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Abstract. We consider the solutions to a kinetic equation which kinetic
energy converges to zero fast enough. We prove that they concentrate
near the speed zero and converge towards a measure which is a product
of a measure on the spacial coordinates and a Dirac mass on the speed
coordinates. The difficult point here is that the full solution converges
since we do not know any characterisation of the limit problem for the
spatial density. We give two results of this kind, depending on the
regularity of the solution, and on the assumptions. Finally we present
an example of equation which describes the interactions of particles in
a flow and where these theorems apply.

Rsum. Nous démontrons ici que si une solution d’une quelconque équation
cinétique a une énergie cinétique qui tend vers zero, alors toute la masse
se concentre autour des vitesses nulles. Plus prcisément la solution
admet une limite en temps grand qui se décompose en un produit d’une
mesure sur les coordonnées spatiales et d’une masse de Dirac sur les
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coordonnées en vitesse. Nous détaillerons deux théorèmes avec leurs
conditions d’application selon la régularité de la solution considérée et
nous donnerons un exemple d’équation auquel ces théorèmes peuvent
s’appliquer.

Key-words. Kinetic equation. Long time asymptotic. Vlasov equation.
Systems of particles in a fluid.

AMS Classification. 35B40, 35B45, 35Q35, 76D07.

Introduction

This paper is devoted to the study of the qualitative properties for
large times of the solutions to some nonlinear kinetic equation with friction
terms. The specificity of these equations is a a very fast decay of the kinetic
energy. As a consequence the solution concentrates near the speed zero and
the speed of particles decreases until the particles are frozen.

We will consider equations of the general form

(1)







∂

∂t
f + divx(vf) + divv

(

F [f ]
)

= 0 , t ≥ 0, x ∈ IRd, v ∈ IRd ,

f(t = 0, x, v) = f0(x, v) ≥ 0 .

This kind of equations appears in the problem of particles in a Stokes
flow in dimension three. We consider the dynamics of a great number of
spherical particles moving in an incompressible fluid that satisfies the Stokes
equation, which means we only retain the viscous effects. With some ap-
proximation which consists mainly in supposing that the global interaction
can be decomposed into two particles interactions, we can obtain such an
equation for the distribution function of the particles. In this case, with
some reasonnable assumptions detailed in 3. we are able to guarantee an
enough decay of the kinetic energy. Some mathematical problems of parti-
cles moving in a incompressible and perfect fluid have already been studied
by G. Russo and P. Smereka ( see [11] ) and H. Herrero, B. Lucquin-Desreux
and B. Perthame ( see [7] ) but in that case the long time behaviour is un-
clear.

In the case of the viscous suspension the term F [f ] can be expressed
as (A ?x j − λv)f for some matrix A, a non-negative constant λ. Hence (1)
becomes in this situation

(2)























∂

∂t
f + divx(vf) + divv

(

(A ?x j − λv)f
)

= 0 , t ≥ 0, x, v ∈ IR3 ,

j =

∫

vfdv ,

f(t = 0, x, v) = f0(x, v) ≥ 0 .
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It turns out that in this case we can give a precise description of the
long term behaviour : provided the kinetic energy of f(t, ., .) converges to

zero when t goes to infinity and provided this energy belongs to L
1
2 ([0, ∞])

then the solution f to equation (1) converges to a distribution ρ̄(x)δ0(v)
in a weak sense ( in the distributional sense or in the weak topology of
Radon measures depending of the assumptions we make ). One of the
main difficulty we solve here is to prove that the full solution, and not only
subsequences, converges in large time because we are unable to derive an
equation for ρ̄.

Another classical example for (1) is the Vlasov-Poisson equation with
friction where, in dimension three,















F [f ] = (∇x(
4π

|x|
) ? ρ− λv)f ,

ρ =

∫

IR3

fdv .

When λ = 0 it is known that for this equation all energy becomes
kinetic energy in large times ( see [10] ). However the situation is completely
different for λ > 0 and we do not have any precise informations about the
behaviour of the kinetic energy of the solution. Thus we are not sure that
this energy will tend to zero in large times and the results presented here
cannot apply.

Some results concerning the limit in large times of solutions of kinetic
equations posed in the whole space have already been proved. F. Bouchut
and J. Dolbeault have thus shown that the solution of a Vlasov-Fokker-
Planck equation converges towards the equilibrium state ( see [4] ). A precise
decay of solutions to the Boltzmann equation can be found in [2], and for
renormalized solutions in [10]. D. Benedetto, E. Caglioti and M. Pulvirenti
in [3] have also studied a simplified model whose solution converges to a
Dirac mass. The main difference between these results and our own is that
we are not able to precise exactly the limit which depends in general on the
parameters of the equation and on the initial data.

The first part of this paper will be devoted to precise exactly the as-
sumptions, especially on the initial data, and the kind of convergence we
get. The theorems written in this first part will be proved in the second
part. We will deal with equation (2) in the third part and give there some
existence results that ensure that with, some conditions on A and f 0, we
can apply our theorems to the solution of this equation.
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1. Main results

We will always consider non-negative initial data and assume it satisfies
the two following conditions

f0(x, v) ∈ L1 ∩ L∞ (IR2d) ,(3)

E0 =

∫

IR2d

|v|2f0dvdx < +∞ .(4)

We will completely ignore for the time being the question of existence
of solutions to such a system and we therefore admit that there exists a
non-negative solution, in the distributional sense, at least in L∞([0 T ], L1∩
L∞(IR2d)) for all T and that this solution satisfies the natural energy esti-
mate

(5) E(t) =

∫

IR2d

|v|2f(t, x, v)dvdx ≤ E0 .

We consider operators F continuous from the space of functions in
L1(IR2d, (1 + |v|2)dxdv) and in L∞(IR2d) to some Lp(IR2d), 1 ≤ p ≤ ∞.
A natural additionnal condition on F is that for all f ∈ L1 ∩ L∞(IR2d)
with finite energy, vF [f ] belongs to L1(IR2d) with continuity, and that the
non-linear term F [f ] contributes to a decay of the kinetic energy :

(6)

∫

IR2d

vF [f ](x)f(t, x, v)dvdx≤ 0 , ∀t > 0 .

Here we do not need such a strong condition but only a consequence.
Namely we will suppose that the kinetic energy vanishes fast enough, that
means the square root of the kinetic energy is L1 in time

E(t) −→ 0 as t→ +∞ ,(7)

√

E(t) =

(
∫

IR2d

|v|2f(t, x, v)dvdx

)
1
2

∈ L1([0, +∞]) .(8)

It is nevertheless interesting to consider regular solutions : if we want
to deal with classical solutions we will impose

(9) f ∈ C1
(

[0, T ], L1 ∩ C1(IR2d)
)

∀ T > 0 .

Condition (9) is rather restrictive, thus we will use also another one

(10) f, F [f ] ∈ C
(

[0, T ], L1(IR2d)
)

∀ T > 0 .
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Condition (10) allows us to speak directly of the limit of f but is not enough
alone. We will need another asumption

(11)















There are sequences f 0
m, fm, Fm[fm] solution to (1), which

satisfy (3) − (5), (7) − (9), such that ρm ⇀ ρ w −M1(IRd)

for a.e t and sup
m
em(t) → 0 as t→ ∞,

where we have defined

em(t) =

∫ ∞

t

√

Em(s)ds .

Also notice an elementary estimate which we will use later on

(12)

∫

IR2d

f(t, x, v)dvdx ≤

∫

IR2d

f0(x, v)dvdx .

It is immediately deduced from the conservative form of the equation.
Solutions satisfying (10)–(12) will be called weak solutions.
The finite energy assumption gives us estimates about the mass density

ρ(t, x) =
∫

IRd fdv and about the quantities jα(t, x) =
∫

IRd |v|
αfdv for

0 < α < 2 namely the usual

‖ρ(t, .)‖L1 ≤ ‖f(t, ., .)‖L1 ,(13)

‖ρ(t, .)‖
L

d+2

d
≤ C‖f(t, ., .)‖

2
d+2

L∞ E(t)
d

d+2 ,(14)

‖jα(t, .)‖L1 ≤ C‖f(t, ., .)‖
1−α

2

L1 E(t)
α
2 ,(15)

‖jα(t, .)‖
L

d+2

d+α
≤ C‖f(t, ., .)‖

2−α
d+2

L∞ E(t)
d+α

d+2 .(16)

With our assumptions the only bounds (13) and (15) are uniform in
time. However if we have

(17) ‖f(t, ., .)‖
2

d+2

L∞ × E(t)
d

d+2 ∈ L∞([0,+∞]) ,

Then the bound (14) is also uniform in time and we can expect some weak
convergence of ρ. The decay of the energy of f suggests that the solution
concentrates in large times near the small velocities and indeed we are able
to prove the following theorem :
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Theorem 1 : Under the assumptions (3) − (5), (7), (8), (10), a solution
to the equation (1) obtained through (11) satisfies, as t tends to infinity

f(t, x, v) ⇀ f̄(x, v) = ρ̄(x)δ(v) in w −M 1(IR2d) ( weak topology on
Radon measures ) and

ρ(t, x) ⇀ ρ̄(x) in w −M1(IRd), and in w − Lp(IRd) for 1 ≤ p ≤ d+2
d if

(17) holds.

Theorem 2 : Suppose (3), suppose also that f ∈ L1 ∩L∞(IR2d) is a non-
negative solution to (1), in a distributional sense, which satisfies the bound
(12) and that its mass density ρ satisfies the continuity equation

(18) ∂tρ+ divj = 0 ,

and the two following conditions which generalize (7) and (8)

(7′) lim
t→∞

∫

IR2d

|v|2φ(x)f(t, x, v)dxdv = 0 , ∀φ ∈ C∞
0 (IRd) nonnegative,

(8′)

∫

IR2d

|v|2φ(x)f(t, x, v)dxdv ∈ L
1
2 ([0, ∞]) , ∀φ ∈ C∞(IRd) .

Then there exists a Radon measure ρ̄ such that, when t tends to infinity,
f(t, ., .) converges to ρ̄(x)δ0(v) in w −M1(IR2d)

lim
t→∞

∫

IR2d

ψ(x, v)f(t, x, v)dvdx =

∫

IRd

ψ(x, 0)ρ̄(x)dx, ∀ψ ∈ C0(IR
2d) .

Remarks.

1. The limit ρ̄ depends heavily on the complete initial datum ( not
only on ρ0 for example ) and of course on the operator F . In fact this can
be seen on a very simple example, let us suppose that F = −λvf . Such
an operator satisfies obviously all the conditions we have set and we know
explicitely the solution :

f(t, x, v) = edλtf0(x−
eλt − 1

λ
v, eλtv) .

In this case the limit is

ρ̄(x) =

∫

IRd

f0(x−
v

λ
, v) dv .
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2. Theorem 2 demands very few regularity on the solution compared
with theorem 1. Notice that although f is not continuous in time here,
∫

IR2d ψ(x, v)f(t, x, v)dvdx is continuous provided ψ is at least C1 and com-
pactly supported. If we want still less regularity on the solution we can
replace f by

∫

Φ(t+ s)f(s, ., .)ds.
3. The important point in theorems 1 and 2 is that the full limit exists :

the whole family f(t, ., .) converges and not only sub-sequences. This relies
on assumptions (8) or (8′).

4. We show in section 3 that the equation (2) enters in the case of
theorem 1 for strong solutions and theorem 2 for weak solutions.

2. Proof of theorems 1 and 2.

First of all, we recall that ρ is bounded for all time and that all jα

converges to zero as t→ ∞ thanks to (7) and (8) and (15)

‖ρ(t, .)‖L1 ≤ C ,

‖jα(t, .)‖L1 ∈ L1([0, +∞]) .

As a consequence {f(t, ., .) |t ≥ 0} is weakly compact in M 1(IR2d) and
{ρ(t, .) |t ≥ 0} is weakly compact in M 1(IRd).

We divide the proof of theorem 1 in two parts. First we will show the
special form of the possible limits. Second we demonstrate the uniqueness
of the limit. We then explain quickly how to prove theorem 2.

First Step. The form of the limit

Lemma 1 : Consider a sequence of functions fn(., .) uniformly bounded in
L1(IR2d) which converges weakly to a measure f̄ in M1(IR2d). Suppose the
kinetic energy En of each fn exists and converges to zero and set ρn(x) =
∫

IRd fn(x, v)dv, then ρn converges weakly in M 1(IRd) to a ρ̄ and f̄(x, v) =
ρ̄(x)δ(v).

Proof of lemma 1.
We show that, for all φ1 and φ2 in C0(IR

d),
∫

IR2d φ1(x)φ2(v)fndxdv and
φ2(0)

∫

IRd φ1(x)ρn(x)dx can be made as close as we wish provided n is large
enough. Indeed : for all ε > 0, there exists η so that whatever |v| < η we
have

|φ2(v) − φ2(0)| <
ε

2‖φ1‖L∞ . supn ‖ρn‖L1

.

Recalling now that En converges to 0, we choose N so that for all
n ≥ N , we have
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2η−2.‖φ1‖L∞ .‖φ2‖L∞ .En ≤
ε

2
,

therefore for all n ≥ N

∆1(n) =

∣

∣

∣

∣

∫

IR2d

φ1φ2fndxdv − φ2(0)

∫

IRd

φ1ρndx

∣

∣

∣

∣

≤

∫

IRd

|φ1|

(

∫

|v|<η

|φ2(v) − φ2(0)|fndv

)

dx

+

∫

IRd

|φ1|

(

∫

|v|≥η

|φ2(v) − φ2(0)|fndv

)

dx .

As a consequence we get

∆1(n) ≤ ‖φ1‖L∞ .‖ρn‖L1 . sup
|v|<η

|φ2(v) − φ2(0)|

+

∫

IRd

|φ1|

∫

|v|≥η

|φ2(v) − φ2(0)|
|v|2

η2
fndvdx

≤
ε

2
+

2

η2
.‖φ1‖L∞ .‖φ2‖L∞ .En < ε .

Since
∫

IR2d φ1(x)φ2(v)fn(x, v)dxdv has a limit we deduce that the other
integral φ2(0)

∫

IRd φ1(x)ρn(x)dx also has one, which shows that ρn converges

weakly towards some ρ̄ in M 1(IRd). The identity of the two limits demon-
strates then that

f̄(x, v) = ρ̄(x).δ(v) ,

which ends the proof of the lemma.

With the assumption (7) in theorem 1, this lemma allows to say that
any weakly converging subsequence f(tn, ., .) converges to a ρ̄(x)δ0(v) and
that we also have the weak convergence of ρ(tn, .) towards ρ̄.

Finally, if we assume (17) we notice that ρ(tn, .) is weakly compact in
all Lp(IRd) with 1 < p ≤ d+2

d
. Therefore every extracted sequence of ρ(tn, .)

that converges weakly in a Lp converges towards the same limit which can
only be ρ̄. Hence ρ̄ belongs to all Lp, 1 < p ≤ d+2

d
, and ρ(tn, .) converges

to this function weakly in these spaces without extraction. Of course ρ̄ also
belongs to L1 with a norm less or equal to the norm of ρ which is constant.

Second step. Uniqueness of the limit
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We now prove that the full sequence converges. By contradiction sup-
pose that for two sequences, we have

ρ(t1n, x) ⇀ ρ̄1(x) ,

ρ(t2n, x) ⇀ ρ̄2(x) .

We prove that for a large class of functions ψ

(19)

∫

IRd

ρ̄1(x)ψ(x)dx =

∫

IRd

ρ̄2(x)ψ(x)dx .

We use here condition (11). We thus get a sequence of solutions fm

which are strong solutions. For any ψ in C1
0 (IRd), we prove (18) as follows ;

we first claim that

∆2(n,m) =

∣

∣

∣

∣

∫

IRd

ρm(t1n, x)ψdx−

∫

IRd

ρm(t2n, x)ψdx

∣

∣

∣

∣

≤ (sup
IRd

|∇ψ|).‖f0
m‖

1
2

L1 .em

(

min(t1n, t
2
n)
)

,(20)

first notice that since ρm and ψ are non-negative the above integrals
are non-negative and we can take their square root.

For these solutions inequality (20) comes from the following simple
calculation

∣

∣

∣

∣

d

dt

∫

IRd

ρm(t, x)ψ(x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

IR2d

v · ∇ψ(x)fm(t, x, v)dvdx

∣

∣

∣

∣

≤

(
∫

IR2d

|v|2fm(t, x, v)dvdx

)
1
2

×

(
∫

IRd

|∇ψ|2(x)ρm(t, x)dx

)
1
2

≤ (sup
IRd

|∇ψ|).
√

Em(t).‖f0
m‖

1
2

L1 .

We now use the fact that ρm converges weakly in M 1(IRd) at any
fixed time to get that the left handside of (20) for ρm converges towards
∣

∣

∫

ρ(t1n, .)ψdx−
∫

ρ(t2n, .)ψdx
∣

∣. Condition (11) ( the uniform convergence of
em in fact ) yields then that this is as small as we want provided t1n and t2n
are large enough.

Thus (19) is true for any function ψ in C1
0 (IRd), a dense subspace of

C0(IR
d), which proves that ρ̄1 = ρ̄2.

9



As a consequence, recalling the weak compactness of ρ(t, .), we deduce
that the full function ρ(t, .) converges weakly towards some ρ̄(x) in w −
M1(IRd), and in all Lp with 1 < p ≤ d+2

d with assumption (17), as t tends
to infinity.

And at last, assuming (17) and that we have strong solutions ( if not we
use again condition (11)), since ρ0 belongs to L1 there exists some function
β(|x|) such that βρ0 also belongs to L1, and which satisfies that β(|x|)
converges to infinity when |x| goes to infinity and ∇β is bounded.

Thanks to the equation (18) of mass conservation, we have

∂

∂t

∫

IRd

β(|x|)ρdx =

∫

IR2d

fv · ∇xβdvdx

≤ ‖∇β‖L∞

√

E(t).‖f(t, ., .)‖
1
2

L1

This shows that βρ̄ belongs to L1 thanks to (8) and consequently that
‖ρ(t, .)‖L1 has a limit which is the L1 norm of ρ̄. Thus ρ(t, .) converges
weakly also in L1 which concludes the proof of theorem 1.

Indications on the proof of theorem 2.

We do not prove here theorem 2 since its proof follows exactly that of
theorem 1. Consider first

∫

Φ(t+s)f(s, ., .)ds for any non negative function
Φ in C∞

0 with
∫

Φ(t)dt = 1 and replace f by this integral.

The first step of the proof of theorem 1 is done the same way with
∫

Φ(tn + s)f(s, ., .)ds instead of f(tn, ., .) and test functions instead of con-
tinuous and compactly supported functions thanks to assumption (7′). We
thus obtain that any converging subsequence of

∫

Φ(t + s)f(s, ., .)ds con-
verges to some ρ̄(x)δ0(v).

Also, the second step is not more difficult for
∫

Φ(t+ s)f(s, ., .)ds than
it was previously for f(t, ., .) the only assumptions (18) and (8′) are enough.
This step proves that for any Φ non negative in C∞

0 (R),
∫

Φ(t+s)f(s, ., .)ds
converges in distributional sense towards a ρ̄(x)δ0(v) and that ρ̄ does not
depend on Φ.

Now, letting first Φ converge to a Dirac mass in time and then the test
functions φ to any continuous and compactly supported function, we get
theorem 2.

3. An example of application

We have sofar presented some general results about the limit in large
time of solutions of kinetic equations. In this section we detail the precise
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example (2), and we explain how we can apply theorem 1 or 2 to this
particular case.

3.1 Presentation of the equation and main result

Let us consider the specific example (2) of equation of the form (1)
which corresponds to the problem of the suspension of particles in a viscous
fluid ( see Jabin and Perthame [9] and the references therein for a derivation
of these models ).

Here A is a given matrix, A : IRd → Md(IR). We now let F [f ] =
(A?x j − λv)f in (1). We will moreover assume, for instance, that for some
real numbers α and C we have

(21) |A(x)| ≤
C

|x|α
, ∀ x ∈ IRd .

The force term in equation (2) is formed of A?x j which represents the
interaction between particles and of −λv which represents a friction effect
and which is responsible for the decay of the kinetic energy. Indeed this
kinetic energy satisfies for strong solutions of (2)

(22) E(t) = 2

∫ t

0

∫

IRd

j(s, x) · (A ?x j)(s, x)dxds− 2λ

∫ t

0

E(s)ds+ E0 .

In general we do not know the sign of
∫

j · (A ?x j)dx and thus we do
not get any decay of the kinetic energy. However it is natural to consider
the following case

(23)











A(x) = A1(x) + A2(x) with

Â1 ≤ 0 ,

‖A2‖L∞ ≤ µ < λ ,

where ĝ represents the Fourier transform of g. Let now ν be defined as

(24) ν = 2(λ− µ) ,

with the condition (23), we have the following inequality on the energy

(25) E(t) ≤ E0 − ν

∫ t

0

E(s)ds, E(t) ≤ E0e−νt .
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Since (25) is a stronger inequality than (7) or (8), we will assume only
condition (22) and we will prove in the next paragraph that (25) and hence
(7) and (8) stands true.

We prove in subsections 3.2 and 3.3 the following theorem
Theorem 3 :

Assume (23) and (21) with 0 ≤ α ≤ 4d/(d+2) and that the initial data
f0 satisfies assumptions (3) and (4), then the equation (2) has a solution
f ∈ L∞([0, T ], L1 ∩ L∞(IRd)) in distributional sense ( and the non-linear
term A ?x j belongs to some L∞([0, T ], Lq(IRd)) ). This solution satisfies
(5), (7), (8) and the condition of continuity in time (10). Since it is obtained
through (11) theorem 1 applies and f converges to a distribution ρ̄(x)δ0(v)
in w −M1(IR2d).

3.2 Existence of solutions

In order to state rigorous results on the equation (2), we give in this
section an existence result of weak solutions which satisfy the properties
required in section 1. The results are obtained with classical methods close
to those used for Vlasov-Poisson ( see results by A.A. Arsenev in [1], E.
Horst in [8] or by R.J. DiPerna and P.L. Lions in [6] ). Consequently we
only sketch the proofs.

Let us begin with
Proposition 1 :

Suppose A belongs to L∞(IRd), is locally lipschitz and the initial data
f0 is non-negative, compactly supported and belongs to L1 ∩L∞(IR2d) then
equation (2) has a unique, global, non-negative solution f ∈ C([ 0, ∞ [ ;L1)
in the distributional sense and we have the following estimates :
(26) ‖f‖L∞([0, +∞],L1(IRd)) = ‖f0‖L1(IRd) ,

(27) ‖f(t, ., .)‖L∞(IR2d) ≤ edλt‖f0‖L∞(IRd) , for a.e. t > 0 .
Additionally if the initial data has finite energy E0 then for a.e. t > 0

the equality (22) holds true.

A possible proof consists in approximating the initial data with some
α
N

∑N
i=1 δ(x−Xi)δ(v − Vi). For this new initial datum our equation has a

unique solution since the equation is equivalent to a dynamic system which
can be solved by the Cauchy-Lipschitz theorem. The three estimates are
then standard results for transport equations with a field regular enough,
which is the case here. Notice also that the solution is continuous in time,
that we can put equality in those estimates and more generally that almost
any kind of regularity for the initial data propagates, assuming a corre-
sponding regularity for A : if f 0 and A are Cn for example then for any
time f(t, ., .) is also Cn.
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The proposition 2 is a first step towards the construction of weak solu-
tions under weaker assumptions, especially on A.

We now have the following
Proposition 2 :

We suppose (23), (21) with 0 ≤ α < d and the initial data f 0 satisfies
(3), (4), then the system (2) has a non-negative solution in distributional
sense f ∈ L∞([0, T ], L1 ∩L∞(IRd)) with j ∈ L∞([0, T ], Lp(IRd)), A?x j ∈
L∞([0, T ], Lq(IRd)) for 1 ≤ p ≤ (d+ 2)/(d+ 1) and 1/q = 1/p+ α/d − 1.
Also f satisfies the L1 bound (12), the L∞ bound (27) and the energy decay
(25).

Notice here that the bounds on the energy (25) and (27) and the L∞

norm of f imply that j(t, .) belongs to L1 ∩ L
d+2

d+1 for almost every t. So, if
these bounds are true, assumption (21) and standards results in harmonic
analysis imply that A ?x j belongs to some Lp(IRd). The non-linear term
(A ?x j)f and consequently the system (2) have thus a precise signification
for (A ?x j)f belongs at least to L1

loc(IR
2d).

We can obtain this theorem by taking regular and converging approx-
imations of A and of f0. Then we apply proposition 1 and extract a sub-
sequence fn of the solutions that converges weakly towards a limit f which
belongs to L∞([0, T ], L1 ∩L∞(IRd)). Then (12), (27) and (25) are true for
each solution fn of the approximated system and since these estimates do
not depend on n and are lower semi-continuous so they are also true for the
limit f .

We only have to show that f is a solution of (2), any fn is already a
solution of (2) for approximated f 0

n and An. Since fn converges weakly to-
wards f , all the linear terms of (2) approximated converge towards the
corresponding linear terms of (2). To get the conclusion we only have
to prove that (An ?x jn)fn converges weakly towards (A ?x j)f in some
Lr([0, T ], Ls

loc(IR
2d)) and indeed An?xjn converges strongly in some Lp(IRd)

towards A ?x j because An converges strongly towards A and jn converges
weakly towards j, extracting one more sub-sequence if necessary. Thus the
only difficulty is to pass from a weak convergence at each fixed time to a
weak convergence in time. This is done the same way as for Vlasov-Poisson
system, which ends the proof.
Remark :

The proof of proposition 2 is somehow important in itself for it proves
that we have a sequel of strong solutions of an approximated equation which
converges ( weakly in all Lp for 1 < p <∞ ) towards a weak solution of the
exact equation. As a consequence we do have condition (11).

13



We now present some conditions on A that imply the continuity of f
and thus end the proof of theorem 3.. R.J. DiPerna and P.L. Lions proved
a similar result for Vlasov-Poisson system (see [6]).
Proposition 3 :

Assume (23), (21) with 0 ≤ α ≤ 4d/(d + 2), that the initial data is
non-negative and belongs to L1 ∩ L∞(IR2d) and that its kinetic energy is
finite ( conditions (3) and (4) ). Then the system (2) has a distributional
solution f ∈ L∞([0, T ], L1 ∩L∞(IR2d)), which satisfies conditions (5), (7),
(8) ( its kinetic energy is finite at all time and decays fast enough ) and (10)
and (11) ( it is continuous in time and is the limit of regular solutions ).

Proof of proposition 3.
Proposition 3 only adds to proposition 2 the time continuity of f . Thus

we only have to prove this continuity, which is condition (10). We first use
a result due to R.J. DiPerna and P.L. Lions ( see [5] )
Lemma 2 :

Let b ∈ L1([0, T ], (W 1,p
loc (IRn))) with c,div b ∈ L1([0, T ], L∞(IRn)),

and consider u ∈ L1([0, T ], Lq
loc(IR

n)), with p ≥ q, a solution of

∂

∂t
u+ b · ∇u = c ,

then u belongs to C([0, T ], L1
loc(IR

n)).

Letting n = 2d, b = (v, A ?x j−λv) and u = f , this lemma shows that
f is continuous from [0, T ] to L1

loc(IR
2d).

Now we only have to get some control on the integral of f outside a
bounded domain in x and v. Indeed if φR and ψR are any functions of
C∞

0 (Rd)

∂t

∫

IR2d

fφR(x)ψR(v)dvdx = −

∫

IR2d

∇xφR(x) · vψR(v)fdvdx

−

∫

IR2d

φR(A ?x j − λv)f · ∇vψRdvdx .

We have also

∫

IR2d

∇xφR(x) · vψR(v)fdvdx ≤ ‖j‖L1‖∇φR‖L∞‖ψR‖L∞ ,

and

14



∫

IR2d

φRA ?x jf · ∇vψRdvdx ≤ ‖φR‖L∞‖A ?x j‖Lr‖

∫

IRd

f |∇vψR|dv‖Lr′ ,

with, choosing ∇ψR supported in B(0, 2R) − B(0, R) and less than C/R
with a fixed constant C,

∫

IRd

f |∇vψ|dv ≤ ‖f‖
3

d+2

L∞

(
∫

IRd

|v|2fdv

)

d−1

d+2

×

(
∫

IRd

1

R2(d−1)/3
|∇vψR|

d+2

d dv

)
3

d+2

≤ K

(
∫

IRd

|v|2fdv

)

d−1

d+2

.

Thus we are able to take any r′ less than (d+ 2)/(d− 1), so any r less
than (d+2)/3 and A?x j belongs to such an Lr for any α less or equal than
4d/(d+ 2).

Consequently if 0 ≤ α ≤ 4d/(d + 2), for any φR ∈ C∞
0 (IRd) and any

ψR ∈ C∞
0 (IRd) such that ∇ψR is supported in B(0, 2R)− B(0, R) and less

than C/R, we have

(29) ‖∂t

∫

IR2d

fpφR(x)ψR(v)dvdx‖L∞([0, T ] ≤ K(‖φ‖W 1,∞ , ‖ψ‖W 1,∞) .

From this we can deduce that the integrals of f(t, ., .) for |x| > R and
|v| > R are uniformously small in time. With lemma 3, this is enough
to prove that f belongs to C([0, T ], L1(R2d)) which ends the proof of
proposition 3.
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