregates. A special attention is given to cancer modelling. Many math-
ematicians are motivated to model angiogenesis which is a morphogenetic process
whereby new blood vessels are induced to grow out of a pre-existing vasculature.
Indeed in order to keep growing, a tumor emits a signal that will start the angio-
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genesis and therefore connect it to blood vessels.
Many rigorous mathematical models for chemotaxis have been studied, the nature
of equations used by mathematicians for this goal are various, parabolic models,
hyperbolic models and very recently kinetic models were introduced for this aim.

This paper deals with the analysis of a particular assumption for the model,
namely that the velocity of cells decreases if the concentration of the chemical at-
tractant c(t, x) exceeds a critical value c0. This phenomena has a direct consequence
on the nature and dimension of the set of concentrations that the cells may form.
This study is of course very partial but in our opinion still interesting as it gives an
example of models which do not blow up at points (to form Dirac masses like more
classical parabolic models) but instead on higher dimensional sets.
This paper is organized as follows, the first section is this introduction, which pro-
vides a description of some models used for chemotaxis, together with their mo-
tivations and a very brief summary of the obtained results. The second section
deals with the presentation of the mathematical model that we consider, which is a
specific case of hyperbolic model for chemotaxis where the velocity of the cells de-
creases after the concentration of the chemical attractant becomes too large. In the
third section, we prove the theorems stated in the second one. Finally, the fourth
section deals with radially symmetric solutions for the system, where more explicit
computations may be performed to test the optimality of the results.

A basic model for chemotaxis was introduced by Patlak [26], and Keller and
Segel[16], who considered the following coupled parabolic and elliptic equations

∂tρ = ∆ρ−∇.(χρ∇c), x ∈ Rd, t > 0,

−∆c = ρ, x ∈ Rd, t > 0,

ρ(., t = 0) = ρ0 ≥ 0, x ∈ Rd.

(1.1)

The concentration c(t, x) represents the concentration of the chemoattractant signal.
The positive quantity ρ(t, x) corresponds to the density of cells at the position x in
the time t.
The positive function χ describes the chemotactic sensitivity, it is the fundamental
parameter which characterizes the non linearity of the system. System (1.1) with χ

constant is a gradient flow with therefore a preserved energy (see [2], [8] or [14]).
Jäger and Luckhaus [15] obtained a first result on finite time blow-up for this

model (1.1) in 1992. since then many results were obtained that prove the global
solution existence in time (we refer to [15], [20], [22] or [23]), or the blow up of local
solutions (see again [15], [20] or [21], [24]).
For the Keller Segel model, it is proved that blow up can happen even for small
initial conditions in the three dimensional case ([15]). For the two dimensional space,
blow up may occur or not, depending especially on the size of initial conditions. For
the case of one dimensional space, we never have blow up. Modified models have
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been developed to prevent the formation of blow-up (see for instance [13]),
Models based on a derive diffusion equations of Patlak, Keller Segel type are

suitable to describe many phenomenons on chemotaxis, but this model presents
some drawbacks. On one hand, we comment that parabolic models are based on
the ensemble average movement of cell populations as a whole and individual move-
ment properties are not taken into account. On the other hand, parabolic models
generally lead to pointwise blow-up, consequently the model is not suitable to de-
scribe formation of networks, which is the particular case that we are studying. For
these reasons, mathematicians have recently been interested by hyperbolic models
for chemotaxis (see for example [27] or [5]).

It is clear that the assumptions and parameters which lead to hyperbolic or
to parabolic models are different. Hyperbolic models, contrarily to parabolic ones,
are based on the individual movement, so parameters are measured by following
individual particles. Some numerical results presented by Marrocco [17] shows the
presence of networks, his numerical results were comparable to experiments with
human endothelial cells and these networks are interpreted by biologists as the
beginning of vasculature, so hyperbolic models could be well suited to model angio-
genesis.
The third class of models for chemotaxis is kinetic equations. The advantage of this
mesoscopic class of models, in comparison with the macroscopic ones, consists in
that individual cells movements are incorporated in the equations. The drawback is
of course the additional dimensions in the models, especially for efficient numerical
simulations. Such kinetic models for the cell density has been applied by Stroock
[28], Alt [1] and Othmer, Dunbar et Alt [25].

The distributional function f(t, x, v) describes the cells density at the position
x ∈ Rd, which velocity is v ∈ V ∈ Rn, at the time t ≥ 0. It typically satisfies the
following linear transport equation

∂tf + v.∇xf =
∫

V

(T (c, v, v′)f(t, x, v′)− T (c, v, v′)f(t, x, v)) dv′ = Q(f). (1.2)

The turning kernel T (c, v, v′) describes the reorientation of cells and may depend on
the concentration of the chemo-attractant c(t, x) or on its derivatives. The turning
kernel T (c, v, v′) may be written under many possible forms ([12]). For the particular
form 

T (c, v, v′) = T−(c(t, x− εv)) + T+(c(t, x + εv′)),

−∆c = ρ(t, x) =
∫

V

f(t, x, v) dv.

(1.3)

Chalub, Markowich, Perthame and Schmeiser [3] extend the existence theory for
the non linear system (1.2), coupled to (1.3); the linear case having been treated by
Hillen and Othmer in [12]. In a recent paper, Dolak and Schmeiser [6] study kinetic
models for amoebae chemotaxis, incorporating the ability of cells to assess temporal
changes of the chemoattractant concentration as well as its spatial variation.
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Although diffusion based models and kinetic equations use a different approach,
these equations are closely related, because we can obtain a drift-diffusion equation
as a macroscopic limit of kinetic model as it has been investigated by Patlak [26],
Alt [1] and Hillen and Othmer [12]. Recent papers are interested in the derivation of
the Keller Segel equation (1.1) as a macroscopic limit of a kinetic equation. For in-
stance Chalub, Markowich, Perthame and Schmeiser in [3] consider a kinetic model
coupled to an equation for the chemo-attractant, and they prove that the Keller
Segel equations can be derived rigorously as a scaling limit. The two papers [11]
and [12] deal with the moment closure of kinetic equations with stochastic jump
velocity to derive hyperbolic equations modelling chemosensitive movement.
Considering the simplest hyperbolic model where the velocity field of the cells de-
pends only on the concentration or its derivative, our aim is to explain what con-
sequences on the shape of the blow-up set has the assumption that this velocity is
small when the concentration is too high.

2. Main results

2.1. The equations

We consider the general system for a regular, bounded and open domain Ω ⊂ R3

(the proofs would extend without much difficulty to the unbounded case)
∂tρ +∇x · (ρ K(c,∇c)) = 0, ∀ x ∈ Ω,

−∆c = ρ− c, in Ω,

ρ(t = 0, x) = ρ0(x) ≥ 0, ρ0 ∈ L1 ∩ L∞(Ω).
(2.1)

The function K ∈ C1(R+ × R3, R3) is the chemotactic sensitivity, it defines how
the cells or bacteria are reacting to the chemical signal. The intuition behind the
model is that the endothelial cells move outwards, where the signal is higher.
If the domain Ω is bounded, we need to give some boundary conditions. we assume
that there is no flux at the boundary for the concentration

∂c

∂ν
= 0. (2.2)

For the density of cells ρ, we assume that no cells are entering the domain, i.e.

ρ(t, x) = 0 if K(c(t, x),∇c(t, x)) · ν(x) < 0, ∀x ∈ ∂Ω. (2.3)

In both cases ν = ν(x) is defined on ∂Ω as the outward normal vector to ∂Ω.

2.2. Local existence of solutions

It is difficult to give an existence result (even only local) for an equation with such
a general form as (2.1).
A useful assumption for that is that there exists a positive continuous (but not
necessarily bounded) function F from R+×R3×R to R+ such that for any symmetric
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matrix mij

−
d∑

i, j =1

∂bj Ki(a, b) mij ≤ F

(
a, b,

d∑
i=1

mii

)
. (2.4)

We can then prove that a solution to (2.1) exists on a finite time interval, according
to

Theorem 2.1. Assume that (2.4) holds, there exists T > 0, two functions ρ ≥ 0
and c(t, x) such that
i) ρ ∈ L∞([0, T ], L1 ∩ L∞(Ω));
ii) c ∈ L∞([0, T ], W 1,∞(Ω));
iii) ρ and c are solutions to (2.1), together with (2.3) if Ω is bounded, in the following
weak sense∫

R+

∫
Ω

(ρ∂tφ + ρ K(c,∇ c) · ∇xφ) dx dt ≥ −
∫

Ω

φ(0, x) ρ0(x) dx,

−∆xc = ρ− c in Ω, ∇xc · ν(x) = 0 on ∂Ω,

(2.5)

for all φ ∈ C∞
c (R× R3) with φ(t, x) ≥ 0 on ∂Ω.

Remark 2.2. The boundary condition (2.3) is included in the inequality (2.5).
Indeed if ρ, c were classical solutions to (2.1), then multiplying by φ and integrating
by parts, we would obtain∫

R+

∫
Ω

(ρ∂tφ + ρ K(c,∇c) · ∇xφ) dx dt =−
∫

Ω

φ(0, x) ρ0(x) dx

+
∫

∂Ω

φ(t, x) ρ(t, x) K(c,∇c) · ν(x) dσ(x),

and this last term is always non negative as φ ≥ 0 on ∂Ω, ρ ≥ 0 and (2.3).

Remark 2.3. Without (2.4), the result is somewhat weaker : We obtain ρ in
L∞ ([0, T ], Lp(Ω)) for any 1 ≤ p < ∞ provided that ρ0 belongs to L1 ∩ L∞(Ω)
(and not only to Lp(Ω) for all p < ∞). The proof of that is given after the proof of
the previous theorem.

Theorem 2.1 is optimal in the sense that in general it is not possible to obtain
solutions for all times, even if the initial data is small. In comparison, for the Keller-
Segel model, there are global solutions if a smallness assumption is done on the
initial data (as it is exposed in [4] for example). This difference is mainly due to the
fact that (2.1) does not exhibit any diffusion and is thus more singular.

If the function K is bounded then we do not need an L∞ norm on ρ to define a
solution. In fact, assume that

K ∈ C1(R+ × R3, R3) is uniformly bounded. (2.6)

Then we have
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Corollary 2.4. Let ρn ∈ L∞([0, T ], L1 ∩ L∞(Ω)) be a sequence of solutions to
(2.1) in the sense of (2.5) (with cn the solution of the elliptic equation associated
with ρn). Assume (2.6) and that the family ρn(t, .) for n ∈ N and t ∈ [0, T ] is
equi-integrable, then any weak limits of ρn and cn is also a solution in the sense of
(2.5).

Remarks.
1. We are not able in general to show the propagation of any Lp norm other than
L1 or L∞ even for a short time. So in this sense the corollary simply says that if,
by chance, we know that we have equi-integrability (coming from a Lp bound for
example) then we can define a solution. This would be very different if a viscosity
were added.
2. If ρ ∈ L∞([0, T [, L1(Ω)), then the solution c to −∆c = ρ − c is in
L∞([0, T [, W 1,p

loc (Ω)) with p ≤ 3/2, through standard results on elliptic equa-
tions (see [10] for instance). The function K being bounded and regular, there is no
difficulty in defining the product K(c, ∇c)× ρ and consequently in using (2.5).

2.3. Properties of the singularities

The non existence of global solutions leads to the study of the singularities that
a solution can develop. Precisely, assume that we have a solution on the maximal
time interval [0, T [. That means that the L∞ norm of ρ(t, .) is blowing up as t → T .
Therefore we may define the blow up set S as

S = {a ∈ Ω | ∀r > 0, sup
t, |x−a|<r

ρ(t, x) = +∞},

which is the set of all points around which ρ is unbounded. This definition cor-
responds to the usual one, for the blow up of semilinear heat equations or wave
equations for example. The topology and properties of the set for those equations is
already well studied (see Giga and Kohn [9], Merle and Zaag [18] and [19], Velázquez
[29] and [30], and Zaag [31] among others).

However another set is also of interest here. From (2.5), it is obvious that

‖ρ(t, .)‖L1(Ω) ≤ ‖ρ0‖L1(Ω),

and therefore that ρ is compact in the weak-* topology of Radon mea-
sures. Moreover, provided that K is a bounded function then ∂tρ belongs to
L∞([0, T ], W−1,1(Ω)) and the weak limit of ρ is necessarily unique, which means
that we have a unique measure, denoted ρ(T ), with

ρ(t, x) dx −→ dρ(T, x), as t → T.

Consequently we may also consider the set where ρ(T ) is concentrated. Precisely
decompose ρ(T ) into ρ̃ dx + dm1 with m1 orthogonal to the Lebesgue measure in
Rd. Then we may define S ′ as the support of m1; It is a set with measure 0 (for
Lebesgue measure) but the total mass of the cells located on it is not 0.
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Obviously S ′ is included in S but in general the inclusion is strict. From the
experimental point of view, what is seen is probably more S ′ than S (but that could
be disputed) as it is certainly easier to identify the accumulation of mass. From a
mathematical point of view, S ′ makes more sense than S for this particular problem

because of Corollary 2.4.
We study here the specific case where the velocity of the cells decreases after

the concentration of the chemical attractant becomes too large. More specifically
we assume that

|K(a, b)| ≤ C

|a|β
, with β > 1, if a > c0 > 0. (2.7)

Theorem 2.5. Assume that K is bounded and that (2.7) holds. Consider a function
ρ(t, x) ∈ L∞([0, T [, L1 ∩L∞(Ω)), solution to (2.1) on [0, T [ in the sense of (2.5).
Then its weak limit ρ(T ) as t → T (in the sense of (2.3)) satisfies

sup
x0

sup
r

1
rα

∫
B(x0,r)

dρ(T, y) < +∞, (2.8)

with α ≤ 1− 1
β .

Remarks.
1. The solution does not need to belong to L∞, considering Cor. 2.4, any space
ensuring equi-integrability in L1 would be fine.
2. This result gives a topological information on S ′, it roughly states that S ′ is
at least of dimension α. For instance, S ′ cannot contain any Dirac mass. More
precisely, the theorem gives a bound on what is called the α dimensional upper
density of ρ(T, .) (see [7]) and this implies that if ω ⊂ Ω has positive measure for
ρ(T, .) (ρ(T, ω) > 0) then its α dimensional Hausdorff measure is positive.
3. The same remark as in Corollary 2.4 applies here.
4. If K is compactly supported, then it is possible to choose α = 1.
5. The limit case α = 1 is directly connected to the singularity in 1/|x| of the
fundamental solution of the laplacian in dimension 3. For a generic dimension d,
the exponent would be d− 2 instead.

3. Proof of Theorem 2.1 and Corollary 2.4

3.1. Proof of Theorem 2.1

We consider (ρn, cn) a sequence of solutions to (2.1) with initial data ρn(t = 0)
converging strongly toward ρ0, then we show that there exists a time T , such that
the limits (ρ, c) satisfy the condition i) and ii) and (ρ, c) is a solution of (2.1). The
existence result 2.1 would follow by a standard approximation procedure. Let us
start by proving some uniform bounds on (ρn, cn). On one hand

ρn ≥ 0, ‖ρn(t, .)‖L1(Ω) ≤ ‖ρn(t = 0)‖L1(Ω) = ‖ρ0‖L1(Ω).
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On the other hand, (2.1) may be written as

∂tρn+K(cn,∇cn).∇xρn = −ρn

∑
i,j

∂bj Ki(cn,∇cn)×∂xi(∂xj cn)−ρn

∑
i

∂aKi(cn,∇cn)×∂icn.

So

∂tρn + K(cn,∇cn).∇xρn ≤ ρnF (cn,∇cn,∆cn)− ρnK ′.∇cn,

and consequently we obtain

d

dt
‖ρn(t, .)‖L∞(Ω) ≤ F̃ (‖ρn‖∞), (3.1)

because we have the following inequalities (for Ω bounded)

‖∆cn‖∞ ≤ C‖ρn‖∞,

and

‖∇cn‖∞, ‖cn‖∞ ≤ ‖ρn‖∞.

Thanks to Gronwall Lemma, (3.1) implies that there exists a time T and a constant
C depending only on ‖ρ0‖L∞ for which, uniformly in n,

‖ρn‖L∞([0, T ]×Ω) ≤ C.

As a consequence we may extract subsequences of ρn and cn such that (still denoted
the same) we have in the corresponding weak topology

ρn → ρ in L∞([0, T ]× Ω).

cn → c in W 1,∞([0, T ]× Ω).

Finally, it comes

K(cn,∇cn) −→ K(c,∇c), in L∞,

and we may pass in the limit in the equation (2.1).

3.2. Without assumption (2.4)

Instead of (2.4), assume we only have the much weaker property that K ∈ C1(R×
R3).

Following the previous proof, it is enough to show that there exists bounds Mp

and a time T such that for any p < ∞, any t < T and any n∫
Ω

|ρn(t, x)|p dx ≤ Mp. (3.2)

Now using the equation we have that

d

dt

∫
Ω

|ρn(t, x)|p dx ≤− p

∫
Ω

ρp
n

∑
i,j

∂bj Ki(cn,∇cn)× ∂xi(∂xj cn) dx

− p

∫
Ω

ρp
n

∑
i

∂aKi(cn,∇cn)× ∂icn dx.
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Now in dimension 3 by Sobolev embedding the L∞ norm of cn and ∇cn are dom-
inated for instance by the L4 norm of ρn. Therefore using Hölder inequality, we
deduce that there exists a function F such that

d

dt

∫
Ω

|ρn(t, x)|p dx ≤ F (‖ρn‖4L4) ‖ρn‖p/(p+1)
Lp+1 ‖cn‖W 2,p+1 .

Denote

αp(t) =
∫

Ω

|ρn(t, x)|p dx.

As the W 2,p+1 norm of cn is dominated by the Lp+1 norm of ρn, we obtain

α′p ≤ F (α4) αp+1,

with the initial condition

αp(0) ≤ ‖ρ0‖L1 ‖ρ0‖p−1
L∞ .

Define

Nn(t) = sup
p

sup
s≤t

(αp(s))1/p.

Then Nn(0) ≤ max(1, ‖ρ0‖L1) max(1, ‖ρ0‖L∞), Nn(t) is well defined as the ρn are
regular and as such sups≤t ‖ρn(s, .)‖L∞ < ∞ for any n. Moreover

dNn

dt
≤ F (N4

n) N2
n.

Consequently, thanks to Gronwall lemma, there exists T and M depending only on
‖ρ0‖L1∩L∞ such that for any t < T ,

Nn(t) ≤ M.

Taking Mp = Mp, we satisfy (3.2).

3.3. Proof of Corollary 2.4

If ρn ∈ L1 uniformly, then cn ∈ W 1,p(Ω) uniformly for all 1 ≤ p ≤ p0 with p0 = 3/2
in three dimensions (p0 is such that W 2,1 ↪→ W 1,p0 according Sobolev embedings).
Therefore as the embedding is compact for p < p0 we have

∇cn, cn −→ ∇c, c, in Lp(Ω),

and as K is bounded

K(cn,∇cn) −→ K(c,∇c), in Lp(Ω).

It remains to prove that ρnK(cn,∇cn) ⇀ ρK(c,∇c). For all ϕ ∈ L∞([0, T ] × Ω),
we have ∫

ϕ(K(cn,∇cn)ρn −K(c,∇c)ρ)

=
∫

ϕ
(
K(cn,∇cn)ρn −K(c,∇c)ρn + K(c,∇c)ρn −K(c,∇c)ρ

)
=
∫

ρnϕ
(
K(cn,∇cn)−K(c,∇c)

)
+
∫

ϕK(c,∇c)(ρn − ρ).
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The term
∫

ρnϕ
(
K(cn,∇cn)−K(c,∇c)

)
satisfies

|
∫

ρnϕ
(
K(cn,∇cn)−K(c,∇c)

)
|

= |
∫
{ρn≤M}

ρnϕ
(
K(cn,∇cn)−K(c,∇c)

)
|+ |

∫
{ρn>M}

ρnϕ
(
K(cn,∇cn)−K(c,∇c)

)
|

≤ M C‖K(cn,∇cn)−K(c,∇c)‖L1 + C ‖
∫
{ρn>M}

ρn‖L∞(L1).

As ρn is equi-integrable, the term ‖
∫
{ρn>M} ρn‖L∞(L1) converges toward 0 as M →

∞, uniformly in n. This is enough to conclude.

For the term
∫

ϕK(c,∇c)(ρn−ρ), the sequence ρn is equi-integrable and there-

fore converges weakly in L1. As K(c,∇c) is bounded, this term converges also
toward 0. From

K(cn,∇cn)ρn ⇀ K(c,∇c)ρ,

we may pass to the limit in the equation and extend the time of existence.

4. Proof of Theorem 2.5

By contradiction, let us assume that there exist a point x0, a sequence rn converging
to zero and another ηn converging to +∞ when n goes to infinity such that

1
rn

α

∫
B(x0,rn)

ρ(t, x) dx ≥ ηn, (4.1)

with α ≤ 1− 1
β . For simplicity we assume that x0 = 0.

We denote V (t, x) = K(c(t, x),∇c(t, x)) and define the characteristics as usual by{
Ẋ(t, s, x) = V (t, X(t, s, x)),
X(s, s, x) = x.

(4.2)

We will simply write X(t, x) for X(t, 0, x). We recall that K is bounded and therefore
V as well, so X(t, s, x) is lipshitz in time. Consequently, X has a limit when t
converges to T which is the time of blow up.
For all n, we denote

Bn = {y | |X(T, y)| ≤ rn} 6= ∅.

We also define Rn(t) = supy∈Bn
|X(t, y)|, so we have

Rn(t) ≤ v(T − t) + rn,

where v = sup |K| is the maximal velocity of displacement of cells along the char-
acteristics curves (we remind that for all y, |X(T, y)−X(t, y)| ≤ v(T − t)).
We introduce the time tn such that for all t ≥ tn{

Rn(t) ≤ 2rn,

Rn(tn) = 2rn.
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Therefore

T − tn ≥
rn

v
.

Now, for all t ≥ tn, for all |x| ≤ Rn(t), we have

c(t, x) ≥
∫
|y|≤Rn(t)

1
|x− y|

ρ(t, y) dy,

≥ 1
2Rn(t)

∫
|y|≤Rn(t)

ρ(t, y) dy,

≥ 1
2Rn(t)

∫
{y | X(0,t,y)∈Bn}

ρ(t, y) dy,

=
1

2Rn(t)

∫
|z|≤rn

ρ(t, z) dz.

Using (4.1), we know ∫
|z|≤rn

ρ(t, z) dz ≥ ηn rα
n .

Thus, for t ≥ tn and |x| ≤ Rn(t)

c(t, x) ≥ ηn

2Rn(t)
rα
n ,

≥ ηn

2α+1
R α−1

n (t).

However we have for all y ∈ Bn,∀t ≥ tn, |X(t, y)| ≤ Rn(t), and so in particular, we
deduce that

c(t, X(t, y)) ≥ ηn

2α+1
Rα−1

n (t).

As α < 1 and Rn → 0, this last quantity converges to +∞ and thanks to (2.7), we
obtain

|K(c(t, X(t, y))) ≤ C
( ηn

2α+1
Rα−1

n (t)
)−β

.

On the other hand, the characteristic equation (4.2) implies that

X(T, y)−X(t, y) =
∫ T

t

K(c(s,X(s, y)), ∇c(s,X(s, y))) ds.

Consequently for y ∈ Bn

|X(t, y)−X(T, y)| ≤ C 2β(α+1) η−β
n

∫ T

t

Rβ(1−α)
n (s) ds.

Therefore, for all y ∈ Bn,

|X(t, y)| ≤ rn + C 2β(α+1) η−β
n

∫ T

t

Rβ(1−α)
n (s) ds. (4.3)
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Now, for all positive time t, by the definition of Rn(t) there exists ym such that
|X(t, ym)| converges to Rn(t) as m goes to infinity. Writing (4.3) for ym and taking
the limit, we get

Rn(t) ≤ rn + C 2β(α+1) η−β
n

∫ T

t

Rβ(1−α)
n (s) ds.

Applying Gronwall lemma and since β(1− α) ≥ 1, we finally obtain that

Rn(t) ≤ rn eC̃ η−β
n (T−t),

where C̃ = C 2β(α+1). Taking this for t = tn,

2rn ≤ rn eC̃ η−β
n (T−tn) ≤ rn eC̃ η−β

n T ,

or

eC̃ η−β
n T ≥ 2.

As ηn converges toward +∞, this cannot hold true for all n thus a contradiction
and the theorem is proved.

5. Control through the gradient of the concentration: The radially
symmetric case

Let us consider a simplified situation where the velocity of a cell does not depend
at all on the concentration c(t, x), namely{

∂tρ(t, x) +∇x(ρ(t, x)K(∇c(t, x))) = 0,

−∆c(t, x) = ρ(t, x).
(5.1)

Given our previous result, one may wonder if it is not possible to control the set of
concentration of the solution also by assuming that K(∇c) decreases fast enough
when |∇c| → +∞, instead of |K(c,∇c)| ≤ C |c|−β . Of course this would be more
general but moreover as ∇c = C

x

|x|3
?ρ is more singular, the control on the dimen-

sion of the set would be more precise.
We cannot say much for the general case so let us consider the simple case of

positive radially symmetric solution ρ of the system. This is quite similar to many
studies for the classical Keller-Segel model (where K(ξ) = ξ) in a slightly more
complicated setting.

The concentration of chemical substance is consequently a radially symmetric
function, and we have

c(r) = c(0)−
∫ r

0

(s− s2

r
)ρ(t, s) ds,

c(0) =
∫ +∞

0

sρ ds.

We recall that as ρ has a bounded mass, the integral
∫ ∞

0

r2 ρ(t, r) dr is bounded.
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From the formula for c, we get

∂rc(t, r) = − 1
r2

∫ r

0

s2ρ(t, s) ds.

And finally, in order to have radially symmetric solutions we take the function K

of the form

K(∇c) = −φ(|∂rc|)×
x

|x|
= −φ(−∂rc)×

x

|x|
, (5.2)

because |∂rc| = −∂rc. The function φ(ξ) should satisfy φ(0) = 0 (for K(0) to be
defined), φ ≥ 0 (in order to have concentrations and not dispersion). Now let us
assume in the spirit of what we did before that for β > 1/2

φ(ξ) ≤ C

1 + ξβ
. (5.3)

Then we have

Theorem 5.1. Consider ρ ∈ L∞([0, T [, L1 ∩ L∞(R3)), non negative, radially
symmetric and solution to (5.1) with K defined by (5.2) and with (5.3). Then for
any α ≤ 2− 1

β , we have that

sup
η>0

1
ηα

∫ η

0

ρ(T, s) s2 ds < ∞.

Proof. The characteristic curves are defined by

∂tR(t, r) = −φ(−∂rc(t, R(t, r))), R(0, r) = r.

If we denote m(t, r) =
∫ r

0

s2ρ(t, s) ds, then we can write

−∂rc(t, r) =
m(t, r)

r2
,

but m(t, R(t, r)) = m0(r) because of mass conservation, which implies

∂tR(t, r) = −φ(
m0(r)

R2(t, r)
).

Then (
1 +

(m0)β

R2β

)
∂tR ≥ −C.

This can easily be solved and it gives

(m0(r))β

R2β−1(t, r)
− (2β − 1) R ≤ C̃ t +

(m0(r))β

r2β−1
− (2β − 1) r.

If ρ0 ∈ L∞ then m0(r) behaves like r3 and (m0)β r1−2β ≤ C r. As R(t, r) ≤ r, we
find for some constant C (depending on β and ‖ρ0‖L∞)

R(t, r) ≥ C
(m0(r))β/(2β−1)

(t + r)1/(2β−1)
. (5.4)
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Now for α > 0, let us estimate

sup
η>0

1
ηα

∫ η

0

ρ(t, s) s2 ds = sup
η>0

m(t, η)
ηα

= sup
r>0

m0(r)
Rα(t, r)

.

Thanks to (5.4), we deduce that

sup
η>0

1
ηα

∫ η

0

ρ(t, s) s2 ds < ∞, if α ≤ 2− 1
β

. (5.5)

This is the equivalent of Theorem 2.5 with a better estimate for α. However, as we
have already said, we do not know how to prove this without radial symmetry.

Before concluding this section, we point out that if K (or φ here) does not decay
fast enough, Dirac masses may occur. More precisely let us simply assume, still in
the case of radially symmetric functions, that∫ ξ0

0

1
φ(ξ−2)

dξ < ∞, ∀ ξ0 > 0. (5.6)

This is true if for example φ(ξ) ≥ C ξβ for large ξ with β < 1/2. We recall that we
also have φ(0) = 0 and we assume that

φ′(0) > 0. (5.7)

We will only consider initial data ρ0(r) which are bounded from below around r = 0.
Then we can choose carefully ρ0 and T0 such that the solution ρ(t, r) blows up and
forms a Dirac mass at t = T0. Because of mass conservation, this means that there
exists r̄ > 0 such that m(0, R0) = m and R(T, r) = 0 for all r ≤ r̄.

We introduce the following changes of variables

1. We choose R0 ≤ r̄ such that
r√

m0(r)
is a bijective and decreasing function from

[0, R0] to [U0, +∞[, and we denote χ(u) the inverse of
r√

m0(r)
. This is always

possible as ρ0 is assumed to be bounded from below around r = 0 and

d

dr

(
r√

m0(r)

)
=

1√
m0(r)

(
1− r ρ0(r)

m0(r)

)
.

2. We define

U(t, u) =
1√

M(u)
R(
√

M(u) t,
√

M(u) u),

denoting M(u) = m0(χ(u)). The definition of U leads to

R(t, r) =
√

m0(r)U(
t√

m0(r)
,

r√
m0(r)

).
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We evidently have

∂tU =
1√

M(u)

√
M(u)∂tR(

√
Mt,

√
Mu),

= −φ
( m0(

√
M(u) u)

R2(
√

M t,
√

M u)

)
.

But we know that
χ(u)√

m0(χ(u))
= u, so

χ(u) = u
√

m0(χ(u)) = u
√

M(u),

and consequently

m0(
√

M(u)u) = m0(χ(u)) = M(u).

Therefore we simply have

∂tU = −φ

(
1

U2

)
= −F (U).

Introduce g(ξ) such that g′(ξ) =
1

F (ξ)
, and g(0) = 0. This is possible only because

of (5.6). Notice also that as φ(0) = 0, we typically have that φ(ξ−2) behaves like
ξ−2 for large ξ. Therefore that g(ξ) converges to +∞ as ξ → +∞. As

∂tU

F (U)
= −1,

we find

g(U(t, u)) = −t + g(u).

We remark that g is an increasing function, and consequently that it is a bijective
function, so

R(t, r) =
√

m0(r)g−1

(
− t√

m0(r)
+ g

(
r√

m0(r)

))
. (5.8)

We want to have T0 and ρ0 such that for all positive r ≤ R0, R(T0, r) = 0. We
define α(r) =

√
m0(r) and β(r) = (m0(r))−1/2, it has to satisfy that

βT0 = g(βr). (5.9)

On the other hand, as g′(ξ) behaves like ξ2, there exists ξ0 such that g is strictly
convex after ξ0. Choosing R0 small enough, for all r < R0 there exists a unique
β(r) > ξ0 r−1 solution of (5.9). Moreover g(ξ) behaves like ξ3 and consequently
this β(r) behaves like r−3/2. We now have defined β (and thus α and ρ0) such that
R(T0, r) = 0. This is not enough however as we did not prove that some blow-up did
not occur before T0. What we have proved is that if there exists a regular solution
until T0 then this solution forms a Dirac mass at T0. To prove that the solution is
regular until T0 we need to control the characteristics and more precisely to show
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that they are lipschitz continuous. As we work with radially symmetric solutions,
this reduces to showing that ∂rR(t, r) > 0 for all r < R0 and t < T0.

Let us write the equation for α and differentiate in r to get

α′
(
g′
( r

α

) r

α
− g(

r

α
)
)

= g′(
r

α
). (5.10)

Differentiating (5.8), we have

∂rR(t, r) = α′g−1(− t

α
+ g(

r

α
)) +

α[ t
α2 α′ + g′( r

α )( 1
α − r α′

α2 )]
g′(g−1(− t

α + g( r
α )))

,

so, using (5.10), we obtain

∂rR(t, r) = α′
R

α
+ F

(
R

α

) [
t
α′

α
− α′g

( r

α

)]
.

On the other hand g(
r

α
) =

T0

α
, consequently

∂rR(t, r) = α′
[
R

α
+ F

(
R

α

)
t− T0

α

]
.

Finally, we obtain

∂rR = 0 ⇔ R

α
= F

(
R

α

)
T0 − t

α
.

Consider the equation ξ = γF (ξ), where γ is a given real number. The function
F (ξ) = φ(ξ−2) is increasing in [0, ξ1] (for ξ1 small enough). So there exists a unique
solution ξ0 in [ξ1,+∞[ if and only if ξ1 < γF (ξ1).

On the other hand R(t, r) is decreasing in time thus R/α ≤ r/α. This last
function (also equal to β r) may be chosen as small as we wish (we recall that the
value of β r at r = 0 may be chosen freely as long as it does not vanish). Therefore
∂rR 6= 0 for all r, for all t < T0, if and only if for all t < T0, for all r ∈ [0, R0],

R(t, r) > F

(
R(t, r)
α(r)

)
(T0 − t).

Since

∂tR(t, r) = −F (
R(t, r)
α(r)

),

we know that

R(t, r)−R(T0, r) =
∫ T0

t

F (
R(s, r)
α(r)

) ds.

Now we remind that R(T0, r) = 0 and if s > T , R(s, r) < R(t, r) so

F

(
R(s, r)
α(r)

)
> F

(
R(t, r)
α(r)

)
.

Finally we conclude that for all t, for all r we have

R(t, r) > F

(
R(t, r)
α(r)

)
(T0 − t).
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Consequently if t < T0, we have

∂rR > 0,

and no blow up may occur before T0.
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