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Abstract

We consider a Ginzburg-Landau energy for two dimensional divergence free fields ap-
pearing in the gradient theory of phase transition for instance. We prove that, as the
relaxation parameter vanishes, families of such fields with finite energy are compact
in Lp(Ω). Our proof is based on a kinetic interpretation of the entropies which were
introduced by Desimone, Kohn, Müller and Otto. The so-called kinetic averaging lem-
mas allow to generalize their compactness results. Also the method yields a kinetic
equation for the limit where the right handside is an unknown kinetic defect bounded
measure from which we deduce some Sobolev regularity. This measure also satisfies
some cancellation properties depending on its local regularity, which seem to indicate
several level of singularities in the limit.

1 Introduction

This paper is concerned with the compactness, as the parameter ε van-
ishes, for divergence free functions in IR2 with a finite Ginzburg-Landau
energy. Namely, we consider functions uε : Ω ⊂ IR2 → IR2 (Ω a smooth
bounded domain of IR2) such that

(1.11)

{
div uε = 0 (i.e. uε is a curl),
ε
∫
Ω |Duε|2dx+ 1

ε

∫
Ω

∣∣1− |uε|2α
∣∣p dx ≤ E0.

This problem, and variants, arises in many physical applications such
as thin films or in the gradient theory of phase transition (see A. Desimone
et al [6] and the references therein).
Throughout this paper, we use the notation

(1.12) χ(ξ, u) = 1I{ξ·u>0}

We prove the
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Theorem 1.1 Assume that 2αp > 1 and 0 < p ≤ 2. Then the sequence
uε is relatively compact in Lq(Ω) for 1 ≤ q < 2αp. After extraction of a
subsequence, the limit u is a divergence free field and it satisfies |u| = 1
and

(1.13) ξ · ∇xχ(ξ, u) =
∑( 1

β
∂ξi

(|ξ|2∂ξj
(mβ

ikjξk))−
3 + β

β
ξj∂ξi

(mβ
jkiξk)

)
where the sum is taken for i, j, k equal to 1, 2 and β is any real number

with 0 < β ≤ 1, β < 2αp − 1, β ≤ αp, and the mβ
ijk(ξ, x) are measures

such that
(1.14)∫

Ω
sup
ξ∈IR2

|mβ
ijk(ξ, x)| dx ≤ E0/2,

∑
i

mβ
iij = 0,

∑
k

ξk∇ξm
β
ijk = 0,

(1.15)
∫
Ω×B(R)

|∇ξm
β
ijk(ξ, x)| dx dξ ≤ C(R) E0, for allR > 0.

Some regularity for the limiting function u as well as cancellation prop-
erties of the kinetic defect measures mβ

ijk are also available, especially the
strange phenomenon of the parametrisation by β can be relaxed in some
cases.

Proposition 1.2 Additionally, we have for any open subset O of Ω and
any r > 1
1) u ∈W s,q for all 0 ≤ s < 1

5 , q <
5
3 .

2) If ∇uε is uniformly bounded in Lr(O), then mβ
ijk = 0 on O.

3) If ∇x|uε| is uniformly bounded in Lr(O), then
∑

j m
β
ijj = 0.

4) If |uε| → 1 in L∞(O), then 1
βm

β
ijk = mijk does not depend on β,∑

j m
β
ijj = 0 and

(1.16) ξ · ∇xχ(ξ, u) =
∑
i,j,k

|ξ|2ξk∂ξi
∂ξj
mikj on O.

This theorem is motivated by the compactness result proved in [5]
by A. Desimone, R.W. Kohn, S. Müller and F. Otto for a similar func-
tional. Our method of proof is also motivated by that of [5], and by
the remarkable analogy between the Ginzburg-Landau model (1.11) and



COMPACTNESS IN GINZBURG-L. ENERGY 3

scalar conservation laws through a family of entropies as noted in that
paper. Here, we introduce the additional idea of using the kinetic formu-
lation which allows simpler and stronger compactness arguments through
kinetic averaging lemmas just as it does it for nonlinear hyperbolic sys-
tems.

This method allows improvements in two directions; the exponents α
and p are broader than those in [5] although the cases p > 2 are still
open, and also we give a piece of information on the limiting problem
ε→ 0. From the equation satisfied by χ(ξ, u(x)) we deduce some Sobolev
regularity (first point of the proposition) by a direct application of kinetic
averaging lemmas to the transport equation derived in the theorem 1.1.
Notice that our proof gives regularity for the limit u but not uniform
bounds on uε itself. Also as in the case of scalar conservation laws or
isentropic gas dynamics with γ = 3, (see P.L. Lions, B. Perthame and E.
Tadmor [9], [10]) we do not expect that the exponents obtained are sharp.
This regularity question, especially BV regularity, appears fundamental
in the example of L. Ambrosio, C. De Lellis and C. Mantegazza [1]. Notice
however that in 2d, by Sobolev injections, BV functions also belong to the
Sobolev spaceW s,p for the limiting values of s and p. Another information
appears in the proposition on the limit u; it satisfies the condition divu =
0, and |u| = 1. In two space dimensions this also writes

u = ∇Tψ(x), |∇ψ| = 1.

But, except maybe for convex domains, the singularities of this Eikonal
equation are not described by the socalled viscosity solutions as the coun-
terexample by W. Jin and R. V. Kohn [8] proves it. The singularities
might better be described by a defect energy studied in P. Aviles and
Y. Giga [2]. On the other hand, from the results of the above proposi-
tion, it seems that the singularities could be due either to singularities of
the gradient, either to the fact that |u| might vanish at some points as
in the more classical theory in F. Béthuel, H. Brézis and F. Hélein [3].
In particular the dependency upon β only comes from this points where
uε does vanish in the limit. However, pushing forward the comparison
with scalar conservation laws, more information, e.g. a sign condition on
the measures appearing in the right hand side of (1.13), might rise the
uniqueness of the limiting function u, as in B. Perthame [11] ; of course
boudary conditions should also be specified, which is not necessary here.

Notice that a variant of the above results also holds true for variants of
the energy in (1.11) such as the case when the divergence free constraint is
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relaxed but it is imposed that |uε| = 1 which is studied in T. Rivière and
S. Serfaty [13]. Especially some of the assumptions for compactness can
be removed. From their study it seems that this case yields the viscosity
solution in the limit. We also would like to point out another method
for compactness for the minimizers of (1.11), based on SBV spaces and
which can be found in [1].

The energy (1.11) is a simplified form of energies involved in phase
transitions of ferromagnetic materials as is detailed in [6].

The outline of this paper is as follows. In the second section, we give a
general representation formula, then we consider (section 3) a particular
setting adapted to the present situation. In the section 4, we prove the
compactness result and the formula for the limit. The statements of the
Proposition are proved in the last section.

2 A general representation formula

Lemma 2.1 For any smooth function u defined on Ω, we have, in the
sense of distribution in ξ,

(2.21) |u|ξ · ∇xχ(ξ, u) + |ξ|2 ∇x|u| · ∇ξχ = |ξ|2 u
|u|

· ∇ξχ div u.

Proof of Lemma 2.1: We first approximate χ(ξ, u) by regular func-
tions χn(ξ · u) such that χ′

n(r) → δ(r) in w −M1(IR) (weak topology of
Radon measures). As a consequence

(2.22)
∇ξχn(ξ · u) −→ ∇ξχ(ξ, u) = δ(ξ · u)u,
∇xχn(ξ · u) −→ ∇xχ(ξ, u).

We compute, with the notation ζ · ∇u · ζ =
∑

i,j ζi∂iujζj
(2.23)

|u|ξ · ∇xχn(ξ · u) = |u|χ′
n(ξ · u) ξ · ∇xu · ξ

= −|ξ|2∇x|u|∇ξχn(ξ · u)

+|ξ|2|u|χ′
n(ξ · u)( ξ

|ξ|
· ∇u · ξ

|ξ|
+

u

|u|
· ∇u · u

|u|
).

Now, we fix a point x and argue on this expression as a measure in ξ.
Either u(x) = 0 and all the terms in (2.23) vanish in the limit n→∞. Or
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u(x) 6= 0 and we choose a basis for IR2
ξ such that u = (|u|, 0). We have,

in w −M1,

(2.24)

δ(ξ1)
[
ξ

|ξ|
· ∇u · ξ

|ξ|
+

u

|u|
· ∇u · u

|u|

]
= δ(ξ1)(∂2u2 + ∂1u1) = δ(ξ1)divu.

Therefore, taking the limit n→∞ in (2.23), we obtain in D′(IR2) for
all x

(2.25) |u|ξ · ∇xχ = −|ξ|2∇x|u| · ∇ξχ + |ξ|2|u|δ(ξ · u)divu,

which is precisely the lemma.

3 Kinetic equation for the Ginzburg-Landau functional

A variant of the lemma 2.1 is, under the same assumptions and with a
divergence free condition

Lemma 3.1 For any β > 0, u ∈ H1(Ω) with div u = 0, we have a.e. in
x and in D′(IR2

ξ) (recalling that χu/|u| = 0 when u = 0)
(3.31)

ξ · ∇x(|u|1+βχ) = 1
β divx

{
−∇ξ

[
|ξ|2|u|χ(|u|β − 1)

]
+(3 + β)

[
χ|u|ξ(|u|β − 1)

]}
+

1
β
∇ξ ⊗∇ξ :

[
|ξ|2χ(|u|β − 1)

u

|u|
⊗ ∇x(u · ξ)

]
−3 + β

β
divξ

[
χ
u

|u|
(|u|β − 1)ξ · ∇u · ξ

]
− 2
β

divξ

[
χ(|u|β − 1)(ξ · u

|u|
)∇x(u · ξ)

]
+

3 + β

β
χ(|u|β − 1)

u

|u|
· ∇x(u · ξ).

Remark. This lemma is a generalized kinetic version of the analogous
identities proved in [5] for non-linear functionals of u. The left hand side
of the formula is just the term representing the stationary, free transport
of |u|1+βχ.
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Proof of Lemma 3.1: We first prove the result for u smooth. Then,
a density argument in H1 concludes because, on the set where u vanishes,
all the quantities in this expression vanish almost everywhere. So once
the lemma is proved for any regularization un of u, we let un converge
to u in H1. Then, both the left hand and right hand sides converge in
D′(IR2) toward the above expressions in the lemma, since un converges
toward u in every Lp, un/|un| toward u/|u| where u does not vanish, in
every Lp, and ∇un toward ∇u in L2.

We want to obtain a stationary kinetic equation with source terms of
the form

(3.32) ξ · ∇x(|u|1+βχ) = divxA(u) +B(u),

with A and B such that A(uε) is compact and B(uε) is uniformly bounded
in L1

x(H−m
ξ ) for some integer m, if uε is a sequence satisfying (1.11).

Of course, thanks to the lemma 2.1
(3.33)
ξ · ∇x(|u|1+βχ) = (1 + β)χ|u|βξ · ∇|u|+ |u|1+βξ · ∇xχ

=
1 + β

β
|u|χξ · ∇(|u|β)− |ξ|2|u|β∇x|u| · ∇ξχ

=
1 + β

β
|u|χξ · ∇(|u|β−1)− 1

β
|ξ|2|u|∇ξχ · ∇(|u|β−1).

We then factorize all derivatives

(3.34)

ξ · ∇x(|u|1+βχ) = − 1
β

divx∇ξ

[
|ξ|2|u|χ(|u|β − 1)

]
+

1 + β

β
divx

[
χ|u|ξ(|u|β − 1)

]
+

1
β

divξ

[
|ξ|2|u|(|u|β − 1)∇xχ

]
+

1
β

divξ

[
|ξ|2χ(|u|β − 1)∇|u|

]
+

2
β

divx
[
χ|u|ξ(|u|β − 1)

]
−3 + β

β
|u|(|u|β − 1)∇xχ · ξ − 3 + β

β
χ(|u|β − 1)ξ · ∇|u|.

Now, we transform the x derivatives of χ into ξ derivatives with the
formula

(3.35) ∇xχ =
u

|u|2
· ∇ξχ∇x(u · ξ).

Notice that the formula (3.35) is proved by regularizing χ like in the
lemma 2.1 and by noticing that formally
(3.36)

u

|u|2
· ∇ξχ∇x(u · ξ) =

u

|u|2
· uδ(ξ · u)∇x(u · ξ) = δ(ξ · u)∇x(u · ξ)

= ∇xχ.
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Next, the combination of formulas (3.34) and (3.35) gives
(3.37)

ξ · ∇x(|u|1+βχ) = − 1
β

divx∇ξ

[
|ξ|2|u|(|u|β − 1)

]
+

3 + β

β
divx

[
χ|u|ξ(|u|β − 1)

]
+

1
β
∇ξ ⊗∇ξ :

[
|ξ|2χ(|u|β − 1)

u

|u|
⊗ ∇x(u · ξ)

]
− 2
β

divξ

[
(ξ · u

|u|
)χ(|u|β − 1)∇x(u · ξ)

]
− 1
β

divξ

[
|ξ|2χ(|u|β − 1)∇|u|

]
+

1
β

divξ

[
|ξ|2χ(|u|β − 1)∇|u|

]
− 3 + β

β
divξ

[
χ
u

|u|
(|u|β − 1)ξ · ∇u · ξ

]
+

3 + β

β
χ(|u|β − 1)

u

|u|
· ∇x(u · ξ) +

3 + β

β
χ(|u|β − 1)ξ · ∇|u|

−3 + β

β
χ(|u|β − 1)ξ · ∇|u|.

After simplification, we obtain the equation (3.31) as stated in the
Lemma 3.1.

4 Compactness and proof of Theorem 1.1

We are now ready to prove the Theorem 1.1. It uses several steps. First,
we prove a weaker statement (compactness for quantities vanishing with
|uε|). Then, we prove the compactness of the sequence |uε| itself. Finally
we derive the cancellation properties in (1.14).

Following [5], the basic estimate we use is the following straightforward
consequence of (1.11)

(4.41)
‖∇uε‖L2(Ω) ‖(1− |uε|2α)p/2‖L2(Ω) ≤ E0/2,
|uε| −→ 1 in Lq(Ω), 1 ≤ q ≤ 2αp.

4.1 A first compactness result

We begin with a simple direct application of averaging lemmas which
yields a partial compactness result.

Lemma 4.1 With the bounds (4.41) and for α, p and β as in the Theo-
rem 1.1, a family of solutions |uε|1+βχ(uε, ξ) to (3.31) has compact mo-
ments < |uε|1+βχε >=

∫
ψ(ξ)|uε|1+βχ(uε, ξ)dξ in Lr(IR2) for all 1 ≤ r <

2αp/(1 + β), for any smooth and compactly supported function ψ.
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Proof of Lemma 4.1: Our aim is to apply kinetic averaging lem-
mas to the equation (3.31). Since the transport equation contains a full
space derivative in the right hand side, the only version we can apply is
the one of B. Perthame and P.E. Souganidis [12] (see also F. Bouchut [4],
and the references therein for further references on this theory).

After choosing a value for β, we first prove that for some r > 1

(4.42) |uε|(|uε|β − 1) −→ 0 in Lr,

(4.43) ‖(|uε|β − 1)∇uε‖L1(IR2) ≤
1
2
E0.

As for the condition (4.42), it is an obvious consequence of the second
assumption in (4.41) and of the relation 1 + β < 2αp.

Next, we prove that for βq ≤ 2αp, 0 < β ≤ 2α and q ≥ p,

(4.44)
∫
Ω

∣∣1− |uε|β
∣∣qdx ≤ ∫

Ω

∣∣1− |uε|2α
∣∣pdx.

Indeed, with these conditions on β and q, we know that for any nonneg-
ative real x

(4.45)
∣∣1− xβ

∣∣q ≤ ∣∣1− x2α
∣∣p.

Then, the inequality (4.44) with q = 2 implies that

(4.46) ‖1− |uε|β‖L2(Ω) ≤ ‖(1− |uε|2α)p/2‖L2(Ω).

Combining this inequality with the first condition of (4.41), we obtain

(4.47) ‖∇uε(|uε|β − 1)‖L1(Ω) ≤
1
2
E0.

The bounds (4.42), (4.43) are thus proved.
The first estimate (4.44) has for consequence that for any bounded

domain O in ξ, the terms χ|uε|ξ(|uε|β−1) and χ|ξ|2|uε|(|uε|β−1) vanish
in Lr(Ω×O) with 1 < r < ∞. We also deduce from the estimate (4.43)
that any term of the form χ(|u|β − 1) ui

|u|∂juk multiplied by a polynomial
function in ξ is bounded uniformly in ε in L1(Ω×O).

Now considering the equation (3.31), we notice that the terms with the
full derivative in x are compact and that all the other terms are bounded.
Applying averaging lemmas of [12], we conclude the compactness stated
in the lemma 4.1.
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4.2 The full compactness proof

The compactness of the moments of |uε|1+βχ(ξ, uε) implies the relative
compactness of the sequence uε as it is proved in the next lemma.

Lemma 4.2 With the bound (4.41) and for 2αp > 1, p ≤ 2, the sequence
uε is relatively compact. Moreover after extracting a subsequence which
converges to u, then χ(ξ, uε) converges toward χ(ξ, u) in Lq(Ω×B(0, R))
for any 1 ≤ q <∞ and any R.

Proof: We apply the lemma 4.1. For any φ(ξ) compactly supported,
the moments

∫
|uε|βχ(ξ, uε)φ(ξ)dξ are relatively compact in some Lq0 .

Choosing φ = ξψ(ξ) with ψ compactly supported in an annulus, we find
that the sequence uε|uε|β is relatively compact in Lq0(Ω).

We denote u the weak limit of uε in L2αp after extraction. According
to the estimate (4.44) in the lemma 4.1, |uε|β converges to 1 in Lαp/β.
Since Ω is bounded, and since β < 2αp−1, the product uε|uε|β converges
weakly toward u. From the strong convergence of uε|uε|β, we deduce that
|u| = 1 = lim |uε||uε|β. The space L2αp being uniformly convex because
of the condition 2αp > 1, the extracted sequence of uε converges strongly
toward u. The original sequence uε is thus relatively compact.

We now prove that χ(ξ, uε) → χ(ξ, u) strongly. The difficulty comes
from the lack of continuity of χ for uε ≈ 0. For any extracted sequence
uε converging toward some u, the same kind of argument shows that the
sequence uε/|uε| also converges strongly toward u in any Lq with q <∞.
For any η > 0 and any ξ < R, if ξ · uε

|uε| > η and ξ ·u < −η or the contrary,
since |u| = 1 we have

(4.48)
∣∣∣∣ uε

|uε|
− u

∣∣∣∣ > η

R
.

We can then estimate the measure µξ of the set of points x such that
the condition ξ · uε

|uε| > η and ξ · u < −η or the contrary is fulfilled since

(4.49)
∫ ∣∣∣∣ uε

|uε|
− u

∣∣∣∣ dx ≥ η

R
µξ.

If we denote µ the measure of all couples (ξ, x) such that the previous
condition is fulfilled, we have the following bound

(4.410) µ ≤ R3

η

∫ ∣∣∣∣ uε

|uε|
− u

∣∣∣∣ dx.
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We also denote ν the mesure of the set of all couples (ξ, x) such that
either

∣∣∣ξ · uε
|uε|

∣∣∣ ≤ η or |ξ · u| ≤ η. For any given x, the set of all ξ which
satisfy this condition measures at most 4Rη, so

(4.411) ν ≤ 4|Ω|Rη.

For any 1 ≤ q < ∞, since χ(ξ, u) is equal to 1 for ξ · u > 0 and zero
otherwise, we know that

(4.412)
∫
Ω×B(0,R)

|χ(ξ, uε)− χ(ξ, u)|qdxdξ ≤ µ+ ν.

Using the estimates (4.410) and (4.411), we thus obtain

(4.413)∫
Ω×B(0,R)

|χ(ξ, uε)− χ(ξ, u)|qdxdξ ≤ R3

η

∫ ∣∣∣∣ uε

|uε|
− u

∣∣∣∣ dx+ 4|Ω|Rη.

Since uε/|uε| converges toward u in L1, we deduce that χ(ξ, uε) con-
verges toward χ(ξ, u) in Lq(Ω × B(0, R)) for any 1 ≤ q < ∞ and any
R.

4.3 Bounds and cancellation properties

We are now able to end the proof of the theorem 1.1. Since the term
χ(ξ, uε(x)) (|uε|β − 1) uεk

|uε| ∂iuεj is bounded in L1, we introduce the mea-
sures defined by the weak limit in M1(IR2)

(4.414) mβ
ijk = w− lim χ(ξ, uε(x)) (|uε|β − 1)

uεk

|uε|
∂iuεj .

The inequality

|χ(ξ, uε(x)) (|uε|β − 1)
uεk

|uε|
∂iuεj | ≤ |(|uε|β − 1) ∂iuεj |

together with (4.43) gives the first bound (1.14) on the measure mβ
ijk.

As for the second bound (1.15), it follows from the fact that the ξ
derivative of χ is a one directional Dirac mass (see (2.22)).

We take the limit in all the terms of the equation (3.31) satisfied by
the uε and we obtain
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(4.415)
ξ · χ(ξ, u) =

∑
i,j,k

(
1
β∂ξi

∂ξj
(|ξ|2mβ

ikjξk)−
3+β

β ∂ξi
(mβ

jkiξjξk)

− 2
β∂ξi

(mβ
ijkξjξk)

)
+
∑

ij
3+β

β mβ
ijiξj ,

which is, after straightforward simplifications, the equation written
in the theorem 1.1. From the divergence free condition on uε and the
definition of mβ

ijk, we deduce

(4.416)
∑

i

mβ
iij = 0.

Since

(4.417)∑
k

ξk∇ξ

(
χ(|uε|β−1)∂iuεj

uεk

|uε|
)

= uδ(uε · ξ)(|uε|β−1)∂iuεj
uε · ξ
|uε|

= 0,

we also find at the limit

(4.418)
∑
k

ξk∇ξm
β
ijk = 0.

The proof of the theorem 1.1 is thus completed.

5 Proof of proposition 1.2

This section is devoted to the proof of the results stated in the Proposition
1.2. It is divided in three subsections where we first prove the regular-
izing effect, second the statements regarding the set where m vanishes
(regularity) and finally the weaker cancellation due to the points where
|uε| may vanish.

5.1 Proof of point 1

The first point of the Proposition 1.2 is obtained noticing that χ(ξ, u(x))
also satisfies the kinetic equation

ξ · ∇xχ(ξ, u) = divξG(ξ, x),
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with G a locally bounded measure. This is a consequence of the equa-
tion (1.13) and of the regularity for mβ

ijk in (1.15) once β is a fixed ad-
missible positive value. Then, the regularity statement is an immediate
consequence of the Besov regularity for kinetic averaging proved in R.J.
DiPerna, P.L. Lions and Y. Meyer [7]. We use the Theorem 3, p283,
with p = 2, m = 1, τ > 0 and close to 0, and q = ( 2

τ )′ (close to 1).
And, by the strict inequalities on the parameters, we allowed a little loss
on the parameters to work in the classical Sobolev spaces rather than in
the Lorentz based Besov spaces. Notice that this parameters are better
than those of the regularizing effects for isentropic gas dynamics which
shares the same kinetic structure (but with a double ξ derivative in the
right hand side) in an evolution version (see [10]). For scalar conservation
laws, better regularity is still possible combining the kinetic averaging
lemmas with the contraction property in L1 (see [9]), an argument which
is not available here.

5.2 Proof of points 2 and 3

We choose β small enough such that βr∗ < αp with r∗ being the conjugate
exponent to r. The estimate (4.44) then implies that |uε|β − 1 converges
to zero in Lr∗(O).

Consequently, if ∇uε is uniformly bounded in Lr

(5.51) (|uε|β − 1)∇uε −→ 0 in L1(O).

And since χ is bounded in L∞

(5.52) mβ
ijk = 0 in L1(O).

Notice also that

(5.53)
∑
j

mβ
ijj =

1
2
w− lim χ(ξ, uε)(|uε|β − 1)∂i|uε|.

So by the mean of the same argument, if ∇|uε| is uniformly bounded
in Lr(O) then

(5.54)
∑
j

mβ
ijj = 0.
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5.3 Proof of point 4

We are going to show that on O, 1
βm

β
ijk does not depend on β. More

precisely, we are going to prove that

(5.55)
1
β
mβ

ijk = mijk = w− lim χ(|uε| − 1)∂iuεjuεk.

First of all, of course uε − uε/|uε| converges to zero in L∞(O) so that
on O

(5.56) mβ
ijk = w− lim χ(|uε|β − 1)∂iuεjuεk.

Now, notice that for some constant C

(5.57)
∣∣∣|uε|β − 1− β(|uε| − 1)

∣∣∣ ≤ C|uε|β−1(|uε| − 1)2.

Using the uniform convergence of |uε|, we then find

(5.58)∣∣∣∣ 1βmβ
ijk − w− lim(χ(|uε| − 1)∂iuεjuεk)

∣∣∣∣ ≤ Cw− lim(|uε| − 1)2|∇uε|.

To prove (5.55), it remains only to use the lemma

Lemma 5.1 If |uε| converges uniformly to 1 on O,

(5.59) (|uε| − 1)2|∇uε| −→ 0 in L1(O).

Proof of Lemma 5.1: We have

(5.510) ‖(|uε| − 1)2∇uε‖L1 ≤ ‖∇uε‖L2‖(|uε| − 1)‖L2‖(|uε| − 1)‖L∞ ,

and

(5.511)

‖(|uε| − 1)‖L2 ≤ ‖(|uε|β − 1)‖L2

∥∥∥∥ |uε| − 1
|uε|β − 1

∥∥∥∥
L∞

≤ 1
β
‖(|uε|β − 1)‖L2 .
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We then obtain thanks to the estimate (4.41) and the bound (4.44)

(5.512) ‖(|uε| − 1)2∇uε‖L1 ≤
C

β
‖(|uε| − 1)‖L∞ ,

which proves the lemma.

We now turn to the property
∑

j m
β
ijj = 0. Using the formula (5.55),

we find

(5.513)

∑
j m

β
ijj = β

∑
j mijj = 1

2w− lim χ(|uε| − 1)∂i|uε|2
= w− lim χ(|uε| − 1)|uε|∂i(|uε| − 1)
= w− lim χ(|uε| − 1)∂i(|uε| − 1),

thanks to the uniform convergence of |uε|. But of course

(5.514)
χ(|uε| − 1)∂i(|uε| − 1) = 1

2χ∂i(|uε| − 1)2 = 1
2∂i
(
χ(|uε| − 1)2

)
−1

2(|uε| − 1)2∂iχ.

Applying again the formula (3.35), we end up with

(5.515)
χ(|uε| − 1)∂i(|uε| − 1) = 1

2∂i
(
χ(|uε| − 1)2

)
+ 1

2χ(|uε| − 1)2 uε
|uε|2 · ∂iuε

−1
2divξ

(
χ(|uε| − 1)2 uε

|uε|2∂i(uε · ξ)
)
.

The lemma 5.1 and the uniform convergence of |uε| prove that all the
terms in the right hand side converge to zero in the distributional sense.
Therefore, we have shown that

(5.516)
∑

j=1,2

mβ
ijj = 0 on O.

It remains to use (5.55) and (5.516) to simplify the kinetic equation
obtained in the theorem 1.1. Since 1

βm
β
ijk is independent of β, we know

that on O

(5.517)
∑
i,j,k

ξjξk∂ξi
mjki +

∑
i,j

mjiiξj = 0,
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which, together with (5.516), implies that

(5.518)
∑
i,j,k

ξjξk∂ξi
mjki = 0.

As a consequence, we have on O

(5.519)

ξ · ∇xχ(ξ, u) = ∂ξi

(∑
i,j,k |ξ|2ξk∂ξj

mikj +
∑

i,j |ξ|2mijj

)
=
∑

i,j,k |ξ|2ξk∂ξi
∂ξj
mikj + 2

∑
i,j,k ξiξk∂ξj

mikj

+
∑

i,j |ξ|2∂ξj
miij

=
∑

i,j,k |ξ|2ξk∂ξi
∂ξj
mikj .

This is the equation stated in proposition 1.2.
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