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Abstract. We introduce a new method to prove averaging lemmas, i.e.
prove a regularizing effect on the average in velocity of a solution to a kinetic
equation. The method does not require the use of Fourier transform and the
whole procedure is performed in the ’real space’. We are consequently able
to improve the known result when the integrability of the solution (or the
right hand side of the equation) is different in space and in velocity. We also
present a few counterexamples to test the optimality of the new results.

Résumé. Nous présentons une nouvelle méthode pour obtenir des lemmes
de moyenne, c’est-à-dire un effet régularisant sur les moyennes en vitesse
d’une équation cinétique. Cette méthode ne fait pas appel à la transformée
de Fourier et toute la preuve se fait dans l’espace réel. Par conséquent, nous
sommes capables d’améliorer les résultats connus quand l’intégrabilité de la
solution (ou du second membre de l’équation) est différente en espace et en
vitesse. Nous donnons également quelques contre-exemples pour vérifier le
caractère optimal des nouveaux résultats.
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1 Introduction

1.1 Main results

We study the following stationary kinetic equation

v · ∇xf(x, v) = ∆α/2 g(x, v), x ∈ Rd, v ∈ Rd, 0 ≤ α < 1. (1.1)

As a transport equation, (1.1) has typically no regularizing effects (although
in some cases it does, see at the end of the paper). However in many applica-
tions, the important physical quantity is not f itself but some of its moments
so that we are interested in the optimal regularity of a quantity like

ρ(x) =

∫
Rd

f(x, v)φ(v) dv, φ ∈ C∞
c (Rd) given. (1.2)

It is also possible to consider an average on the sphere, with the same gain
in regularity,

ρ̃(x) =

∫
|v|=1

f(x, v)φ(v) dγ(v), φ ∈ C∞
c (Sd−1) given. (1.3)

It turns out that the average ρ is more regular than f (as long as α < 1 of
course) as it was first noticed in [16] in an L2 framework. Since that paper
numerous works have been devoted to proving the optimal regularity for the
average. The study is motivated by a large class of kinetic equations where
the non linear term may be controlled by some average of the solution and
by kinetic formulations where the average is the only important quantity.

The gain in regularity depends on the smoothness of f and g themselves. In
comparison with previous works, we will use different spaces in velocity and
space (see a more detailed discussion after the presentation of the results).
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Consequently the functions f and g, defined in the phase space, are assumed
to be in the following spaces

f ∈ W β, p1
v (Rd, Lp2

x (Rd)), β ≥ 0,

g ∈ W γ, q1
v (Rd, Lq2(Rd)), −∞ < γ < 1.

(1.4)

We denote by Ḃs,r
t,u the space which is obtained by real interpolation of two

Besov spaces Bs,r
u much like the classical Besov spaces can be obtained by

real interpolation of Sobolev spaces.
The first result which we prove is the following theorem

Theorem 1.1 Let f and g satisfy (1.1) and (1.4) with 1 < p2, q2 < ∞,
1 ≤ p1 ≤ min(p2, p

∗
2) and 1 ≤ q1 ≤ min(q2, q

∗
2) where for a general p, p∗ is

the dual exponent of p, and assume moreover that γ − 1/q1 < 0. Then,

‖ρ‖Ḃs,r
∞,∞

≤ C‖f‖1−θ

W
β,p1
v (L

p2
x )
× ‖g‖θ

W
γ,q1
v (L

q2
x )
,

with

1

r
=

1− θ

p2

+
θ

q2
, s = (1− α)θ,

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
.

(1.5)

Remarks.
1. This theorem contains most of the previous results (in particular the ones
in [11] and [19]). It extends naturally the result given in [19] for β < 1/2.
2. We do not know whether in this case the average belongs to the true
Sobolev space W s,r. This optimal space was obtained in [3] for the usual
case (p1 = p2, q1 = q2 and β = 0). This is certainly true if p1 = p2 and
q1 = q2 but some difficulties could arise when the exponents are different.
In any case, the simple but rough method of interpolation which we choose
here cannot do better than Bs, r

∞,∞.
3. We do not have any trouble with exponents p1 or q1 equal to 1, only with
p2 or q2.
4. The gain of regularity depends only on the regularity and integrability
in velocity. This corresponds to [31] where the average is obtained in a
space weaker but with the same homogeneity as ours by Sobolev embedding.
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However contrary to [31], we have a limitation on the exponent in velocity
(see the section about optimality).

Since we work with different spaces in space and velocity, the order in which
the norms are taken is very important. In (1.4) we take first the norm in x
and then the norm in v. As p1 ≤ p2 or q1 ≤ q2, this is a stronger assumption
than the contrary (the norm in v first). So a natural question is whether it
is possible to invert the order of the spaces. We are able to give a full answer
only in dimension two.

Proposition 1.1 If d = 2, Let f and g satisfy (1.1) but assume g is like in
(1.4) but f in Lp2

x (W β,p1
v ) (respectively g ∈ Lq2

x (W β,q1
v ) and f like in (1.4))

provided we still have p1 ≤ p2 and moreover p2 ≤ 2 (resp. q1 ≤ q2 and
q2 ≤ 2) then

‖ρ‖Ẇ s,r ≤ C‖f‖1−θ

L
p2
x (W

β,p1
v )

× ‖g‖θ
L

q2
x (W

γ,q1
v )

,

with

1

r
=

1− θ

p2

+
θ

q2
, s = (1− α) θ < (1− α) θ0,

θ0 =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
.

(1.6)

Remark.
This result is optimal in the sense that the conclusion is false if p2 > 2 or
q2 > 2. We cannot prove an equivalent in higher dimensions, but we can
show that the limit on p2 or q2 is in general d∗ with 1/d∗ = 1− 1/d, see the
discussion at the end of the proof of the proposition.

Theorem 1.1 exhibits a sort of saturation: The regularity of the average does
not improve when p1 grows beyond p2. At this point, it is very interesting to
invert the norms because that means we work in the strongest space. So let
us assume now that f and g satisfy

f ∈ Lp2
x (Rd, W β, p1

v (Rd)), β ≥ 0,

g ∈ Lq2(Rd, W γ, q1
v (Rd)), −∞ < γ < 1.

(1.7)

With this new framework, we can prove (but for the moment only in dimen-
sion two) the
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Theorem 1.2 Take d = 2. Let f and g satisfy (1.1) and (1.7) with 1 <
p2, q2 < 2, p2 ≤ p1 and q2 ≤ q1 and assume moreover that either γ ≤ 0 and
g(x, v)φ(v) is even in v or that γ ≤ −1/2. Then,

‖ρ‖Ẇ s,r ≤ C‖f‖1−θ

L
p2
x (W

β,p1
v )

‖g‖θ
L

q2
x (W

γ,q1
v )

,

with

1

r
=

1− s

p2

+
s

q2
, ∀ s = (1− α) θ < (1− α) θ0,

θ0 =
β + θf

1 + β − γ + θf − θg

, θf = 1− 1

p1

+
1/p1 − 1/p2

1/p2 − 1/2
max(0, 2/p2 − 3/2),

θg = 1− 1

q1
+

1/q1 − 1/q2
1/q2 − 1/2

max(0, 2/q2 − 3/2).

(1.8)

Remarks.
1. This theorem says for instance that if f and g belong to L

4/3
x (L2

v) then the
average “almost” belongs to W 1/2,4/3. Therefore, it is still possible to gain
one half derivative even if the functions are not L2 in space.
2. It is difficult to say if this result is optimal or not, whether in some cases
one half derivative is gained even if p2 > 2 or q2 > 2 for instance. In fact the
only sure indication which we have is one of the counterexamples of the next
section namely the one showing that for f and g in L1

x(L
∞
v ), no derivative

may be gained on ρ.
3. If g(.,−v)φ(−v) 6= g(., v)φ(v) and γ ≥ −1/2, it is still possible to get
a better result than the regularity given by Theorem 1.1. The idea is to
interpolate between the case γ = −1/2 in this theorem and the result given
by Theorem 1.1 for γ = 3/4.
4. This theorem is only an example of what can be done. It is of course
possible to mix a regularity like (1.7) for f with one like (1.4) for g thus
obtaining different formulas. The derivation of such new results should be
straightforward given the estimates presented in the proofs.
Theorem 1.2 is limited to exponents p1 and q1 less than 2. When one of these
exponents is larger than 2 then it is sometimes possible to get an even better
result. The idea is then more a combination of a regularization effect and a
dispersion result and it gives the following result
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Theorem 1.3 Take d=2. Let f and g satisfy (1.1) and (1.7) with 1 <
p2, q2 < 2, p2 ≤ p1 and q2 ≤ q1 and assume moreover that γ ≤ 0. Then,

‖ρ‖Ẇ s,r ≤ C‖f‖1−θ

L
p2
x (W

β,p1
v )

‖g‖θ
L

q2
x (W

γ,q1
v )

,

with

1

r
=

1− s

rf

+
s

rg

, ∀ s = (1− α) θ < (1− α) θ0,

θ0 =
(β + θf )× (1− 2/q2 + 2/rg) + (γ + θg)× (2/p2 − 2/rf )

1 + β − γ + θf − θg − 2/rf + 2/p2 + 2/rg − 2/q2
,

θf < min (1/2, 2(1− 1/p2)) ,
1

rf

=
1

2
+

1

2p1

+
2

p1

∣∣∣∣34 − 1

p2

∣∣∣∣ ,
θg < min (1/2, 2(1− 1/q2)) ,

1

rg

=
1

2
+

1

2q1
+

2

q1

∣∣∣∣34 − 1

q2

∣∣∣∣ .
(1.9)

Remarks.
1. As before, this theorem is only one example of what could be proved, the
number of combinations being now quite large.
2. A somewhat strange effect is that Theorem 1.3 does not always give a
better result than Theorem 1.2. It is always better in terms of integrability
but as far as the regularity (number of derivatives) is concerned, it is an
improvement if and only if θg + γ > θf + β.

3. The typical conclusion of Theorem 1.3 is that if f and g belong to L
4/3
x (L∞v )

then the average belongs to H1/2 in dimension two.
4. The hypothesis γ ≤ 0 is almost certainly necessary. For instance without
it, the denominator in the formula for θ0 could vanish.
5. We do not understand for the moment why the evenness condition on g φ
is not necessary here whereas we need it for Theorem 1.2 and consequently
whether this theorem would still be true without it.

The paper is organized as follows. We comment on the theorems before con-
cluding the first section. The second section is devoted to counterexamples.
Theorem 1.1 is proved in the third section where notations and basic ideas
are introduced. Theorems 1.2 and 1.3 are proved in the fourth section. We
give a new direct proof of the classical L2 result in a first appendix, the in-
terest of this proof being that the orthogonality property at the core of the
estimate is quite apparent. Finally we explain in the appendix how one may
recover the hypoelliptic regularity of [4] within our framework.
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1.2 Some applications and comments

The results presented here, although they are proved for Equation (1.1),
are also valid for unstationary equations, with exactly the same proof (a
dimension d for the unstationary case corresponding to a dimension d+1 for
the stationary one)

∂f

∂t
(t, x, v) + v · ∇xf = ∆α/2 g(t, x, v), t ∈ R+, x, v ∈ Rd, 0 ≤ α < 1.

(1.10)
They even apply to the situation where the flux is not simply v, i.e.

∂f

∂t
(t, x, v) + a(v) · ∇xf = ∆α/2 g(t, x, v), t ∈ R+, x ∈ Rd, v ∈ Rd′ ,

(1.11)
provided the flux a satisfies a so-called strong non degeneracy condition which
reads: for any K > 0, there is a constant C such that for any ξ ∈ Rd, τ ∈ R
with |ξ|+ |τ | ≤ 1

meas {v s.t. |v| ≤ K, |a(v) · ξ − τ | ≤ ε} ≤ Cε. (1.12)

Equation (1.11) is typical of kinetic formulations, of scalar conservation laws
for instance. Those formulations were derived in [23] and in [7] for a more
complicated situation. Kinetic formulations were also obtained for isentropic
gas dynamics in [24] and more recently for Ginzburg-Landau models with
line energies in [18] and then [29]. The typical example of an application of
averaging lemmas to kinetic equations is probably [10].
We refer the reader to [26] for an introduction to scalar conservation laws and
kinetic formulations. We nevertheless remark that it is not known whether
averaging lemmas give the optimal regularity for the solution to such an equa-
tion. In fact, in dimension 1 (that would correspond to a two-dimensional
case for the stationary model), they don’t: BV regularity was proved by
Olĕınik [25] some fifty years ago. Good examples where a careful analysis
can produce more precised results than averaging lemmas (although not ex-
actly regularity) can be seen in [17] and [30]. For Ginzburg-Landau models,
that seems to be also the case, see [1] for instance.

Averaging lemmas were first obtained in [16] for f and g in L2
x,v without any

derivatives in velocity. It was soon noticed that one could take g in a negative
Sobolev space and still get a result (see [14] or [15]). The optimal result for
f ∈ Lp

x,v and g ∈ W γ,p
v Lp

x was proved in [11] and slighty improved (to get the
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average in a true Sobolev space) in [3]. The method involves a constant use
of Fourier transform, interpolation between the L2 and the L1 case through
dyadic decomposition in the Fourier space and therefore it requires Hardy
spaces. This result was shown to be optimal in the two notes [21] and [22]
(see also [13]).

Other methods exist (besides the one presented here), for example in [27]
and [28]. The one developed in [6] is quite simple but it still uses Fourier
transform and Hardy spaces and it is only able to handle f ∈ Lp

x,v with
g ∈ W γ,p

v Lp
x and the same exponent p. However with the recent addition of

hypoelliptic regularity on f , this method is able to work with f ∈ W β,p
v Lp

x

and β > 0. Other possible methods include wavelets such as in [9].

The additional regularity of f in velocity (under the form of derivatives) was
first used in [19]. Just about the same time, a somewhat similar result was
derived in [31]. The author worked with bounds like (1.7) for functions f
and g with the condition p2 = q2 and he obtained a bound for the average
in a Sobolev space which we may also get by Sobolev embedding from ours
theorems in many cases.

The motivation for this paper came from [19] and [31] and it was to try
to recover the results of [31] but with the right space: The main drawback
in [31] is indeed that it does not provide the right number of derivatives,
the improvement in regularity on the average being at least in part only an
improvement in integrability.

The results presented here answer partially to that problem. We are able
to recover the results of [31] and in fact to extend them to obtain the right
number of derivatives. That this cannot always be done is also a consequence
of one of our counterexamples.

One of the main interests of our method is that it completely avoids the use
of Fourier transform (or decomposition in wavelets). In this respect it relates
to [5] where the authors do not use Fourier transform in both variables but
only in space.

What our method clearly highlights are the deep connections between aver-
aging lemmas and the X-ray transform which reads

Txf =

∫ ∞

−∞
f(x− vt) dt.

The boundedness of this operator from Lp
x to Lq

x(L
r
v) is in particular investi-

gated in [12] (see also [8] and [32]). And in some sense, this paper is all about
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the study of the boundedness of a similar operator from Lp to Wα,q
x (W β,r

v )
with the aim of having α as high as possible.

2 Some counterexamples

We want to explain here why Theorem 1.1 is essentially optimal and give the
corresponding counterexamples. This is divided in two parts. The first one
proves with the assumptions made in Theorem 1.1 there is no hope to obtain
a better result. The next one shows that the limitation p1 ≤ p2 or q1 ≤ q2
cannot be removed, i.e. if p1 or q1 are larger then we gain nothing for the
average.

Thoughout all this section, we take as an averaging function φ any smooth
function compactly supported in the annulus {1/2 ≤ |x| ≤ 1}. We also take
α = 0.

2.1 Optimality of Theorem 1.1

This is the exact analogue in our more general situation of the two notes of
P-L Lions, [21] and [22], which show that the usual averaging lemmas (with
p1 = p2, q1 = q2 and β = 0) are optimal. We nevertheless give here the
counterexamples for the sake of completeness.

They are given in dimension two for simplicity. We do it in two steps. For
the first one consider two C∞

c functions a and b and take

fN(x, v) = N δ(1/p1−β) × a(N x1, x2/N) b(N δv1),

gN(x, v) = N1−δ+δ/p1−δβ × ∂1a(N x1, x2/N) N δv1 b(N
δv1).

(2.1)

We then simply choose δ such that gN belongs to the space W γ,q1
v (Lq2

x ) uni-
formly in N for every q2, so

δ =
1

1− 1/p1 + β + 1/q1 − γ
.

Notice that if γ < 0, we also have to require that wb(w) be the γ derivative
of some function. Moreover, we have

v · ∇xfN = gN + hN ,
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with for any r
‖hN‖L1

v(W 1,r
x ) ≤ CN−2δ.

Therefore the contribution from hN to the regularity of the average is one full
derivative and (from the point of view of counterexample) we may neglect
this term.
To finish with this counterexample, it is enough to notice that for any 1 ≤
r ≤ ∞

‖ρN‖Ẇ s,r ≥ N s−δ(1−1/p1+β).

Hence for this norm to be bounded uniformly in N , we need that

s ≤ δ(1− 1/p1 + β) =
1− 1/p1 + β

1− 1/p1 + β + 1/q1 − γ
,

which is precisely the value given by Theorem 1.1. This counterexample also
shows that, provided p1 ≤ p2 and q1 ≤ q2, the regularity gained by averaging
does not depend on the integrability in x of either f or g.

Now we prove that the exponent r given by Theorem 1.1 is optimal. To do
so we consider

fN(x, v) = N1/p2+δ(1/p1−β) × a(N x1, x2) b(N
δv1),

gN(x, v) = N1+1/p2−δ+δ/p1−δβ × ∂1a(N x1, x2) N
δv1 b(N

δv1).
(2.2)

To bound uniformly gN in the space given by (1.4) (fN was correctly nor-
malized), we need to take

δ =
1 + 1/p2 − 1/q2

1− 1/p1 + β + 1/q1 − γ

We again have
v · ∇xfN = gN + hN ,

with hN more regular than gN and so negligible for our purpose. Finally

‖ρN‖W s,r ≥ N s+1/p2−1/r−δ(1−1/p1+β).

Since we already know that s is at most the value given by Theorem 1.1, we
take that one and deduce that for ρN to be uniformly bounded, we need that

1

r
=

1

p2

− s

p2

+
s

q2
,

which is the value given by theorem 1.1. If we care only about local regularity
then any 1/r larger than this will do of course.
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2.2 The conditions p1 ≤ min(p2, p
∗
2) or q1 ≤ min(q2, q

∗
2)

The strange and somewhat disappointing condition in Theorem 1.1 is the
requirement that p1 ≤ min(p2, p

∗
2) or q1 ≤ min(q2, q

∗
2). From the point of

view of homogeneity, L∞ in v should be the same as H1/2 (in two dimensions)
and give the same regularity, hence the importance of counterexamples which
illustrate this limitation.
We consider the following function gN

gN(x, v) =
N∑

i=1

N∑
j=1

(−1)i I|x1−i/N |≤1/N2 × δ(x2 = j/N)× ΦN(v).

Instead of true dirac masses, we should take approximations of them in L1

so that gN belong to L1
x. However to keep things as simple as possible, we

will do just as if Dirac masses belong to L1. Then, we obviously have

‖gN‖L1
x L∞v = N ×N ×N−2 × ‖ΦN‖L∞ ≤ 1.

The function ΦN will be determined later on but with an L∞ norm less than
one.
Next we define fN by means of gN

fN(x, v) = a(x)×
∫ ∞

0

gN(x− vt, v) dt,

with a(x) a regular function with compact support and value 1 in the ball of
radius 2. Therefore we have

v · ∇xfN = gN + hN ,

with

hN = (v · ∇x a)×
∫ ∞

0

gN(x− vt, v) dt.

It is obvious that hN is at least as regular as gN and so

‖v · ∇xfN‖L1
x L∞v ≤ C. (2.3)

Now let us compute the L1
x L

∞
v norm of fN . Given x and v the value of fN

depends on the number of times the line issued from x, and with direction
v, crosses one of the small segments of which gN is composed. This almost
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never happens. For instance, if Nx2 is an integer and if v is along the x1-axis,
then fN is the average of Dirac masses. This case is avoided by assuming
that Φ((a, 0)) = 0, for any a and it ensures that fN does not exhibit any
Dirac mass itself.
However, it remains the other cases where for example x1 = i/N ± 1/N2 for
some i. Then if |v1| ≤ 1/N2 , f(x, v) is of order N . Finally the norm of fN

may be estimated as

‖fN‖L1
x L∞v ≤ C (1 +N ×N ×N−2) ≤ C. (2.4)

For ρN those points of concentration of fN do not have any importance.
Indeed ρN is the average of fN in v and if fN is of order N at some points,
it is only for values of v in an angular sector of size N−2. Consequently, ρN

is at most of order one. Then consider a segment with relative coordinates
(a, b) (relative with respect to x), this segment is seen from x with an angular
variation of

max

(
1

N2b
,

b

N2 a2

)
.

Hence for a given x which is typically at a distance 1/2N of the closest line
x2 = j/N , the measure of the set of velocities v, such that the corresponding
line crosses at least one segment, is

N∑
j=1

(
j × 1

N j
+

N∑
i=j

j/N

N2 i2/N2

)
∼ 1.

Note that this also justifies that a given line almost never intersects more
than one segment.
Now of course there is the question of the alterning signs in gN which could
produce cancellations in ρN . This is where the definition of ΦN , and the fact
that it is L∞ but not in any Sobolev space, plays a crucial role. Indeed let
us choose a ΦN such that ρN is indeed of order 1 at the point (1/2, 1/2) for
instance. This is possible but only because we do not need any derivability
on ΦN .
Then notice that ρ is almost periodic of period 2/N . If the segments in gN

where equidistributed in the whole space, it would be exactly periodic but as
it is, some small perturbation has to be expected from the compact support
in gN . Because the derivative of ρN is obviously at most of order N , this
means that ρN is of order one on a domain a measure of order one also.

12



To conlcude this counterexample, we remark that ρN changes sign if we add
1/N to x1 due to the alterning signs in gN . Therefore, the derivative of ρN

is exactly of order N and
‖ρN‖W s,1

loc
∼ N s. (2.5)

The combination of (2.3), (2.4) and (2.5) shows that, although fN and gN

are uniformly bounded in L1
xL

∞
v , ρN is not uniformly bounded in any W s,1

loc ,
s > 0.

We turn to the case of exponents p ≥ 2. We use polar coordinates in x and
v, hence x = reiθ v = eiφ. We take

gN(x, v) = eiNθI r≤N × e−iNφ,

such that
‖gN‖Lq

x L∞v
= N2/q.

As in the previous case, we define fN as

fN(x, v) =

(∫ ∞

0

g(x− vt, v) dt

)
× a(r/N),

for a a C∞
c function. We obtain

‖v · ∇xfN‖Lq
x L∞v

∼ N2/q. (2.6)

Given any x = reiθ, if we choose v = ei(θ+π), then fN(x, v) is equal to N, so
that

‖fN‖Lp
x L∞v

∼ N1+2/p. (2.7)

Now given x and assuming that v is not parallel to x, then there are cancel-
lations in the integral defining fN . As a matter of fact, the order of fN is the
typical length on which there cannot be any cancellation. It is easy to see
that this length is N/r or N if r ≤ 1. Therefore, given the oscillation in ρN

coming from the eiNθ in gN

‖ρN‖W s,1
loc
∼ N1+s. (2.8)

As previously, this norm has to be bounded by the norm of gN to the power
s times the norm of fN to the power 1− s. Estimates (2.6), (2.7) and (2.8)
have as a consequence that s has to satisfy

1 + s ≤ 2s

q
+ 1− s+

2

p
− 2s

p
,

13



or

s ≤ 1/p

1− 1/q + 1/p
.

This again corresponds to the result predicted by Theorem 1.1.

Before ending this subsection, we would like to point out that these two
classes of counterexamples do not rigorously allow us to conlude that the
conditions p1 ≤ min(p2, p

∗
2), or the same for qi, are absolutely necessary. At

least a counterexample with an exponent p2 < 2 for f and an exponent q2 > 2
for g (or the converse) is missing.

3 Proof of Theorem 1.1

3.1 The problem

The idea of the method is quite simple, we regularize the operator v · ∇x by
adding λf (λ is a parameter of interpolation which will be chosen later in
terms of f and g)

(λ+ v · ∇x) f(x, v) = ∆α/2
x g(x, v) + λf(x, v).

We denote by T the operator

Tf(x) =

∫ ∞

0

∫
Rd

f(x− vt, v) e−λt φ(v) dv dt. (3.1)

Consequently

ρ(x) =

∫
Rd

f(x, v)φ(v) dv = λTf + ∆α/2
x Tg. (3.2)

We study this operator T in the next subsection and conclude the proof of
Theorem 1.1 in the last one.

3.2 Estimates on T

We begin with the simple case where we only have L1 regularity in velocity.
In this case T can at best exchange derivability in v for derivability in x,
more precisely we have

14



Lemma 3.1 ∀ 0 ≤ s < 1, T : W s,1
v (Rd, Lp

x(Rd)) −→ Ẇ s,p(Rd), with norm
Cλs−1, for every 1 ≤ p ≤ ∞.

Proof. It is a direct computation, once one has noticed that

∂xi
f(x− vt, v) = −1

t
∂vi

(f(x− vt, v))) +
1

t
(∂vi

f)(x− vt, v).

First of all, simply by commuting the integrals, it is obvious that∥∥∥∥∫
Rd

f(x− vt, v)φ(v) dv

∥∥∥∥
Lp

≤ C‖f‖L1
vLp

x
,

where C does not depend on t. Then we also obtain from our remark that∥∥∥∥∂xi

∫
Rd

f(x− vt, v)φ(v) dv

∥∥∥∥
Lp

≤ C

t
‖f‖W 1,1

v Lp
x
.

By interpolation, we conclude that for any s < 1∥∥∥∥∫
Rd

f(x− vt, v)φ(v) dv

∥∥∥∥
Ẇ s,p

≤ C

ts
‖f‖W s,1

v Lp
x
,

and by integrating in t against e−λt we get the desired result.
Notice that, if we work with the average ρ̃ on the sphere as given by (1.3),
we have to use a slighty more complicated relation, decomposing the i-th
coordinate vector ei

ei = αv + w, with w · v = 0,

we obtain

∂xi
f(x−vt, v) = αv · ∇xf(x−vt, v) + w · ∇xf(x−vt, v)

= −α∂tf −
1

t
w · ∇v(f(x−vt, v)) +

1

t
(w · ∇vf)(x−vt, v).

Since w · ∇v is a derivative on the sphere, this leads to the same estimate.

With exactly the same idea, one obtains for negative derivatives,

Lemma 3.2 ∀ s ≤ 0, T : W s,1
v (Rd, Lp

x(Rd)) −→ Ẇ s,p(Rd) + Lp(Rd), with
norms (C λs−1, C λ−1).
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Note that in fact one obtains one term in Ẇ s,p with norm λs−1 and an-
other one in Lp with norm λ−1, which is what we mean by the notation
(C λs−1, C λ−1).

This has now to be combined with the case of L2 regularity in velocity. Here
because of the hypothesis of Theorem 1.1, we also work in L2 in x with the
following estimate

Lemma 3.3 ∀ 0 ≤ s < 1/2, T : Hs
v(L

2
x) −→ Ḣs+1/2, with norm Cλs−1/2.

Proof. It is simpler to prove the corresponding estimate for the dual operator
of T ,

T ∗h(x, v) =

∫ ∞

0

h(x+ vt)e−λtφ(v) dt. (3.3)

It is then equivalent to prove the lemma and to show that T ∗ sends Ḣ−s−1/2

in H−s
v (L2

x) or L2
x in H−s

v (Ḣs+1/2) since T ∗ commutes with the derivation in
x. Now since for any h

∆s/2
x (h(x+ vt)) =

1

ts
∆s/2

v (h(x+ vt)),

this is a consequence of the fact that the operator T̄ ∗, defined as

T̄ ∗h(x, v) =

∫ ∞

0

1

ts
h(x+ vt)e−λtφ(v)dt,

sends L2 in Ḣ1/2 with norm Cλs−1/2 provided that s < 1/2. This operator
is the dual of T̄

T̄ f(x) =

∫ ∞

0

∫
Rd

1

ts
f(x− vt, v)e−λtφ(v) dv dt.

We use a classical T̄ T̄ ∗ argument, more precisely∫
R2d

∆1/4
x T̄ ∗h ·∆1/4

x T̄ ∗h dx dv =

∫
Rd

∆1/2
x T̄ T̄ ∗h · h(x) dx.

We then observe that

T̄ T̄ ∗h(x) =

∫ ∞

0

∫ ∞

0

∫
Rd

1

(ut)s
h(x+ (t−u)v)e−λt−λu|φ(v)|2 dv du dt

= 2

∫ ∞

0

∫ t

0

1

(ut)s
h(x+ (t−u)v)e−λt−λu|φ(v)|2 dv du dt.
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Now

T̄ T̄ ∗h(x) =

∫ ∞

0

∫ t

0

∫
Rd

1

ts(t− τ)s
h(x+ τv)e−2λt+λτ |φ(v)|2 dv dτ dt

=

∫ ∞

0

∫ t

0

∫ ∞

0

∫
Sd

rd−1

ts(t− τ)s
h(x+ rτw)e−2λt+λτ |φ(rw)|2 dw dr dτ dt

=

∫ ∞

0

∫ ∞

0

∫
|y|≤rt

rd−2

ts
h(x− y) |φ(ry/|y|)|2 e−2λt+λ|y|/r

(t− |y|/r)s
· dy

|y|d−1
dr dt.

Hence when derivating T̄ T̄ ∗, we obtain exactly the structure of a Riesz trans-
form. Therefore the operator T̄ T̄ ∗ is continuous from L2 to Ḣ1 with norm
Cλ2s−1, which concludes the proof of the lemma.

By the same method, we have the corresponding result for negative deriva-
tives in velocity.

Lemma 3.4 ∀ s ≤ 0, T : Hs
v(L

2
x) −→ Ḣs+1/2 +Ḣ1/2, with norm C

(
λs−1/2,

λ−1/2
)
.

The same remark as for Lemma 3.2 also holds here: For an integer number
of derivatives, we obtain a sum of two terms, one in Hs+1/2 and the other in
H1/2.

To obtain the behaviour of T on any space of the form W s,p1
v (Lp2

x ), we only
have to interpolate between Lemma 3.1 and Lemma 3.3. For any 1 < p2 < 2,
we point out first that the proof of Lemma 3.1 also shows that T sends
W s,1

v (H1
x) in ∆

−s/2
x H1 with H1 the Hardy space; This would also be true with

any Banach space whose norm is invariant by translation (i.e. the norm of
f(x+ h) is equal to the norm of f). Then we interpolate between W s,1

v (H1
x)

and Hs
vL

2
x to obtain W s,p2

v Lp2
x whose image by T is in the interpolation of

∆
−s/2
x H1 and Ḣs+1/2, that is Ẇ 1−1/p2,p2 . Finally we interpolate between

W s,1
v (Lp2

x ) and W s,p2
v Lp2

x , which is the space W s,p1
v Lp2

x with its image in the
interpolate between Ẇ s,p2 and Ẇ 1−1/p2,p2 . Therefore we have the following
proposition

Proposition 3.1 For any 1 ≤ p1 ≤ min(p2, p
∗
2), for any s with s ≤ 1/p1,

we have for s ≥ 0

T : W s,p1
v (Rd, Lp2

x (Rd)) −→ Ẇ 1+s−1/p1, p2(Rd), with norm Cλs−1/p1 ,
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and for s any negative integer

T : W s,p1
v (Lp2

x ) −→ Ẇ 1+s−1/p1, p2(Rd) + Ẇ 1−1/p1, p2(Rd),

with norms (C λs−1/p1 , C λ−1/p1).

Again the notation with the parenthesis for the norms means that the norm
of the term in Ẇ 1+s−1/p1, p2(Rd) is less than C λs−1/p1 and the norm of the
other term less than C λ−1/p1 .

3.3 Conclusion of the proof of Theorem 1.1

We are ready to prove Theorem 1.1. We do it first with the additional
assumption that β < 1/p1. Indeed with that we may apply Proposition 3.1
to both f and g.

For the moment we will consider only γ ≥ 0 or negative integers for γ. If
γ < 0, Proposition 3.1 gives us two different terms for Tkgk in Lq2 norm, one
has 1−1/q1+γ derivatives and the other 1−1/q1. The first one will give us the
result stated in Theorem 1.1, the other one would give even more regularity.
However, the corresponding Besov spaces are also the interpolates of order
θ, between Lp2 and Ẇ 1−α,q2 . Since the second term leads to an interpolation
between the same spaces but of higher order, it is also included in the same
space as the first term. Hence in the following we will forget about this
second term.

We have

ρ = λρ1 + ρ2 = λTf + Tg,

with by Proposition 3.1

‖ρ1‖Ẇ 1+β−1/p1, p2 ≤ Cλβ−1/p1 × ‖f‖
W

β,p1
v L

p2
x
,

‖ρ2‖Ẇ 1+γ−1/q1−α, q2 ≤ Cλγ−1/q1 × ‖g‖W
γ,q1
v L

q2
x
.

We then minimize in λ according to the K-method of real interpolation. We
refer to [2] or [20] for more details on this method.
Let us define the following function K

K(t) = inf
ρ=a1+a2

(
‖a1‖Ẇ 1+β−1/p1, p2 + t‖a2‖Ẇ 1+γ−1/q1−α, q2

)
.
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If supt>0 t
−θK(t) is finite, then ρ belongs to the space Ḃs,r

∞,∞ which is the in-

terpolation of order (θ,∞) of the two spaces Ẇ 1+β−1/p1, p2 and Ẇ 1+γ−1/q1−α,q2

(here θ, s and r are given the values of Theorem 1.1). Now for any t, mini-
mizing in λ, we take

λ = t1/(1+β−1/p1−γ+1/q1),

and we find indeed, taking a1 = ρ1 and a2 = ρ2

K(t) ≤ t(1+β−1/p1)/(1+β−1/p1−γ+1/q1) × ‖f‖1−θ

W
β,p1
v L

p2
x

× ‖g‖θ
W

γ,q1
v L

q2
x
.

Of course the operator which to any couple (f, g) associates λTf+T (v ·∇xf)
is well defined and linear. We use it on the spaces {f ∈ W β,p1

v (Lp2
x ) s.t. v ·

∇xf ∈ W γ,q1
v (Lq2

x )}. Hence by complex interpolation, if we have proved
Theorem 1.1 for values of γ which are integers, we deduce the result for any
value.
It only remains to indicate how we prove Theorem 1.1 for β ≥ 1/p1. Clearly
if Proposition 3.1 were true for these values, we would be done since the
previous argument of real interpolation would not pose any difficulty.
If one tries to prove any of the lemmas in the previous subsection for β ≥
1/p1, the problem is that we do not have enough integrability in t. More
precisely, we would have to integrate a term in t−k with k ≥ 1 which is not
possible. However

Tf =

∫ ∞

0

∫
Rd

∂t(t)f(x− vt, v)e−λt φ(v) dv dt

=

∫ ∞

0

∫
Rd

f(x− vt, v) λte−λt φ(v) +

∫ ∞

0

∫
Rd

v · ∇xf(x− vt, v)te−λt φ(v)

=

∫ ∞

0

∫
Rd

f(x− vt, v) λte−λt φ(v) +
1

λ

∫ ∞

0

∫
Rd

g(x− vt, v)λte−λt φ(v).

The first term has the same homogeneity as Tf but with more integrability
around the origin in t. The second term, once it is multiplied by λ behaves
exactly like the usual Tg.
Therefore, repeating this simple trick as many times as necessary, we avoid
any problem of integrability in t for Tf and we may consider β as large as
we want.
Notice finally that this would not work for Tg because we have used that
v · ∇xf = g and we do not have anything like that for g.
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4 Proofs of Prop. 1.1, Theorems 1.2 and 1.3

For simplicity, we only consider in this section averaging on the sphere of the
kind (1.3). The results trivially extend to any more general averaging like
(1.2).
Indeed an average like (1.2) is itself the average of quantities like (1.3) (but
taking the averages on spheres of different radius). One may obtain a bound
on an average on a sphere on radius r from the bound on the average for a
sphere of radius 1 by a simple scaling argument and so eventually a bound
on quantity like (1.2).
Moreover, in (1.3), we will take φ = 1. This only means that we redefine f
and g as for instance f̃ = f(x, v)× φ(v).

4.1 Proof of Proposition 1.1

From the proof of Theorem 1.1, the only thing we have to do is to prove
the equivalent of Lemmas 3.1 and 3.2 (or almost the equivalent since we are
losing a bit here)

T : Lp
x(R2, W s,q

v (R2)) −→ Ẇ s,p(R2), with norm Cλs−1,

if q > 1, s ≥ 0 and in W s,p with norm λs−1 + λ−1 if s < 0. Note that of
course in Theorem 1.1, we could reach the case q = 1. The fact that we
cannot the estimate for this critival case here is the reason why in the end,
after interpolating, we do not have the critical order of derivative in Prop.
1.1.
We deal with the derivatives in velocity just as in Lemma 3.1. Next simply
by making the changes of variables λt→ t and xλ→ x we may take λ = 1.
Therefore by interpolation, it is enough to prove that the operator which to
any f associates ∫ ∞

0

∫
S1

f(x− vt, v)
e−t

ts
dv dt,

is continuous from L2
x(L

q
v) in L2 if s < 1 and q > 1. By duality, we need to

prove that the operator T ∗s which to any function h(x) associates

T ∗s h =

∫ ∞

0

h(x+ vt)
e−t

ts
dt, (4.1)

is continuous from L2
x in L2

x(R2, Lp(S1)) for any 2 ≤ p <∞.
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But now this is a consequence of the estimate that we already proved on T ∗s .

Indeed we showed that T ∗s sends L2 into H
1/2
x L2

v. Now looking at formula

(4.1), it is obvious that this implies that T ∗s sends L2 into H
1/2
v L2

x since we
may exchange derivatives in x for derivatives in v (and we gain in integrability
around t = 0 when it is in this order). The variable v is defined on S1, i.e.
it is one dimensional so by Sobolev embedding we obtain the desired result.

Let us make a few comments. Proposition 1.1 shows that, at least in dimen-
sion two, it is possible to invert the order of the norms in x and v in (1.4)
provided the exponent in x is not larger than two.

Since the space Lp1
v (Lp2

x ) is included in the space Lp2
x (Lp1

v ) for p1 ≤ p2, invert-
ing the order cannot lead to a better result than in Theorem 1.1. Moreover
since Lp2

x (Lp1
v ) is itself included in Lp1

x, loc(L
p1
v ), the number of derivatives,

which is gained in ρ, should be the same (provided f is at least as regular
as g, as noted in the introduction). Hence the main question is under which
condition we can have the same integrability for ρ.

But here it is easy to see that for the operator T ∗0 to send Lp
x in Lp

x(L
1
v),

we need that p ≥ d (and the same for T ∗s of course). Indeed consider the
function, for any η � 1

h(x) = I |x|≤η.

Choosing the simple case s = 0 in the definition (4.1) of T ∗0 , we have

T ∗0 h(x, v) ∼ e−|x| × I|v·x/|x||≤η|x|.

Therefore

‖h‖Lp ∼ ηd/p, ‖T ∗0 h‖Lp
x(L1

v) ∼ η,

and the requirement that d/p ≤ 1. Since any estimate on T0 implies by
duality an averaging result, this corresponds to the condition p ≤ d∗ for any
equivalent of Proposition 1.1.

The estimate we derive in this subsection for T ∗s is a well known inequality
about the so called Kakeya maximal function -see for example[12]. In here we
prove it using Sobolev’s embedding theorem as a consequence of the gain of
1/2 derivative. This does not work in higher dimensions where the problem
is open.
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4.2 Proofs of Theorems 1.2 and 1.3

We will have to bound as before∫
v∈S1

∫ ∞

0

g(x− vt, v)
e−λt

ts
φ(v) dt dv, (4.2)

and ∫
v∈S1

∫ ∞

0

f(x− vt, v)
e−λt

ts′
φ(v) dt dv. (4.3)

We first note that thanks to the remark at the end of the proof of Theorem
1.1, we may take s′ = −1 in (4.3). Then since g(., v)φ(v) is even in v∫

v∈S1

∫ ∞

0

g(x−vt, v)e
−λt

ts
φ(v) dt dv =

∫
v∈S1

∫ ∞

0

g(x+vt, v)
e−λt

ts
φ(v) dt dv

=
1

2

∫
v∈S1

∫ ∞

−∞
g(x−vt, v)e

−λ|t|

|t|s
φ(v) dt dv.

Therefore for s < −1/2, we define T ∗s as in the previous subsection by (4.1),
but for s ≥ −1/2, we define

T ∗s h =

∫ +∞

−∞
h(x+ vt)

e−|t|

|t|s
. (4.4)

We use the notation T̃ ∗s for

T̃ ∗s h =

∫ +∞

0

h(x+ vt)
e−|t|

|t|s
.

Theorem 1.2 is a direct consequence of the proposition

Proposition 4.1 In dimension two, T ∗0 and T ∗s with s ≤ −1/2, are con-
tinuous from Lp(R2) to W θ,p

x (L2
v) for any θ < 1/2, provided 2 ≤ p ≤ 4.

This proposition implies the dual estimate for Ts, from Lp
x(L

2
v) in W θ,p

x with
θ < 1/2, 4/3 ≤ p ≤ 2. For the proof of Theorem 1.2 from Prop. 4.1, we first
interchange x and v derivatives as in Lemma 3.3, then we use the operator
T ∗s and we conclude by a standard interpolation procedure as in Theorem
1.1. Therefore we omit this proof here and we give some details only for
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Theorem 1.3 where the procedure is a bit more complicated. Proposition 4.1
is proved in subsection 4.3.

Theorem 1.3 is a consequence of the more precised proposition in dimension
two

Proposition 4.2 In dimension two, T̃ ∗0 and T ∗s , for s ≤ −1, are continuous
from L4(R2) to Hθ

x(L1
v) for any θ < 1/2.

It also requires the use of a proposition proved in [12] for the X-ray transform
but which may easily be adapted here, namely

Proposition 4.3 In dimension two, T ∗s with s ≤ 0 is continuous from
L2(R2) to Lp

x(L
2
v) for any 2 ≤ p <∞.

This proposition for our operator is a trivial consequence from the one for the
X-ray transform because it does not involve any derivative and our operator
is pointwise bounded by the X-ray transform.

From these two propositions one may deduce by interpolation

Proposition 4.4 In dimension two, for any s ≤ 0, 1 < p2 ≤ 2, p1 ≥ p2, the
operator T defined by (3.1) is continuous from Lp2

x (W s,p1
v ) to Ẇ s+θ,r

x + Ẇ θ,r
x

with norms (Cλs+θ−1−2/r+2/p2 , Cλθ−1−2/r+2/p2) and

θ < min

(
1/2, 2

(
1− 1

p2

))
,

1

r
=

1

2
+

1

2p1

+
2

p1

∣∣∣∣34 − 1

p2

∣∣∣∣ .

This proposition is proved for s ≤ −1/2 and s = 0, the general case being
obtained by interpolation. The first step is to integrate by parts in v so as
to be back to the operators Ts if λ = 1. Then for Ts we interpolate in p1

between Prop. 4.1 and 4.2 if p2 = 4/3. It is then enough to interpolate in
p2 with Prop. 4.3 first if 1 < p2 < 4/3 and with the known result in L2 if
4/3 < p2 < 2. This proves Proposition 4.4 if λ = 1. To get the dependency
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on λ, we use a simple scaling argument

‖Tf‖Ẇ δ,r =

(∫
x

(
∂δ

x

∫
v

∫ ∞

0

f(x− vt, v)φ(λt) dt dv

)r

dx

)1/r

= λ−1

(∫
x

(
∂δ

x

∫
v

∫ ∞

0

f(x− vu/λ, v)φ(u) du dv

)r

dx

)1/r

= λ−1+δ−d/r

(∫
y

(
∂δ

y

∫
v

∫ ∞

0

f((y − vu)/λ, v)φ(u) dt dv

)r

dy

)1/r

≤ Cλ−1+δ−d/r

(∫
y

(∫
v

|∂s
vf(y/λ, v)|p1 dv

)p2/p1

dx

)1/p2

≤ Cλ−1+δ−d/r+d/p2 ‖f‖L
p2
x (W

s,p1
v ).

Now we apply Prop. 4.4 to λf and g solutions to (1.1). Note again that
thanks to the arguments given at the end of the third section, we may have
as much integrability in t as we want for f in the operator T and consequently
the restriction s ≤ 0 in Prop. 4.4 can be removed for f . As previously this
gives us

ρ = λρ1 + ρ2,

with

‖ρ1‖
Ẇ

θf +β,rf
x

≤ Cλβ+θf−1−d/rf+d/p2 ‖f‖
L

p2
x (W

β,p1
v )

,

‖ρ2‖
Ẇ

θg+γ−α,rg
x

≤ Cλγ+θg−1−d/rg+d/q2 ‖g‖
L

q2
x (W

β,q1
v )

,

where

θf < min (1/2, 2(1− 1/p2)) ,
1

rf

=
1

2
+

1

2p1

+
2

p1

∣∣∣∣34 − 1

p2

∣∣∣∣ ,
θg < min (1/2, 2(1− 1/q2)) ,

1

rg

=
1

2
+

1

2q1
+

2

q1

∣∣∣∣34 − 1

q2

∣∣∣∣ .
It only remains to do the interpolation in λ though the real method and that
gives the formula of Theorem 1.3.

4.3 Proof of Proposition 4.1

We in fact show the following
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Lemma 4.1 For any set E and any 0 ≤ θ < 1/2, provided s ≤ −1 or s = 0

‖∆θ/2
x T ∗s IE‖4

L4
x(R2, L2

v(S1)) ≤ C |E|. (4.5)

This implies the corresponding estimates with norms of Lorentz spaces for
any function and by Sobolev embedding (θ < 1/2) the proposition. For an
example of how to pass from Lemma 4.1 to Prop. 4.1 we refer the reader to
the end of the first appendix, where the procedure is used for the “classical”
L2 estimate.

Proof of Lemma 4.1. First of all, we decompose the sphere S1 into sub-
domains Sk with k = 1, 2 such that |vk| > 1/2 in Sk. Of course it is enough
to prove (4.5) with Sk instead of S1 and by symmetry we do it only for S1.
Now we are going to make two reductions.
Step 1: Reduction to the compactly supported case.
We explain why it is enough to prove for any K > 0 and any set E ∈ B(0, K),
the inequality

‖∆θ/2
x T ∗s IE‖4

L4
x(B(0,K), L2

v(S1)) ≤ C(K) |E|. (4.6)

Take any set E ⊂ R2 with finite measure and any K > 0. We decompose E
into ∪iEi with Ei ⊂ B(xi, K) and |xi − xj| > K/2 and Ei ∩ Ej = ∅, ∀i 6= j.
Then

IE(y) =
∑

i

IEi
(y),

and consequently

T ∗s IE(x, v) =
∑

i

T ∗s IEi
(x, v) IB(xi,2K)(x) +

∑
i

T ∗s IE(x, v) I|x−xi|>2K = I + II.

Now, of course because of the condition |xi − xj| > K/2∫
R2

(∫
S1

|∆θ/2
x I|2 dv

)2

dx = C
∑

i

∫
B(xi,2K)

(∫
S1

|∆θ/2
x T ∗s IEi

(x, v)|2 dv
)2

dx

≤ C(2K)
∑

i

|Ei| ≤ C(2K) |E|,

since (4.6) is obviously invariant by translation and hence true as well if we
replace B(0, K) by B(y,K) for any y.
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As for the second term, we remark that, as Ei ⊂ B(xi, K)

T ∗s IEi
(x, v) I|x−xi|>2K ≤ e−|x−xi|/2−K/2,

and that furthermore (that inequality is proved in [12]), for any x∫
S1

|T ∗s IEi
(x, v)|2 dv ≤ C |Ei|.

Eventually we simply bound in L4

∫
R2

(∫
S1

|II|2 dv
)2

dx ≤ C e−K
∑
i,j

|Ei|1/2 |Ej|1/2

∫
R2

e−|x−xi|/2−|x−xj |/2 dx

≤ C e−K |E|.

We have decomposed T ∗s IE into two terms for any K. The first one belongs to
W θ,4

x (L2
v) with norm (C(2K) |E|)1/4 (which is obviously at most polynomial

in K) and the second one in L4 with norm e−K/4 |E|1/4. By real interpolation,
we deduce that T ∗0 IE belongs to W θ′,4

x (L2
v) with norm C|E|1/4 for any θ′ < θ,

which is exactly what we want.

Step 2: Reduction to the X-ray transform.
The aim here is to get back the case where T ∗s IE(x, v) is invariant along any
line with direction v like the X-ray transform. So first of all, we write

|∆θ/2
x T ∗s IE(x, v)| = |∆θ/2

x

∫ 0

−∞
v · ∇xT

∗
s IE(x+ tv, v) dt|

≤
∫ +∞

−∞
|∆θ/2

x v · ∇xT
∗
s IE(x+ tv, v)| dt.

All these expressions make sense because now E ⊂ B(0, K) and because
v · ∇xT

∗
s IE(x+ tv, v) is if s < −1/2

v · ∇xT
∗
s IE(x+ tv, v) =

∫ ∞

0

v · ∇xIE(x+ tv + rv)
e−r

rs
dr

=

∫ ∞

0

∂

∂r

(
IE(x+ tv + rv)

)e−r

rs
dr

=

∫ ∞

0

IE(x+ tv + rv)

(
s e−r

rs+1
− e−r

rs

)
dr,

(4.7)
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by integration by parts in r and because s < −1/2 and as a consequence r−s

vanishes at r = 0. If s = −1/2 or s = 0, then T ∗s is the integral on the whole
line by (4.4) and so

v · ∇xT
∗
−1/2IE(x+tv, v) =

1

2
T ∗1/2IE(x+tv) +

∫ ∞

−∞
IE(x+tv+rv)

e−|r|

|r|1/2
× r

|r|
dr,

v · ∇xT
∗
0 IE(x+ tv, v) =

∫ ∞

−∞
IE(x+tv+rv) e−|r| × r

|r|
dr.

(4.8)

Now we denote

T IE(x, v) =

∫ +∞

−∞
|∆θ/2

x v · ∇xT
∗
s IE(x+ tv, v)| dt.

Thanks to (4.7) and (4.8), we know the following properties on T , for some
θ′ > 0 (in fact θ′ = 1/2− θ)

v · ∇xT IE(x, v) = 0, ‖∆θ′/2
x T IE‖L2

B(0,K)×S1
≤ C |E|1/2. (4.9)

Note that here we need the condition s ≤ −1/2 or s = 0 because the gain of
half a derivative for T ∗s is possible only if s ≤ 1/2 and from (4.7) and (4.8),
we see that we work in fact with s+ 1 if s 6= 0.
We want to deduce from (4.9)

‖T IE‖4
L4

x(B(0,K), L2
v(S1)) ≤ C(K) |E|. (4.10)

Step 3: Deduction of (4.10) from (4.9).
We begin with

‖T IE‖4
L4

x(B(0,K), L2
v(S1)) =

∫
B(0,K)

(∫
v∈S1

|T IE(x, v)|2 dv
)2

dx

=

∫
B(0,K)

∫
v,w∈S1

|T IE(x, v)|2 × |T IE(x,w)|2 dv dw dx

=

∫
v∈S1

∫
x∈B(0,K)

∫
w∈S1

|T IE(x, v)|2 |T IE(x,w)|2 dw dx dv.

We change variables in x decomposing x in y + lv with y in the plane H1

of equation x1 = 0. Since |v1| > 1/2, the jacobian of the transformation is
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bounded and as all the terms in the integral are non negative, we may simply
bound

‖T IE‖4
L4

x(B(0,K), L2
v(S1)) ≤

∫
v∈S1

∫
y∈H1

∫ K

l=−K

∫
w∈S1

|T IE(y+lv, v)|2

× |T IE(y+lv, w)|2 dw dl dy dv

≤
∫

v∈S1

∫
y∈H1

|T IE(y, v)|2 ×
(∫ K

l=−K

∫
w∈S1

|T IE(y+lv, w)|2dw dl
)
dy dv,

because Tf(x, v) is constant on any line with direction v and therefore
T IE(y + lv, v) does not depend on l. We denote

I(y, v) =

∫ K

l=−K

∫
w∈S1

|T IE(y + lv, w)|2 dw dl,

and we want to show that I belongs to L∞. So we fix y and v and we first
decompose S1 into the union of Si

1 with Si
1 = {w ∈ S1, 2−i−1 < |v−w| < 2−i}

and so

I(l, v) =
∞∑
i=0

Ii(l, v) =
∞∑
i=0

∫ K

l=−K

∫
w∈Si

1

|T IE(y + lv, w)|2 dw dl.

Of course T IE(y + lv, w) is constant along any line with direction w so we
may bound

Ii ≤
1

2K

∫
w∈Si

1

∫ K

l=−K

∫ K

s=−K

|T IE(y + sw + lv, w)|2 ds dl dw.

We change again variables from l and s to z = y + sw + lv. We denote by
Cy,v,w the set {y + sw + lv, |s| ≤ K, |l| ≤ K} and by |(v, w)| the sinus of
the angle between v and w. Then

Ii ≤
1

2K

∫
w∈Si

1

∫
z∈Cy,v,w

|T IE(z, w)|2 dz dw
|(v, w)|

≤ 2i+1

2K

∫
w∈Si

1

∫
z∈Cy,v,w

|T IE(z, w)|2 dz dw.

Denote Cy,v =
⋃

w∈Si
1
Cy,v,w and Ẽ = E ∩ Cy,v. Clearly, as all the terms are

non negative

Ii ≤
2i+1

2K

∫
w∈Si

1

∫
z∈Cy,v

|T IẼ(z, w)|2 dz dw.

28



Using a Hölder estimate, we find for any p > 2,

Ii ≤
2i+1

2K
× |Cy,v|1−2/p ×

∫
w∈Si

1

(∫
z∈Cy,v

|T IẼ(z, w)|p dz

)2/p

dw

≤ C(K) 2i+1 × 2−i(1−2/p) ×
∫

w∈S1

(∫
z∈B(0,2K)

|T IẼ(z, w)|p dz
)2/p

dw,

because the measure of Cy,v is bounded by a constant depending on K times
2−i. Now by Sobolev embedding, for 1/2−θ′/2 ≤ 1/p < 1/2, the last integral
is dominated by the L2

wH
θ′
z norm of T IẼ. Therefore, taking 1/p = 1/2−θ′/2,

we get by (4.9)

Ii ≤ C(K) 2i+1 × 2−iθ′ ×
∫

w∈S1

∫
z∈B(0,2K)

|∆θ′/2
x T IẼ(z, w)|2 dz dw

≤ C(K) 2i+1 × 2−iθ′ × C |Ẽ| ≤ C(K)× 2−iθ′ ,

because the measure of Ẽ is less than the measure of Cy,v. Eventually we
may sum up the series and get

I =
∞∑
i=0

Ii ≤ C(K).

This has as immediate consequence that

‖∆s/2
x T IE‖4

L4
x(B(0,K), L2

v(S1)) ≤ C(K)

∫
v∈S1

∫
y∈H1

|∆s/2
x T IE(y, v)|2 dy dw

≤ C(K)× |E|,

using again the known L2 estimate (4.9) on T .

Note that it is relatively simple to find a set E for which the lemma would
be false if p > 4 in dimension two. Indeed, one may take for example a
set composed of the N sets Ei of equations in polar coordinates r, θ, θ ∈
[i/N, i/N + i/2N ] and r ≤ 1. Then |E| ≥ 1 and for any x in the square of

size 1/N centered at the origin
∫

v
|∆1/4

x IE(x, v)|2 dv = N and so to have

N−2 ×Np ≤
∫

B(0,2K)

(∫
v

|∆1/4
x IE(x, v)|2 dv

)p/2

dx ≤ CNp/2,

one must have p ≤ 4. So in this sense Proposition 4.1 is optimal.
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4.4 Proof of Proposition 4.2

Let us first remark that Proposition 4.2 can be proved with the same method
as for Proposition 4.1. Indeed it is enough to bound∫

B(0,K)

(∫
v∈S1

|T IE(x, v)| dv
)4

dx ≤
∫

B(0,K)

∫
v∈S1

|T IE(x, v)|2

×
(∫

w∈S1

|T IE(x,w)| dw
)2

dv dx,

and then for any k < 1∫
B(0,K)

(∫
v∈S1

|T IE(x, v)| dv
)4

dx ≤
∫

B(0,K)

∫
v∈S1

|T IE(x, v)|2

×
(∫

w∈S1

|T IE(x,w)|2 × |(v, w)|k dw
)
×
(∫

w

|(v, w)|−kdw

)
dv dx.

That gives almost an additional |(v, w)| which is just what is needed to go
from Prop. 4.1 to Prop. 4.2.

We note as well that the same counterexample as in the previous subsection
holds here.

However the previous method makes necessary the evenness condition on gφ
and so we present another proof, using a T T ∗ argument, which does not
require it. We denote by the general notation T all the operators for s ≤ −1
or s = 0

Tf(x, v) =

∫ ∞

0

f(x+ vt)
e−t

ts
dt.

Proposition 4.2 is equivalent by duality to

‖Tf‖W s,4
x (R2, L1

v(S1)) ≤ C ‖f‖L2 , ∀s < 1/2. (4.11)

Step 1: Reduction to the compactly supported case. The procedure is the
same as in the previous case so we omit it. It enables to deduce (4.11) from
the inequality, for any f compactly supported in B(0, 1)

‖Tf‖W s,4
x (B(0,1), L1

v(S1)) ≤ C ‖f‖L2 , ∀s < 1/2.
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Therefore we may define for some function ψ(t) ∈ C1
c with ψ(t) = t−s e−t if

0 ≤ t ≤ 1 and ψ with compact support in [0, 2]

T̃ f(x, v) =

∫ ∞

0

f(x+ vt)ψ(t) dt,

and it is enough to show that for any f compactly supported in B(0, 1)

‖T̃ f‖W s,4
x (B(0,1), L1

v(S1)) ≤ C ‖f‖
L

4/3
x (L∞v )

, ∀s < 1/2. (4.12)

Step 2: The T T ∗ argument. The last inequality is equivalent to show that
for any function f of the two variables x, v

‖T̃ T̃ ∗ f‖W 1,4
x (R2, L1

v(S1)) ≤ C ‖f‖
L

4/3
x (L∞v )

.

Then we perform a cut-off in frequency space. Take K ∈ S(R) with K̂
supported in [−1, 1], N > 1 and define for any function f the fN(x) =
N2K(N |x|) ? f . The last estimate is implied by

‖T̃ T̃ ∗fN‖W 1,4
x (R2, L1

v(S1)) ≤ C lnN ‖f‖
L

4/3
x (L∞v )

. (4.13)

We note that

T̃ T̃ ∗fN(x, v) =

∫
w∈S1

∫ ∞

0

∫ ∞

0

fN(x+ vt− ws,w)ψ(s)ψ(t) ds dt dw

=

∫
w∈S1

S fN(x, v, w) dw.

We also perform a dyadic decomposition of S1, introducing again the Si
1 =

{w ∈ S1 | 2−i−1 < |(v, w)| ≤ 2−i} for i < lnN and S0 = {w ∈ S1 | |(v, w)| ≤
1/N}. Consequently

T̃ T̃ ∗fN(x, v) = R0 fN +
ln N∑
i=1

Ri fN =

∫
w∈S0

S fN(x, v, w) dw

+
ln N∑
i=1

∫
w∈Si

1

S fN(x, v, w) dw.
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Moreover by integration by parts in t and s

v · ∇xS f(x, v, w) = −
∫ ∞

0

f(x− ws,w)ψ(s) ds

−
∫ ∞

0

∫ ∞

0

f(x+ vt− ws,w)ψ(s)ψ′(t) ds dt,

w · ∇xS f(x, v, w) =

∫ ∞

0

f(x+ vt, w)ψ(t) dt

+

∫ ∞

0

∫ ∞

0

f(x+ vt− ws,w)ψ′(s)ψ(t) ds dt.

Since (we recall that (v, w) is the sinus of the angle between v and w)

|∇x S f(x, v, w)| ≤ C

|(v, w)|
(
|v · ∇xS f |+ |w · ∇xf |

)
,

we may bound

|∇xRi fN(x, v)| ≤ |T̃ sup
w
fN |+ 2i+1 |T̃ ∗i fN |+ 2i+1

∫
w∈Si

1

|S̃ fN(x, v, w)| dw,

where

S̃ fN(x, v, w) =

∫ ∞

0

∫ ∞

0

fN(x+ vt− ws,w)Φ(s, t) ds dt,

Φ = |ψ′(s)|ψ(t) + ψ(s) |ψ′(t)|,

T̃ ∗i fN(x, v) =

∫
w∈Si

1

∫ ∞

0

fN(x− ws,w) ds dw.

Step 3: Bound on the terms coming from T̃ and T̃ ∗i . Denote X the X-ray
transform

X h(x, v) =

∫ ∞

−∞
h(x+ vt) dt.

We start with T̃

‖T̃ sup
w
fN‖L4

x(L1
v) ≤ ‖X sup

w
fN‖L4

x(L1
v) ≤ C‖ sup

w
fN‖L4/3 ≤ C‖fN‖L

4/3
x (L∞v )

,
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where we have used the bound for the X-ray transform proved in [12]. Now
for T ∗i

‖T ∗i fN‖L4
x(L1

v) ≤

∥∥∥∥∥
∫

v∈S1

∫
w∈Si

1

∫ ∞

0

|fN(x− ws,w)| ds dw dv

∥∥∥∥∥
L4

x

≤ 2−i

∥∥∥∥∫
w∈S1

∫ ∞

0

|fN(x− ws,w)| ds dw
∥∥∥∥

L4
x

≤ 2−i‖X∗ |fN |‖L4
x
≤ C 2−i ‖fN‖L

4/3
x (L∞v )

,

using again the estimate for X in [12].

Step 4: Bound on the term from S̃. We first estimate

|S̃ fN(x, v, w)| ≤
∫ ∞

0

∫ ∞

0

sup
z
fN(x− vt+ ws, z) dt ds,

then we change variable denoting r = v⊥ · (ws− vt) and

Iw∈Si
1
|S̃ fN(x, v, w)| ≤

∫
|r|≤2−i+2

∫ ∞

−∞
sup

z
fN(x+ rv⊥ + ws, z) ds dr

≤ 2i

∫
y∈B(0,2−i+2)

X(sup
z
|fN(., z)|)(x+ y, w) dy.

Finally changing the order of integration∥∥∥∥∥
∫

v∈S1

∫
w∈Si

1

|S̃ fN(x, v, w)| dw dv

∥∥∥∥∥
L4

x

≤ 2i

∫
y∈B(0,2−i+2)

∥∥∥∥∥
∫

w∈S1

∫
v∈S1

i

X(sup
z
|fN(., z)|)(x+ y, w) dv dw

∥∥∥∥∥
L4

x

dy

≤
∫

y∈B(0,2−i+2)

‖X(sup
z
|fN(., z)|)(x+ y, v)‖L4

x(L1
v) dy,

and we obtain∥∥∥∥∥
∫

v∈S1

∫
w∈Si

1

|S̃ fN(x, v, w)| dw dv

∥∥∥∥∥
L4

x

≤
∫

y∈B(0,2−i+2)

‖ sup
z
fN(x+ y, z)‖L4/3 dy

≤ C 2−i ‖fN‖L
4/3
x (L∞v )

.
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Step 5: Bound on R0. We simply differentiate under the integral

‖∇xR0 fN‖L4
x(L1

v) ≤ N

∥∥∥∥∫
S0

∫ ∞

0

∫ ∞

0

|f(x+vt−ws,w)|ψ(s)ψ(t) ds dt dw

∥∥∥∥
L4

x(L1
v)

.

For this last term the same proof as for S̃ shows that

‖∇xR0 fN‖L4
x(L1

v) ≤ ‖f‖
L

4/3
x (L∞v )

.

Having proved that every Ri fN are bounded in W 1,4
x (L1

v) by ‖f‖
L

4/3
x (L∞v )

, we

deduce (4.13), which concludes the proof.

Appendix A: A direct proof for Proposition

3.1

We present here a direct method in L2 for the dual operator T ∗. More
precisely, we show

Proposition 4.5 Let T ∗s be defined by (4.1). Then this operator is continu-
ous from Lp

x in Lp
vW

θ,p
x for θ < 1− 1/p̄ with p̄ = min(p, p∗) provided s < 1/2.

We do not indicate here how one may deduce from that Prop. 3.1 in the
case p1 = p2. The procedure is fairly obvious, it is enough to exchange first
derivatives in v for derivatives in x (thus losing integrability in t hence the
need for Ts and not only T0) then apply Prop. 4.5. Note that the assumption
s < 1/2 implies that s+ θ < 1.

In the spirit of [12], we first prove Proposition 4.5 for characteristic functions
of sets. Since the proof is more complex, it is convenient to treat first only
the case of simple sets. The first point to note is that we may work in a
domain S0 in v which is included in {v ∈ Sd−1, 1/4d < vi < 1/2 ∀i ≤ d}
instead of working in the whole sphere since the sphere may be decomposed
in a finite number of domains of the same form as S0 and the result is the
same on any of them due to the invariance by rotation of the problem.
Thus for any N > 0, we say that a set E belongs to CN if it is the union of
closed squares (or cubes or hypercubes) of the form [i1/N, i1/N + 1/N ] ×
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. . . × [id/N, id/N + 1/N ] where i1, . . . , id are integers. Of course we choose
this form for CN because the “bad” directions which are along the axis of
coordinates do not belong to S0. Then we prove

Lemma 4.2 For any N > 0 and any E ∈ CN , we have for θ < 1− 1/p̄ with
p̄ = min(p, p∗) and s < 1/2

‖T ∗s IE‖p

Lp
v(S0, W θ,p

x )
≤ C|E|.

Proof. We compute directly the norm using the formula

‖T ∗s IE‖p

Lp
vW θ,p

x
=

∫
x, y∈Rd

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|p|x−y|−d−θp dv dy dx.

Let us decompose according to the distance between x and y

‖T ∗s IE‖p

Lp
vW θ,p

x
=

∫
|x−y|≥1

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|p|x−y|−d−θp dv dy dx

+
∞∑
i=1

∫
2−i≤|x−y|<2−i+1

. . .

Of course the first term is dominated by the power p of the norm of T ∗s IE

in Lp
x,v which is trivially bounded by the measure of E (see the proof of

Theorem 1.1 for instance). Since we do not want to get the precised critical
case θ = 1− 1/p̄, it is therefore enough to show that for any M∫

1/M≤|x−y|<2/M

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|pMd+θp dv dy dx ≤ C|E|. (4.14)

The first point to note, is that we may limit ourselves to the case where E has
a fixed bounded diameter K independent on M or i and where we integrate
over a ball of the same diameter. Indeed let us fix a ball, then∫

x∈B(x0,K)

∫
1/M≤|x−y|<2/M

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|pMd+θp dv dy dx

≤ C

∫
B(x0,K)

∫
1/M≤|x−y|<2/M

∫
v

|T ∗s IE∩B(x0,2K)(x, v)−T ∗s IE∩B(x0,2K)(y, v)|pMd+θp

+ Ce−K

∫
B(x0,K)

∫
1/M≤|x−y|<2/M

∫
v

(|T ∗s IE(x, v)|p + |T ∗s IE(y, v)|p)Md+θp,
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because of the e−t term in T ∗s of course. If we are able to prove that for θ′ > θ
but with θ′ < 1− 1/p̄∫

B(x0,K)

∫
1/M≤|y−x|<2/M

∫
v

|T ∗s IE∩B(x0,2K)(x, v)−T ∗s IE∩B(x0,2K)(y, v)|pMd+θ′p

≤ CK |E ∩B(x0, 2K)|,
(4.15)

summing on the balls, we get∫
x∈Rd

∫
1/M≤|x−y|<2/M

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|pMd+θp dv dy dx

≤ CKM
θ−θ′|E|

+ Ce−K

∫
Rd

∫
1/M≤|x−y|<2/M

∫
v

(|T ∗s IE(x, v)|p + |T ∗s IE(y, v)|p)Md+θp

≤ CKM
θ−θ′|E|+ Ce−KMd+θp|E|.

A simple scaling argument shows that, in (4.15), CK is dominated by a power
of K (depending on p). So choosing eventually K in terms of M we may
deduce (4.14) from (4.15). Hence from now on, E will have a given finite
diameter and the integrals in x or y will be taken inside a ball.

Before proving (4.15), we remark that we may choose M = N (not a great
surprise). If E ∈ CN then E belongs to every C2iN simply by dividing each
hypercube in 2di smaller identical hypercubes: So we may always take N ≥
M . And if (4.15) is true for M = N , it is true for all M ≤ N since for
instance∫

2/N≤|x−y|<4/N

∫
v

|T ∗s IE(x, v)−T ∗s IE(y, v)|p
(
N

2

)d+θp

dv dy dx

≤ Cp

∫
2/N≤|x−y|<4/N

∫
v

|T ∗s IE(x, v)−T ∗s IE(x+ (y − x)/2, v)|p
(
N

2

)d+θp

+ Cp

∫
2/N≤|x−y|<4/N

∫
v

|T ∗s IE(x+ (y − x)/2, v)−T ∗s IE(y, v)|p
(
N

2

)d+θp

≤ 2Cp

2d+θp
N θp−θ′p

∫
1/N≤|x−y|<2/N

∫
v

|T ∗s IE(x, v)−T ∗s IE(y, v)|pNd+θ′p dv dy dx,

where Cp is such that |a+b|p ≤ Cp |a|p+Cp |b|p. Then 2CpN
θp−θ′p is less than

1 (unless N is of order one but the proof is trivial then) if θ′ ≥ θ + C/ lnN .
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So (4.15) for M = N implies (4.15) for M = N/2 and by repeating the same
argument lnN/ ln lnN times, for lnN ≤ M ≤ N with a final number of
derivatives equal to θf = θ0 −C/ ln lnN , which is all right. Now of course if
M ≤ lnN then the argument is obvious because we may lose at most a lnN
factor which does not matter.

The last reduction of the problem we make is to regularize T ∗s . Indeed by
the same kind of argument, we may take T ∗s of the form

T ∗s IE =

∫ ∞

0

IE(x+ vt)
e−t

(1/N + t)s
dt,

and denoting Ci, 1 ≤ i ≤ n, the hypercubes which compose E and xi their
center, we approximate T ∗s IE by

TN(x, v) =
n∑

i=1

li(x, v)φi(x),

li(x, v) =

∫ ∞

0

ICi
(x+ vt) dt, φi(x) =

e−|x−xi|

(1/N + |x− xi|)s
.

We may do so because

|TN(x, v)− T ∗s IE(x, v)| ≤ C

∫ ∞

0

IE(x+ vt)N s−1 e−t

1/N + t
dt.

Therefore since s+ θ < 1, we have∫
2/N≤|x−y|<4/N

∫
v

|(T ∗s IE−TN)(x, v)|pNd+θp dv dy dx ≤ C‖T ∗1 IE‖p
Lp

x,v
≤ C|E|,

and in proving (4.15), we may replace T ∗s IE by TN .

Estimate (4.15) is a consequence of the following

sup
|ξ|≤1

∫
B(0,K)

∫
v∈S0

|∇xTN(x+ ξ, v)|p dv dx

≤
∫

B(0,2K)

∫
v∈S0

|∇xTN(x, v)|p dv dx ≤ Np−θp |E|.
(4.16)
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Indeed, writing

|TN(x, v)− TN(y, v)| =
∣∣∣∣∫ 1

0

(y − x)∇xTN(x+ s(y − x), v) ds

∣∣∣∣
≤ |x− y| ×

∫ 1

0

|∇xTN(x+ s(y − x), v)| ds,

and inserting this in the left hand side of (4.15), we find after a simple Hölder
estimate in s∫

B(0,K)

∫
1/N≤|y−x|<2/N

∫
v

|T ∗s IE∩B(x0,2K)(x, v)−T ∗s IE∩B(x0,2K)(y, v)|pNd+θp

≤
∫ 1

0

∫
B(x0,K)

∫
1/N≤|ξ|<2/N

∫
v

|∇xTN(x+ sξ, v)|pNd+θp−p dv dy dx ds

≤
∫ 1

0

∫
|ξ|≤2/N

∫
B(x0,K)

∫
v

|∇xTN(x+ sξ, v)|pNd+θp−p dv dx dy ds ≤ C|E|,

if (4.16) holds. To prove (4.16), we compute the derivative of TN which may
be decomposed into

|∇xTN(x, v)| =

∣∣∣∣∣
n∑

i=1

∇xli(x, v)φi(x)+li(x, v)∇xφi(x)

∣∣∣∣∣ ≤
∣∣∣∣∣∑

i

∇xli(x, v)φi(x)

∣∣∣∣∣
+ CN s

∑
i

li(x)
e−|x−xi|

1/N + |x− xi|
.

The last term poses no problem, it leads to the same computation as for the
approximation of T ∗s IE by TN (as s+ θ < 1) and so we do not repeat it here.
We focus on the first term instead.
It is easy to compute ∇xli. It has a non zero component only in the space
orthogonal to v. We denote by L(x, v) the line passing through x and of
direction v and by n+

i (x, v) the outward normal of the side of the hypercube
Ci through which L(x, v) enters Ci and n−i the outward normal of the side
of the hypercube through which L(x, v) leaves. Then

e · ∇xli(x, v) =
e · n+

i

v · n+
i

− e · n−i
v · n−i

. (4.17)

Consequently this derivative is zero if the two sides are parallel and since
v ∈ S0, ∣∣∣∣∣

n∑
i=1

∇xli(x, v)φi(x)

∣∣∣∣∣ ≤ CKN. (4.18)
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Thanks to Estimate (4.18), we may deduce the result in Lp for p > 2 from
the result in L2. Indeed∫

B(0,2K)

∫
v∈S0

|∇xTN(x, v)|p dv dx ≤ C(KN)p−2

∫
x,v

|∇xTN(x, v)|2 dv dx

≤ CKN
p−2 ×N1−0 |E|,

if the result is true in L2 for any θ < 1/2. For p < 2, we may divide the
integral in x, v in a domain where |∇xTN | ≥ 1 and a domain where |∇xTN | <
1. The bound on the integral on the first domain is also a consequence of
the estimate in L2 and on the second domain∫

(x,v) s.t. |∇xTN |<1|
|∇xTN(x, v)|p dv dx ≤

∫
x,v

|∇TN(x, v)|

≤ CN |E|,

trivially, which gives the corresponding result since then p − θp > 1. Those
two arguments are the precised equivalent of the interpolation argument we
had previously.
It only remains to prove (4.16) with p = 2 and θ < 1/2. This is a consequence
of the almost orthogonality of the functions ∇xli. Since v · ∇xli = 0, it is
enough to do it for the first d− 1 components ∂kli of ∇xli. We choose k = 1:
the computation for any other k ≤ d−1 is the same because of the symmetry
in S0.
Let us compute the following. Take η a vector with |η| ≤ 1/N and Ni is the
set of j such that Cj intersects one of the half lines centered inside Ci and
of direction inside S0 (because of the definition of S0, for any x, on a line
connecting x, Ci and Cj, Ci is between x and Cj),

∆η
i (t) =

∑
j∈Ni

∫
S0

∂x1li(η+xi+vt, v)φi(η+xi+vt)

×∂x1lj(η+xi+vt, v)φj(η+xi+vt)ψ(v) dv.

Fix j ∈ Ni, a real t and a side of Ci, we denote by Si the subspace of
S0 so that L(x0, v) enters Ci on the chosen side and therefore ∂x1li is a
constant. Then since ∇x1lj is non zero as a function of v, on a space of
measure C(|xi − xj|N)1−d,∣∣∣∣∫

S0

∂x1lj(η + xi − vt, v)ψ(v) dv

∣∣∣∣ ≤ CN−d+1 × |xi − xj|−d+1.
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But using the cancellations and provided ψ is a regular function, we can
prove the better inequality∣∣∣∣∫

S0

∂x1lj(η + xi − vt, v)ψ(v) dv

∣∣∣∣ ≤ CN−d × |xi − xj|−d. (4.19)

Denote by C1
j and C2

j the sides of Cj whose normal vectors n1
j and n2

j are
parallel to e1 and αk

j (x, v) the function with value 1 if L(x, v) intersects Ck
j .

Note that since v ∈ S0, there cannot exist v, v′ ∈ S0 such that L(x, v) enters
the hypercube on the side C1

j but L(x, v′) leaves the hypercube on C2
j or the

converse. Therefore∣∣∣∣∫
S0

∂x1lj(η+xi−vt, v)ψ dv
∣∣∣∣ ≤

∣∣∣∣∣
∫

S0

(α1
j (η+xi−vt, v)−α2

j (η+xi−vt, v))
ψ

v1

dv

∣∣∣∣∣.
We know that α2

j (x, v) = α1
j (x,Rijv) withRij such that |Rijv−v| ≤ C/N |xi−

xj|. Since the functions αk
j are BV and 1/v1 is C∞ over S0, we immediately

get (4.19) from the fact that αk
j is positive on a subset of S0 of diameter at

most C/(N |xi − xj|).
Now note that in ∆i(t), in fact φi(η+ xi− vt) and φj(η+ xi− tv) are almost
constant since |η + xi − vt| is equal to t ± 1/N and |η + xj − xi + tv| to
|xj − xi| + t ± 1/N (the points xi − tv, xi and xj are almost on the same
line if ∇lj is not zero). So up to an approximation of the kind we already
performed, we may take it constant and we then have thanks to (4.19)

|∆η
i (t)| ≤ CN−dt−s

∑
j∈Ni

(|xi − xj|+ t)−s |xi − xj|−d

≤ CN−dt−s

N∑
k=1

(k/N + t)−s (k/N)−d × kd−1,

summing first on all j ∈ N ′
i which are at the same distance of xi. Eventually

we find

|∆η
i (x)| ≤ Ct−2s × logN. (4.20)

To conclude the proof, we note first that, with Bi the set of x such that
L(x, v) enters Ci on a given chosen side Ck

i , k = 1 . . . 2d,∫
B(0,2K)

∫
S0

∣∣∣∣∣
n∑

i=1

∇xliφi(x)

∣∣∣∣∣
2

dv dx = 2d

n∑
i=1

∑
j∈Ni

∫
S0

∫
Bi

∇xli φi∇xlj φj dx dv.
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Then we perform a change of variable from (x) to (η, t) where t = |x − xi|
and η + xi is the point where L(x, v) crosses the chosen side of Ci (thus
|η| ≤ 1/N) to get∫

B(0,2K)

∫
S0

∣∣∣∣∣
n∑

i=1

∇xliφi(x)

∣∣∣∣∣
2

dv dx

≤ C
n∑

i,j=1

∫
S0

∫
t≤2K

∫
η∈Ck

i −xi

(∇xli φi∇xlj φj)(xi−vt+η, v)ψ(η, t, v)dη dt dv.

Since ψ is a perfectly regular function, we may switch the order of integration
and apply (4.20) to find∫

B(0,2K)

∫
S0

∣∣∣∣∣
n∑

i=1

∇xliφi(x)

∣∣∣∣∣
2

dv dx ≤ C logN
n∑

i=1

∫
t≤2K

∫
η∈Ck

i −xi

t−2s dη dt

≤ C logN
n∑

i=1

N1−d ≤ CN logN |E|,

which finishes to prove (4.16) and the lemma.

Proof of Prop. 4.5. The proof uses Lemma 4.2 and a standard approxi-
mation procedure.
Let us consider any nonnegative function f with compact support and which
is constant on any hypercubes of the form [i1/N, i1/N + 1/N ] × . . . ×
[id/N, id/N + 1/N ] for a given integer N . Therefore f takes only a fi-
nite number of positive values 0 < α1 < . . . < αn. Denoting by Ei the set of
points x where f is equal to αi, we know that Ei ∈ CN from the assumption
on f . Hence for any θ < 1− 1/p̄

‖T ∗s f‖Lp
vW θ,p

x
≤

n∑
i=1

αi‖T ∗s IEi
‖Lp

vW θ,p
x
≤ C

n∑
i=1

αi|E|1/p.

Denote by f ∗(t) the decreasing rearrangement corresponding to f (see [2]).
Then f ∗(t) has value αi on the interval [βi+1, βi] with βi =

∑n
j=i |Ej|. Con-

sequently the Lorentz norm of f satisfies

‖f‖Lp,1 =

∫ ∞

0

t1/pf ∗(t)
dt

t
=

n∑
i=1

αi(β
1/p
i − β

1/p
i+1) ≥ C

n∑
i=1

αi|Ei|1/p.
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So eventually we showed that for any θ < 1− 1/p̄

‖T ∗s f‖Lp
vW θ,p

x
≤ C‖f‖Lp,1 .

Since Lp,1 is embedded in W−α,p for any α > 0 and since we do not care about
the critical case, this implies that for any θ < 1− 1/p̄ and any function f as
described at the beginning

‖T ∗s f‖Lp
vW θ,p

x
≤ C‖f‖Lp .

Now it is enough to note that functions with compact support and whose
level sets belong to CN for a given N , are dense in Lp for p < ∞ which
concludes the proof of Prop. 4.5.

Appendix B: Hypoelliptic regularity on f

It was noticed recently in [4], that the operator v · ∇x has some regularizing
effects of its own. More precisely in Theorem 1.1, the regularity gained on the
average through additional derivatives in velocity on f or g, is also gained on
f itself. Our purpose is not to investigate this kind of result and the theorem
presented here is only a bit more general than the result of [4] but we wish to
indicate briefly how one can obtain Bouchut’s main result with our method.

Theorem 4.1 Let f and g satisfy (1.1) and (1.4) with γ ≤ 0 and 1 <
p2, q2 <∞. Then, for Lr1,∞ the Lorentz space of parameters r1 and ∞,

‖f‖L
r1,∞
v (Ḃ

s,r2∞,∞) ≤ C‖g‖θ
W

γ,q1
v (L

q2
x )
× ‖f‖

W
β,p1
v (L

p2
x )
,

with

1

ri

=
θ

qi
+

1− θ

pi

i = 1, 2, s = (1− α)θ,

θ =
β

1 + β − γ
.

(4.21)

Remarks.
1. Just as in [4], we are unable to treat correctly the case γ > 0 except when
both f and g belong to L2. The correct regularity should be obtained just
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by extending the formula of the theorem, however our method gives a lower
regularity.
2. Theorem 4.1 is not really much better than the corresponding result of
[4]. Its only advantage is that in [4], f and g had to belong to the same Lp

x,v

but it gives f in a modified Besov space instead of the Sobolev space of same
homogeneity.

Proof. We use the same basic idea as for the proof of Theorem 1.1 and
hence we will not give all details.
We decompose f and g into dyadic annulus in the Fourier space in x, thus
obtaining two sequences fk and gk where k is the indice of the annulus (i.e.
2k is the order of one derivative in x). Of course

v · ∇xfk = gk.

We again consider for λk to be fixed later

(v · ∇x + λk)fk = gk + λkfk.

Hence we obtain
fk(x, v) = Skgk + λkSkfk,

with

Skh(x, v) =

∫ ∞

0

h(x− vt, v) e−λkt dt.

We consider Kε a regularizing kernel in velocity and we write

fk(x, v) = (fk −Kε ?v fk) +Kε ?v (Skgk) + λkKε ?v (Skfk).

Now of course if
g = ∂vi

h(x, v),

then

Skgk = ∂vi
Skhk +

∫ ∞

0

t∂xi
hk(x− vt, v)e−λktdt.

Hence for an arbitrary γ ≤ 0

‖Kε ?v Skgk‖L
q1
v (L

q2
x ) ≤ λ−1

k 2kα(1 + λγ
k2

−kγ + εγ)× ‖gk‖W
γ, q1
v (L

q2
x ).

As to Skfk, we have

∂xi
Skfk =

∫ ∞

0

e−λkt

t
(∂vi

f)(x− vt, v)− ∂vi

∫ ∞

0

e−λkt

t
f(x− vt, v).
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Here we may face the same problem of integrability in t as in the proof of
Theorem 1.1. We refer the reader to the end of the corresponding proof for
the way to treat it. Notwithstanding that, we obtain, for β ∈ N the final
result being just the interpolation between integer values of β

Kε ?v (Skfk) = F 1
k + F 2

k ,

with

‖F 1
k ‖L

p1
v (L

p2
x ) ≤ 2−kβ λβ

k × ‖fk‖W
β, p1
v (L

p2
x )
,

‖F 2
k ‖L

r1,∞
v (B

s,r2∞, x) ≤ 2−kβ λβ
k ε

−β × ‖fk‖L
r1,∞
v (B

s,r2∞, x).

Eventually
‖Kε ?v fk − fk‖L

p1
v (L

p2
x ) ≤ εβ × ‖fk‖W

β, p1
v (L

p2
x )
.

We minimize in λk and ε and take

λk = µk 2k−k(1−α)/(1+β−γ), ε =
1

2
µk 2−k(1−α)/(1+β−γ).

With these values, we know that

‖F 1
k ‖L

p1
v (Ẇ

s,p2
x ) ≤ µk µ

β
k × ‖fk‖W

β, p1
v (L

p2
x )
,

‖Kε ?v Skgk‖L
q1
v (Ẇ

s,q2
x ) ≤ µγ−1

k × ‖gk‖W
γ, q1
v (L

q2
x ).

We use µk to interpolate between Lp1
v (Ẇ s,p2

x ) and Lq1
v (Ẇ s,q2

x ), we eventually
find

‖fk‖L
r1,∞
v (B

s,r2∞, x) ≤ C‖gk‖θ
W

γ, q1
v (L

q2
x )
× ‖fk‖1−θ

W
β, p1
v (L

p2
x )

+
1

2
‖fk‖L

r1,∞
v (B

s,r2∞, x).

It is now enough to sum on k to conclude.

If γ > 0, this method fails, one has to work in L2 with β ≥ γ and β ≥ 1− γ
and use a duality method based on the identity

∂xi
Skfk = Sk∂vi

gk + λkSk∂vi
fk − ∂vi

fk.
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