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Presentation of the course

Kinetic equations : Transport equation in phase space, i.e. on
f (x , v) of x and v

∂t f + v · ∇x f = g , t ≥ 0, x , v ∈ Rd .

As for hyperbolic equation, the solution cannot be more regular
than the initial data or the right hand-side. But averages in
velocity like

ρ(t, x) =

∫
Rd

f (t, x , v) φ(v) dv , φ ∈ C∞
c (Rd),

usually are, the question being of course how much ?



Plan of the course

1. Introduction
2. L2 framework
3. General Lp framework
4. One limit case : Averaging lemma with a full derivative
5. An example of application : Scalar Conservation Laws



Plan of the first course

1. Well posedness of the basic equation
2. The 1d case
3. Local equilibrium
4. Application to the Vlasov-Maxwell system



Well posedness of the basic equation

During most of this course, we deal with the simplest

∂t f + α(v) · ∇x f = g(t, x , v), t ∈ R+, x ∈ Rd , v ∈ ω, (1)

where ω = Rd or a subdomain ; Or with the stationary

α(v) · ∇x f = g(x , v), t ∈ R+, x ∈ O, v ∈ ω, (2)

where O is open, regular in Rd and ω is usually rather the sphere
Sd−1.
Of course (1) is really a particular case of (2) with

d −→ d + 1, x −→ (t, x), α(v) −→ (1, α(v)).



The fundamental relation for solutions to (1) is

f (t2, x , v) =f (t1, x − α(v) (t2 − t1), v)

+

∫ t2−t1

0
g(t2 − s, x − α(v) s, v) ds,∀t1, t2

or for solutions to (2)

f (x , v) = f (x − α(v) t, v) +

∫ t

0
g(x − α(v) s, v) ds,∀t.

Those two formulas may be used to solve the equation but these
are not unique so an initial data must be given

f (t = 0, x , v) = f 0(x , v), (3)

and for (2) the incoming value of f on the boundary must be
specified

f (x , v) = f in(x , v), x ∈ ∂O, α(v) · ν(x) ≤ 0, (4)

where ν(x) is the outward normal to O at x .



With that the equation is solvable as per

Theorem
Let f 0 ∈ D′(Rd × ω) and g ∈ L1

loc(R+, D′(Rd × ω)). Then there
is a unique solution in L1

loc(R+, D′(Rd × ω)) to (1) with (3) in
the sense of distribution given by

f (t, x , v) = f 0(x − α(v) t, v) +

∫ t

0
g(t − s, x − α(v) s, v) ds. (5)

Note that if f solves (1) then for φ ∈ C∞
c (Rd × ω)

d

dt

∫
Rd×ω

f (t, x , v) φ(x , v) ∈ L1
loc(R+),

so f has a trace at t = 0 in the weak sense and (3) perfectly
makes sense.



On the other hand, the modified equation, which we will frequently
use,

α(v) · ∇x f + f = g , x ∈ Rd , v ∈ ω, (6)

is well posed in the whole Rd without the need for any boundary
condition

Theorem
Let g ∈ S ′(Rd × ω), there exists a unique f in S ′(Rd × ω) solution
to (6). It is given by

f (x , v) =

∫ ∞

0
g(x − α(v) t, v) e−t dt. (7)

Notice that taking the Fourier transform in x of (6)

(i α(v) · ξ + 1)f̂ = ĝ ,

and of course 1 + iα(v) · ξ never vanishes contrary to iα(v) · ξ.



The 1d case

Let us study the easiest case, namely

v∂x f = g .

Of course away from v 6= 0, if g ∈ Lp(R2) then ∂x f ∈ Lp(R2).
But what if f or g do not vanish around v = 0. For instance

f (x , v) = ρ(x)δ(v),

then of course, whatever ρ, in the sense of distribution

v∂x f = 0.

So clearly concentrations have to be avoided. Let us be more
precise. Take φ ∈ C∞

c (R), define

ρ(x) =

∫
R

φ(v) f (x , v) dv .



And compute for a bounded interval I

‖ρ‖W k,p(I ) =

∫
I

∫
I

|ρ(x)− ρ(y)|p

|x − y |1+kp
dx dy .

Using the equation

|ρ(x)− ρ(y)| ≤
∫

R
|f (x , v)− f (y , v)|φ(v) dv

≤
∫
|v |<R

|f (x , v)− f (y , v)|φ(v) dv +

∫
|v |>R

. . .

and this last term is bounded by∫ 1

0

∫
|v |>R

|x − y | |∂x f (θ x + (1− θ) y , v)|φ(v) dv dθ

≤
∫ 1

0

∫
|v |>R

|x − y |
|v |

|g(θ x + (1− θ) y , v)|φ(v) dθ dv

≤ C
|x − y |
|R|1/p

(∫ 1

0

∫
R
|g(θ x + (1− θ) y , v)|p φ(v) dv dθ

)1/p

.



As for the first it is simply bounded by

C R1−1/p

(∫
R
|f (x , v)− f (y , v)|p φ(v) dv

)1/p

.

Minimizing in R, one gets

|ρ(x)− ρ(y)| ≤ C |x − y |1−1/p

(∫
R
|f (x , v)− f (y , v)|p φ(v) dv

)1/p2

×
(∫ 1

0

∫
R
|g(θ x + (1− θ) y , v)|p φ(v) dv dθ

)(1−1/p)/p

.

So for k such that p − 1 > kp or k < 1− 1/p

‖ρ‖W k,p(I ) ≤ C ‖f ‖1/p

Lp
loc
‖g‖1−1/p

Lp
loc

.



Local equilibrium

Consider (2) in the special case

f (x , v) = ρ(x) M(v).

This is a simplification but provides many examples of optimality
later on. Some remarks :
We have

M(v) α(v) · ∇xρ(x) = g .

Write g = M(v) h(x , v).
If h is regular, this gives some regularity for ρ but not necessarily in
term of Sobolev spaces.
Notice first that some assumption is needed on α. Indeed if
∃ξ ∈ Sd−1 s.t.

|O| = |{v ∈ Rd | α(v) ‖ ξ}| 6= 0,



and if supp M ⊂ O then it is only possible to deduce that

ξ · ∇xρ ∈ L∞.

Nothing can be said about the derivatives in the other directions.
Even if α(v) is not concentrated like α(v) = ξ, some assumption is
needed on M. If not, M it self may be concentrated along one
direction ξ in which case the same phenomenon occurs.



The Vlasov-Maxwell system

It describes the evolution of charged particles

∂t f +v(p)·∇x f +(E (t, x)+v(p)×B(t, x))·∇pf = 0, t ≥ 0, x , p ∈ Rd .

E and B are the electric and magnetic fields

∂tE − curlB = −j , divE = ρ,

∂tB + curlE = 0, divB = 0,

where ρ and j are the density and current of charges

ρ(t, x) =

∫
Rd

f (t, x , p) dp, j(t, x) =

∫
Rd

v(p) f (t, x , p) dp.



Initial data are required

f (t = 0, x , p) = f 0(x , p), E (t = 0, x) = E 0(x), B(t = 0, x) = B0(x).

p = impulsion of the particles.

v(p) = p, classical case.

v(p) =
p

(1 + |p|2)1/2
, relativistic case.

Goal : Weak Stability. Given fn solution to the system, show that

fn −→ f , solution to the system.



A priori estimates

‖fn(t, ., .)‖Lp(R2d ) ≤ ‖f 0‖Lp(R2d ), ∀t ≥ 0, ∀p ∈ [1, ∞].

Conservation of energy∫
R2d

E (p)fn(t, x , p) dx dp +

∫
Rd

(|En(t, x)|2 + |Bn(t, x)|2) dx ≤∫
R2d

E (p)f 0(x , p) dx dp +

∫
Rd

(|E 0(x)|2 + |B0(x)|2) dx .

with

classical E (p) = |p|2/2, relativistic E (p) = (1 + |p|2)1/2.



Weak convergence
After extraction, one has

fn −→ f , in w − ∗ L∞(R+, Lp(R2d)), ∀1 ≤ p ≤ ∞,

and

En −→ E , Bn −→ B, in w − ∗ L∞(R+, L2(Rd)).

Through interpolation, it is also possible to prove

ρn −→ ρ, jn −→ j , in w − ∗ L∞(R+, Lp(Rd)), ∀1 ≤ p ≤ p0.

Problem : How to pass to the limit in

(En(t, x) + v(p)× Bn(t, x)) fn ?



The solution found by DiPerna and Lions uses averaging lemmas.
Take φ ∈ D(R2d)∫

R2d

En(t, x) fn(t, x , p) φ(x , p) dx dp

=

∫
Rd

En(t, x)

∫
Rd

fn(t, x , p) φ(x , p) dp dx ,

and what is only needed is the compactness of moments of fn like∫
Rd

fn(t, x , p) φ(x , p) dp.

Notice that

∂t fn+v(p)·∇x fn = −∇p·((En+v(p)×Bn) fn) ∈ L2
loc(R+×Rd , H−1

loc (Rd)),

uniformly in n.



Averaging lemmas then implies that∫
Rd

fn(t, x , p) φ(x , p) dp ∈ H
1/4
loc (R+ × Rd),

uniformly in n.

Therefore compactness holds and we can pass to the limit in all
the terms.



Second course : L2 framework

1. The result
2. A serious computation
3. Maybe a second serious computation (if I did not talk too much)



Regularity in L2

Assume that

α(v) · ∇x f = g , x ∈ Rd , v ∈ ω,

with

∀ζ ∈ Sd−1, ∀ε ∈ R+, |{v ∈ ω ; |α(v) · ζ| < ε}| ≤ εθ.

Then

Theorem
Assume |ω| < ∞, that f and g belong to L2(Rd × ω) then ρ
defined through

ρ(x) =

∫
ω

f (x , v) dv

belongs to Hθ/2(Rd).



The trick

Following Bouchut, simply write

α(v) · ∇x f + f = f + g ,

and get
ρ(x) = T f + T g ,

with

T f (x) =

∫
ω

∫ ∞

0
f (x − α(v)t, v) e−t dt dv .

The aim is to determine k s.t. T is continuous from L2(Rd × ω)
to Hk(Rd). For further use, define

Ts f (x) =

∫
ω

∫ ∞

0
f (x − α(v)t, v) t−s e−t dt dv .

The L2 estimate is the core result for averaging lemmas from
which almost all other can be deduced.



A remark

The dual operator of T is simply

T ∗h(x , v) =

∫ ∞

0
h(x + α(v) t) e−t dt

and is related to the X-ray transform X : Rd −→ Rd × Sd−1

X h(x , v) =

∫ ∞

−∞
h(x + vt) dt.

This operator was studied separately in harmonic analysis (see for
instance Christ, Duoandikoetxea and Oruetxebarria, Wolff) but
with emphasis on mixed type inequalities like the continuity from
Lp(Rd) to L1(Rd , Lp(Sd−1)) and not on the gain of
differentiability which is our main goal here. These other
inequalities are nevertheless very useful and can be seen as a kind
of dispersion estimates.



The proof by Fourier transform

The Fourier transform in x is denoted F and f̂ = F f

F f = f̂ =

∫
Rd

e−ix ·ξ f (x)
dx

(2π)d/2
.

We recall that F is an isometry on L2(Rd) and that the Sobolev
space is

Hk(Rd) =

{
ρ ∈ S ′(Rd)

∣∣∣ ∫
Rd

(1 + |ξ|)2k |F ρ(ξ)|2 dξ < ∞
}

.

The homogeneous Sobolev space is simply

Ḣk(Rd) =

{
ρ ∈ S ′(Rd)

∣∣∣ ∫
Rd

|ξ|2k |F ρ(ξ)|2 dξ < ∞
}

.



We mainly follow bouchut here. Applying Fourier transform

F Ts f =

∫
ω
F f (ξ, v)

∫ ∞

0
e−i t α(v)·ξ e−t

ts
dt dv .

This is simply equal to∫
ω

F f (ξ, v)

1 + iα(v) · ξ
dv ,

if s = 0.
Denote

χ(z) =

∫ ∞

0
e−i t z e−t

ts
dt.



Notice that of course

|χ(z)| ≤
∫ ∞

0

e−t

ts
dt ≤ C < ∞,

provided that s < 1.
This already gives that

|F Ts f | ≤
∫

ω
|F f (ξ, v)| dv ,

and thanks to Cauchy-Schwarz that∫
Rd

|Ts f (x)|2 dx ≤ |ω|
∫

Rd×ω
|f (x , v)|2 dx dv .



On the other hand, if |z | ≥ 1, we have in addition

|χ(z)| ≤
∣∣∣∣∫ K

0
t−s dt

∣∣∣∣ +

∣∣∣∣∫ ∞

K
e−i t z e−t

ts
dt

∣∣∣∣
≤ C K 1−s +

∣∣∣∣1z
∫ ∞

K
e−t |t−s − s t−s−1| dt

∣∣∣∣
≤ CK 1−s +

C

|z |
K−s ≤ C

|z |1−s
,

through minimization in K . The combination of both yields

|χ(z)| ≤ C

1 + |z |1−s
.



Now by Cauchy-Schwarz, we have that

|F Ts f |2 ≤
∫

ω
|F f (ξ, v)|2 dv

∫
ω
|χ(ξ · α(v))|2 dv

≤
∫

ω
|F f (ξ, v)|2 dv

∫
ω

C

1 + |α(v) · ξ|2−2s
dv .

We recall that for all φ ∈ C 1(R)∫
ω

φ (|α(v) · ξ|) dv = −
∫ ∞

0
φ′(y) |{v ∈ ω ; |α(v) · ξ| < y}| dy .

Recall that

∀ζ ∈ Sd−1, ∀ε ∈ R+, |{v ∈ ω ; |α(v) · ζ| < ε}| ≤ εθ.

We obtain that∫
ω

C

1 + |α(v) · ξ|2−2s
dv ≤

∫ ∞

0

C

1 + |y |3−2s

yθ

|ξ|θ
dy ≤ C

|ξ|θ
,

provided that θ − 3 + 2s < −1. If |ω| < ∞, this gives∫
Rd

(1 + |ξ|)θ |F Ts f |2 dξ ≤ C

∫
Rd×ω

|f (x , v)|2 dx dv .



We have proved

Theorem
Assume |ω| < ∞, that

∀ζ ∈ Sd−1, ∀ε ∈ R+, |{v ∈ ω ; |α(v) · ζ| < ε}| ≤ εθ.

and that θ + 2s < 2 then Ts is continuous from L2(Rd × ω) to
Hθ/2(Rd).



Real space method for averaging lemmas

Averaging lemmas rely on orthogonality properties of T so that a
direct proof is difficult. The method presented here uses instead a
T T ∗ argument and is taken from Vega, J.
For simplicity, we restrict ourselves to

α(v) = v , ω = Sd−1,

The dual of operator T is

T ∗h(x , v) =

∫ ∞

0
h(x + vt) e−t dt.

Then T : L2(Rd × Sd−1) −→ H1/2 equivalent to
T ∗ : H−1/2 −→ L2(Rd × Sd−1) or

T ∗ : L2(Rd) −→ L2(Sd−1, H1/2(Rd))



Denote by ∆θ
x the differentiation operator

∆θ
xh = F−1 (|ξ|2θ F h),

with obviously ∆1
x = −∆ the laplacian.

Now compute∫
R2d

∆
1/4
x T ∗h ·∆1/4

x T ∗h dx dv =

∫
Rd

∆
1/2
x T T ∗h · h(x) dx .

We then observe that

T T ∗h(x) =

∫ ∞

0

∫ ∞

0

∫
Sd−1

h(x + (t−u)v)e−t−u dv du dt

= 2

∫ ∞

0

∫ t

0

∫
Sd−1

h(x + (t−u)v)e−t−u dv du dt.



With two changes of variables from t − u to τ and from the polar
coordinates τv to y

T T ∗h(x) = 2

∫ ∞

0

∫ t

0

∫
Sd−1

h(x + (t−u)v)e−t−u dv du dt.

=

∫ ∞

0

∫ t

0

∫
Sd−1

h(x + τv)e−2t+τ dv dτ dt

=

∫ ∞

0

∫
|y |≤t

h(x − y) e−2t+|y | dy

|y |d−1
dt.

Hence when differentiating T T ∗, we obtain exactly the structure
of a Riesz transform. Therefore the operator T T ∗ is continuous

from L2(Rd) to Ḣ1(Rd) or ∆
1/2
x T T ∗ is continuous inside L2(Rd).



Third Course : Lp estimates

1. The result
2. Interpolation, Sobolev and Besov spaces
3. Lp estimate for the operator T
4. End of the proof
5. Counterexamples for optimality



The problem and the theorem

For simplicity take

v · ∇x f = ∆a
x g , x ∈ Rd , v ∈ Rd , a < 1, (8)

and for the average

ρ(x) =

∫
Rd

f (x , v) φ(v) dv .

Assume the following bounds on f and g

f ∈ Ẇ β, p1
v (Rd , Lp2

x (Rd)), β ≥ 0,

g ∈ Ẇ γ, q1
v (Rd , Lq2

x (Rd)), −∞ < γ < 1,

with 1 < p2, q2 < ∞, 1 ≤ p1 ≤ min(p2, p∗2) and
1 ≤ q1 ≤ min(q2, q∗2), and γ − 1/q1 < 0.



Then, see DiPerna-Lions-Meyer, Bézard, DeVore-Petrova,
Bouchut, J.-Perthame, J.-Vega...

Theorem
With the previous assumptions

‖ρ‖Ḃs,r
∞,∞

≤ C‖f ‖1−θ

W
β,p1
v (L

p2
x )
× ‖g‖θ

W
γ,q1
v (L

q2
x )

,

with

1

r
=

1− θ

p2
+

θ

q2
, s = (1− a)θ,

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
.

This result essentially uses the L2 regularizing effect and a lot of
interpolation.



Interpolation, Sobolev and Besov spaces

See Bergh-Löfstrom for more details.

Definition
E and F be two Banach spaces. An interpolated space at order θ
between E and F is a space G ⊂ E + F s.t. ∀T continuous in E
and in F then T is continuous in G and

‖T‖G ≤ ‖T‖1−θ
E ‖T‖θ

F .

Note that there is no reason why the interpolate should be unique.

Proposition

Let T be a continuous operator from E1 to E2 and from F1 to F2.
Let Gi be an interpolated space at order θ between Ei and Fi .
Then T is continuous from G1 to G2 and

‖T‖G1→G2 ≤ ‖T‖1−θ
E1→E2

‖T‖θ
F1→F2

.



For example an interpolate at order θ between the spaces Lp(Rd)
and Lq(Rd) is the space Lr (Rd) with

1

r
=

1− θ

p
+

θ

q
.

Recall the definition of Sobolev spaces

W 1,p(Rd) = {f ∈ Lp(Rd) | ∇f ∈ Lp(Rd)},
W−1,p(Rd) = {f = g +∇·h | g ∈ Lp(Rd), h ∈ (Lp(Rd))d},

and homogeneous Sobolev spaces

Ẇ 1,p(Rd) = {f ∈ D′(Rd) | ∇f ∈ Lp(Rd)},
Ẇ−1,p(Rd) = {f = ∇·h | h ∈ (Lp(Rd))d},

with obvious extensions for W k,p where k ∈ Z.
Then the spaces W s,p(Rd) with s ∈ R can be obtained by
interpolation : If s ∈ [0, 1] then Ẇ s,p(Rd) is an interpolate at
order s between Lp(Rd) and Ẇ 1,p(Rd).
If 1 < p < ∞ then an equivalent definition is that f ∈ Ẇ s,p(Rd)
iff ∆s/2f ∈ Lp(Rd).



We use the so-called K-theory from Lions-Peetre.
For E and F two Banach spaces and ρ ∈ E + F define

Kρ(t) = inf
ρ=ρ1+ρ2

(‖ρ1‖E + t‖ρ2‖F ).

Define (E , F )θ,k as the space of functions ρ such that(∫ ∞

0
(Kρ(t) t−θ)k

dt

t

)1/k

< ∞,

and if k = ∞
sup

t
Kρ(t) t−θ < ∞.

All spaces (E , F )θ,k are interpolated spaces at order θ.
This method generates all Besov spaces (and Lorentz spaces for
the interpolation between Lp and Lq).
We will use it only for k = ∞.



The space (W s1,p(Rd), W s2,p(Rd))θ,∞ is the Besov space
Bs,p
∞ (Rd) with

s = (1− θ) s1 + θ s2.

This space is very close from the Sobolev space

W s,p(Rd) ⊂ Bs,p
∞ (Rd) ⊂ W s′,p(Rd) ∀s ′ < s.

For the homogeneous spaces (Ẇ s1,p(Rd), Ẇ s2,p(Rd))θ,∞, we
obtain the homogeneous Besov space Ḃs,p

∞ (Rd) with on a compact
support Ω

Ẇ s,p(Ω) ⊂ Ḃs,p
∞ (Ω) ⊂ Ẇ s′,p(Ω) ∀s ′ < s.

Unfortunately the space (W s1,p(Rd), W s2,q(Rd))θ,∞ is not a
Besov space if p 6= q, we denote it Bs,r

∞,∞ but

W s,p(Rd) ⊂ Bs,p
∞,∞(Rd) ⊂ W s′,p(Rd) ∀s ′ < s.



Estimate for the operator T

We perform the same trick and change into

(λ + v · ∇x) f (x , v) = ∆
α/2
x g(x , v) + λf (x , v).

We denote by Tλ the operator

Tλf (x) =

∫ ∞

0

∫
Rd

f (x − vt, v) e−λt φ(v) dv dt.

Consequently

ρ(x) =

∫
Rd

f (x , v)φ(v) dv = λTλf + ∆
a/2
x Tλg .

We first study this operator Tλ.



We prove

Proposition

For any 1 ≤ p1 ≤ min(p2, p∗2) with 1 < p2 < ∞, for any s with
s ≤ 1/p1, we have for s ≥ 0

Tλ : Ẇ s,p1

loc,v (Rd , Lp2
x (Rd)) −→Ẇ 1+s−1/p1, p2(Rd),

with norm Cλs−1/p1 .

Notice first that with a simple change of variable

Tλf (x) =
1

λ

∫ ∞

0

∫
Rd

f (x − vt/λ, v) e−t φ(v) dv dt =
1

λ
Tfλ(λx),

with fλ(x) = f (x/λ, v). Therefore it is enough to do the proof for
λ = 1, i.e. for the operator T .



Lemma
L1 case : ∀ 0 ≤ s < 1, T : Ẇ s,1

loc,v (Rd , Lp
x (Rd)) −→ Ẇ s,p(Rd),

for every 1 ≤ p ≤ ∞.

Proof. It is a direct computation, noticing

∂xi f (x − vt, v) = −1

t
∂vi (f (x − vt, v))) +

1

t
(∂vi f )(x − vt, v).

First of all, simply by commuting∥∥∥∥∫
Rd

f (x − vt, v) φ(v) dv

∥∥∥∥
Lp

≤ C‖f ‖L1
vLp

x
,

where C does not depend on t. Then∥∥∥∥∂xi

∫
Rd

f (x − vt, v) dv

∥∥∥∥
Lp

≤
∥∥∥∥1

t

∫
Rd

∂vi (f (x − vt, v))φ(v) dv

∥∥∥∥
Lp

+

∥∥∥∥1

t

∫
Rd

(∂vi f )(x − vt, v)φ(v) dv

∥∥∥∥
Lp

≤ C

t
‖f ‖

W 1,1
v Lp

x
.



By interpolation, we conclude that for any s < 1∥∥∥∥∫
Rd

f (x − vt, v)φ(v) dv

∥∥∥∥
Ẇ s,p

≤ C

ts
‖f ‖

W s,1
v Lp

x
,

and by integrating in t against e−t we get the desired result.

With exactly the same idea, one obtains for negative derivatives,

Lemma
∀ s ≤ 0, T : Ẇ s,1

loc,v (Rd , Lp
x (Rd)) −→ Ẇ s,p(Rd).



It remains to combine this with the L2 case. In fact for any s ∈ R

∆s
xh(x + vt) = ∆s

vh(x + vt) t−s ,

which implies for the dual operator T ∗ with s < 1

∆
s/2
x T ∗h = φ(v) ∆

s/2
v

∫ ∞

0
h(x + vt)

e−t

ts
dt = φ(v)∆

s/2
v (φ−1T ∗

s h),

according to the definition of Ts .
From the L2 estimate on Ts

Lemma
(L2 setting) ∀s < 1/2, T : Ḣs

loc,v (L2
x) −→ Ḣs+1/2.

To obtain the behaviour of T on any space of the form
Ẇ s,p1

v (Lp2
x ), we cannot simply interpolate between the two lemmas

because we would be restricted to s < 1/2. Instead we have to
interpolate before integrating in t. A slight problem arises because

the operator ∆
s/2
x does not operate nicely on L1.

This would require the use of Hardy space, which we skip here...



The end of the proof

We first make the additional assumption that β < 1/p1. Indeed
with that we may apply the proposition to both f and g .
We have

ρ = ρ1 + ρ2 = λTλf + ∆
a/2
x Tλg ,

with by the proposition

‖ρ1‖Ẇ 1+β−1/p1, p2 ≤ C λ× λβ−1/p1 × ‖f ‖
Ẇ

β,p1
v L

p2
x

,

‖ρ2‖Ẇ 1+γ−1/q1−a, q2 ≤ Cλγ−1/q1 × ‖g‖Ẇ
γ,q1
v L

q2
x

.

We interpolate between Ẇ 1+β−1/p1, p2 and Ẇ 1+γ−1/q1−a, q2 using
the K-method

K (t) = inf
ρ=ρ1+ρ2

(‖ρ1‖Ẇ 1+β−1/p1, p2 + t‖ρ2‖Ẇ 1+γ−1/q1−a, q2 ).



Take
λ = t1/(1+β−1/p1−γ+1/q1),

and indeed find

K (t) ≤ tθ × ‖f ‖1−θ

Ẇ
β,p1
v L

p2
x

× ‖g‖θ
Ẇ

γ,q1
v L

q2
x

,

with

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
,

as given by the theorem.

Consequently ρ belongs to the space Ḃs,r
∞,∞ as the interpolation of

order (θ,∞) of the two spaces Ẇ 1+β−1/p1, p2 and Ẇ 1+γ−1/q1−a,q2 .



The case β ≥ 1/p1

The problem is that the proposition is not true anymore. If one
tries to prove any of the lemmas for β ≥ 1/p1, there is not enough
integrability in t.
More precisely, we have to integrate a term in t−k with k ≥ 1
which is not possible. However

Tλ f =

∫ ∞

0

∫
Rd

∂t(t)f (x − vt, v)e−λt φ(v) dv dt

=

∫ ∞

0

∫
Rd

f (x − vt, v) λte−λt φ(v)

+

∫ ∞

0

∫
Rd

v · ∇x f (x − vt, v)te−λt φ(v)



So eventually

Tλ f =

∫ ∞

0

∫
Rd

f (x − vt, v) λte−λt φ(v)

+
1

λ

∫ ∞

0

∫
Rd

∆
a/2
x g(x − vt, v)λte−λt φ(v).

The first term has the same homogeneity as Tλf but with more
integrability around the origin in t. The second term, once it is
multiplied by λ behaves exactly like the usual Tλg .
Therefore, repeating this simple trick as many times as necessary,
we avoid any problem of integrability in t for Tλf and we may
consider β as large as we want.



Counterexamples for optimality

This is a slight generalization of two notes of Lions. The examples
are given in dimension two for simplicity.

Consider two C∞
c functions a and b and take

fN(x , v) = Nδ(1/p1−β) × a(N x1, x2/N) b(Nδv1),

gN(x , v) = N1−δ+δ/p1−δβ × ∂1a(N x1, x2/N) Nδv1 b(Nδv1).

Then simply choose δ such that gN belongs to the space
W γ,q1

v (Lq2
x ) uniformly in N for every q2, so

δ =
1

1− 1/p1 + β + 1/q1 − γ
.

Notice that if γ < 0, we also have to require that wb(w) be the γ
derivative of some function.



Now
v · ∇x fN = gN + hN ,

with for any r
‖hN‖L1

v (W 1,r
x )

≤ CN−2δ.

Therefore the contribution from hN to the regularity of the
average is one full derivative and it can be neglected.
To finish, notice that for any 1 ≤ r ≤ ∞

‖ρN‖Ẇ s,r ≥ Ns−δ(1−1/p1+β).

Hence for this norm to be bounded uniformly in N, we need that

s ≤ δ(1− 1/p1 + β) =
1− 1/p1 + β

1− 1/p1 + β + 1/q1 − γ
,

which is precisely the value given by the theorem.



Optimality of the r exponent

Consider

fN(x , v) = N1/p2+δ(1/p1−β) × a(N x1, x2) b(Nδv1),

gN(x , v) = N1+1/p2−δ+δ/p1−δβ × ∂1a(N x1, x2) Nδv1 b(Nδv1).

To bound uniformly gN in the correct space

δ =
1 + 1/p2 − 1/q2

1− 1/p1 + β + 1/q1 − γ

We again have
v · ∇x fN = gN + hN ,

with hN more regular than gN and so negligible for our purpose.
Finally

‖ρN‖W s,r ≥ Ns+1/p2−1/r−δ(1−1/p1+β).

We plug the correct value of s (seen before) and find

1

r
=

1

p2
− s

p2
+

s

q2
,

which is again the predicted value.



Fourth course

Plan of the course
1. The case with a full derivative
1.1 The result
1.2 Proof
2. The L1 case
2.1 Known results
2.2 The theorem to be proved
2.3 The proof



The case with a full derivative

The main result here was obtained by Perthame-Souganidis. We
deal with

v · ∇x f = divxg , x ∈ Rd , v ∈ Sd−1.

Very little can be expected in this case : All f satisfy the equation
with a right hand side just as regular as themselves. Nevertheless it
is enough to ensure some compactness for the average

ρ(x) =

∫
Sd−1

f (x , v) dv .

Assume that

f ∈ Ẇ β, p1
v (Sd−1, Lp2

x (Rd)), β ≥ 0,

g ∈ Ẇ γ, q1
v (Sd−1, Lq2(Rd)), −∞ < γ < 1,

with 1 < p2, q2 < ∞, 1 ≤ p1 ≤ min(p2, p∗2) and
1 ≤ q1 ≤ min(q2, q∗2) and assume moreover that γ − 1/q1 < 0.



Then

Theorem
One has

‖ρ‖
B0,r
∞,∞

≤ C‖f ‖1−θ

W
β,p1
v (L

p2
x )
× ‖g‖θ

W
γ,q1
v (L

q2
x )

,

with

1

r
=

1− θ

p2
+

θ

q2
,

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
.

The space B0,r
∞,∞ is again obtained by interpolation but here as ρ

trivially belongs to Lp2(Rd) we have that ρ belongs to all Lr ′ with
r ′ ∈ [p2, r [ or ]r , p2].



It is possible to deduce

Corollary

Consider two sequences fn and gn of solutions. Assume moreover
that fn is uniformly bounded in Ẇ β,p1

v (Sd−1, Lp2(Rd)) with

β ≥ 0, 1 < p2 < ∞, 1 ≤ p1 ≤ min(p2, p∗2),

and that gn is uniformly bounded and compact in
Ẇ β,q1

v (Sd−1, Lq2(Rd)) with

−∞ < γ < 1, 1 < q2 < ∞, 1 ≤ q1 ≤ min(q2, q∗2).

Then the sequence ρn is compact in any Lr ′ with r ′ ∈]p2, r [ or
]r , p2[ and r given by the previous theorem.

This may replace compensated compactness in some situations
(convergence of the vanishing viscosity approximation to scalar
conservation laws for instance).



Proof of the corollary

As fn is uniformly bounded, fn −→ f , w − ∗ (at least after
extraction). On the other hand, still after extraction, gn −→ g .
Thus

v · ∇x f = divx g ,

or
v · ∇x(fn − f ) = divx (gn − g).

Applying now the theorem to fn − f and gn − g , we find that

‖ρ− ρn‖B0,r
∞,∞

≤ C‖f − fn‖1−θ

W
β,p1
v (L

p2
x )
× ‖g − gn‖θ

W
γ,q1
v (L

q2
x )

.

As gn − g strongly converges toward 0 and fn is uniformly
bounded, we deduce that

ρn − ρ −→ 0, in B0,r
∞,∞.

Therefore it is the same in all Lr ′ with r ′ ∈]p2, r [ or ]r , p2[ since
ρ− ρn is uniformly bounded in Lp2 .



Proof of the Theorem

We follow the steps described in the third course and decompose

ρ = ρ1 + ρ2 = λTλf + divx Tλg .

From the main proposition

‖ρ1‖Ẇ 1+β−1/p1, p2 ≤ C λ× λβ−1/p1 × ‖f ‖
Ẇ

β,p1
v L

p2
x

,

‖ρ2‖Ẇ γ−1/q1, q2 ≤ Cλγ−1/q1 × ‖g‖Ẇ
γ,q1
v L

q2
x

.

So again minimizing in λ in the functional K (t), we take

λ = t1/(1+β−1/p1−γ+1/q1),

and we indeed find

K (t) ≤ tθ × ‖f ‖1−θ

W
β,p1
v L

p2
x

× ‖g‖θ
W

γ,q1
v L

q2
x

,



with

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
.

Therefore ρ belongs to Bs,r
∞,∞ and it only remains to notice that

s = (1− θ) (1 + β − 1/p1) + θ (γ − 1/q1) = 0,

which finishes the proof.



The L1 case

A situation of interest is

v · ∇x f = g ,

where f is only in L1(Rd × Sd−1).
It is crucial for collisional models : See DiPerna-Lions for the
existence of renormalized solutions to Boltzmann equation, and
Golse, Saint-Raymond for the derivation of hydrodynamic limits.
Here ρ is not in any Sobolev spaces. But some compactness
property still holds

Theorem
Let fn and gn be two sequences of uniformly bounded solutions in
the space L1(Rd × Sd−1). Assume moreover that the sequence fn
is uniformly equi-integrable in v . Then the sequence of averages ρn

is compact in L1
loc(Rd).



The proof relies first on the fact that if fn is equi-integrable in
velocity then it is in both variables :

Proposition

Let fn and gn be two sequences of uniformly bounded solutions in
L1(Rd × Sd−1). If the sequence fn is uniformly equi-integrable in
v ∈ Sd−1 then it is uniformly equi-integrable in
(x , v) ∈ Rd × Sd−1.

It is then possible to get

Theorem
Let fn and gn be two sequences of uniformly bounded solutions in
L1(Rd × Sd−1). Assume moreover that the sequence fn is
uniformly equi-integrable in (x , v) ∈ Rd × Sd−1. Then the
sequence of averages ρn is compact in L1

loc(Rd).

With the additional assumption that gn is equi-integrable, this last
result was already noticed in Golse-Lions-Perthame-Sentis.
We only give here the proof of the last theorem with a slight
variant of the method used by Golse and Saint-Raymond.



The result to be proved

Take f and g a couple of solutions, and assume ∃Φ ∈ C (R+) with
φ(ξ)/ξ increasing and Φ(ξ)/ξ −→∞ as ξ →∞ and s.t.

I (f ) =

∫
Rd×Sd−1

Φ(|f (x , v)|) dx dv < ∞,

Then ∃ε(h) depending only on Φ with lim ε(h) = 0 as h → 0 and
such that for any φ ∈ C 1

c (Rd , R+)∫
Rd

|ρ(x + h)− ρ(x)|φ(x) dx ≤ Cφ ε(h) (‖f ‖L1 + ‖g‖L1 + I (f )).

Of course this property gives the compactness of any sequence
and thus the theorem.



The proof

Notice that
v · ∇x(φf ) = g φ + f v · ∇xφ.

Now decompose

(λ + v · ∇x) (φ f ) = ḡ + λf M
1 + λf M

2 ,

with

f M
1 = φ f I|f |≤M , f M

2 = φ f I|f |>M , ḡ = g φ + f v · ∇xφ.

Then
φρ = Tλ ḡ + λTλf M

1 + λTλ f M
2 .

Obviously∫
Rd

|ρ(x + h)− ρ(x)|φ(x) dx ≤
∫

Rd

|φ(x + h)ρ(x + h)− φ(x)ρ(x)|

+ h‖∇φ‖L∞ ‖ρ‖L1



On the other hand∫
Rd

|φ(x + h)ρ(x + h)− φ(x)ρ(x)| ≤
∫

Rd

|Tλḡ(x + h)− Tλ ḡ | dx

+

∫
Rd

|λTλf M
1 (x + h)− λTλf M

1 | dx

+

∫
Rd

|λTλ f M
2 (x + h)− λTλ f M

2 | dx

So that finally∫
Rd

|ρ(x + h)− ρ(x)|φ(x) dx ≤ 2‖Tλḡ‖L1 + 2λ ‖Tλf M
2 ‖L1

+

∫
Rd

|λTλf M
1 (x + h)−λTλf M

1 | dx + Cφ h‖f ‖L1 .



From the main proposition in the third course we have

‖Tλḡ‖L1 ≤
C

λ
‖ḡ‖L1 ≤

C

λ
(‖g‖L1 + Cφ‖f ‖L1),

and

‖Tλf M
2 ‖L1 ≤

C

λ
‖f M

2 ‖L1 ≤
C

λ

M

Φ(M)
I (f ),

as (remember that φ(ξ)/ξ is increasing)∫
Rd×Sd−1

|f (x , v)| I|f |>M dx dv

=

∫
Rd×Sd−1

Φ(|f (x , v)|) I|f |>M
|f |

Φ|f |
dx dv

≤ sup
ξ>M

ξ

Φ(ξ)

∫
Rd×Sd−1

Φ(|f (x , v)|) dx dv .



For the last term Tλf M
1 , notice that is is compactly supported in

the support of φ so

‖Tλf M
1 ‖W 1/2,1(Rd ) ≤ Cφ‖Tλf M

1 ‖H1/2(Rd ).

Furthermore as f M
1 belongs to L2(Rd × Sd−1) then

‖Tλf M
1 ‖H1/2(Rd ) ≤ C λ−1/2 ‖f M

1 ‖L2(Rd×Sd−1) ≤ C λ−1/2 M1/2 ‖f M
1 ‖1/2

L1 .

Consequently∫
Rd

|λTλf M
1 (x + h)−λTλf M

1 | dx ≤ h1/2 ‖Tλf M
1 ‖W 1/2,1(Rd )

≤ Cφ h1/2 λ1/2 M1/2 ‖f M
1 ‖1/2

L1 .



Combining all estimates, one obtains∫
Rd

|ρ(x + h)− ρ(x)|φ(x) dx ≤ C

λ
(‖g‖L1 + Cφ‖f ‖L1) + C

M

Φ(M)
I (f )

+ Cφ λ1/2 h1/2 M1/2 ‖f M
1 ‖1/2

L1 + Cφ h ‖f ‖L1 .

For any h, it only remains to minimize in λ and M to conclude.
Notice finally that in most applications, Φ(ξ) = ξ log ξ (from
entropy bounds). In that case, the function ε(h) is

ε(h) =
1

log 1/h
.



Fifth course : Application to scalar conservation law

Plan of the course :
1. Introduction of entropy solution
2. Propagation of Lp bounds
3. Existence I : The transport-collapse method
4. Existence II : Passing to the limit in the method
5. Existence III : Compactness thanks to averaging lemma
6. Uniqueness and Propagation of BV bounds.
7. Regularity by averaging lemmas.
8. Other regularity results.
For most of this part of the course, the convenient reference is
Perthame



Scalar Conservation Law

Scalar conservation laws are hyperbolic equations on a scalar
u(t, x) ∈ R

∂tu +∇x · (A(u(t, x))) = 0, t ≥ 0, x ∈ Rd ,

u(t = 0, x) = u0(x),
(9)

where the flux A is regular, namely A ∈ C 2(R, Rd).
The characteristics for Eq. (9) are lines. More precisely if u is a
regular (C 1) solution then

u(t, x + t a(u0(x))) = u0(x),

where a(ξ) = A′(ξ).
Of course this also shows that regular solutions cannot exist in
general for all times : if x = x1 + t a(u0(x1)) = x2 + t a(u0(x2)),
then u(t, x) would have to be equal to both u0(x1) and u0(x2).

=⇒ Necessity of weak solutions and entropy for uniqueness



Entropy solution by kinetic formulation

Assume that u is a classical solution to (9). Define then

f (t, x , v) =


1 if 0 ≤ v < u(t, x),

− 1 if u(t, x) < v ≤ 0,

0 in the other cases.

(10)

Compute (in the sense of distribution)

∂t f = ∂tu δ(u(t, x)− v) = −a(u(t, x)) · ∇xu(t, x) δ(u(t, x)− v)

= −a(v) · ∇xu(t, x) δ(u(t, x)− v) = −a(v) · ∇x f .

When u is no more C 1 this computation cannot be done. Instead

Definition : A function u ∈ L1
loc(R+ ×Rd) is an entropy solution to

(9) if and only if there exists m ≥ 0 in M1
loc(R+ × R2d), s.t. f

defined through (10) satisfies

∂t f + a(v) · ∇x f = ∂vm. (11)



u can be recovered through

u(t, x) =

∫
R

f (t, x , v) dv

Note that if f is a solution then f is of bounded variation in time,
in BVloc(R+, W−1−0,1(Rd+1)). Therefore the trace of f at t = 0
(t = 0+ more precisely) is well defined.
So the trace of u is also well defined and we can impose

u(t = 0, x) = u0(x).

Assume

∃C , ∀ξ ∈ Rd , ∀τ, ∀ε ∈ R+, |{v ∈ R; |a(v)·ξ−τ | ≤ ε}| ≤ C ε.

Theorem
For any u0 ∈ L1(Rd), ∃!u ∈ L∞(R+, L1(Rd)), entropy solution to
(9) with u(t = 0) = u0. Moreover if u0 ∈ L∞ the solution satisfies

(i) u ∈ L∞(R+ ×Rd) and u ∈ W
s,3/2
loc (R∗

+ ×Rd) for any s < 1/3.



Propagation of Lp norm

The easiest property of entropy solution is

Proposition

Take any φ ∈ C 2(R), convex and assume that∫
Rd

φ(u0(x)) dx < ∞,

then ∀t > 0, if u is an entropy solution with initial data u0∫
Rd

φ(u(t, x)) dx ≤
∫

Rd

φ(u0(x)) dx .

In particular if u0 ∈ Lp then u ∈ L∞(R+, Lp(Rd)).



Proof. Define φn −→ φ with φ′′n ∈ Cc(R). Because of the definition
of f ∫

Rd

φn(u(t, x)) dx =

∫
Rd×R

φ′n(v) f (t, x , v) dx dv .

Now multiplying the equation by φ′n(v) and integrating

d

dt

∫
Rd×R

φ′n(v) f (t, x , v) dx dv =

∫
Rd×R

φ′n(v) ∂vm dx dv

= −
∫

Rd×R
φ′′n(v) m dx dv ≤ 0,

because φ′′n ≥ 0 and m ≥ 0. Consequently∫
Rd

φn(u(t, x)) dx =

∫
Rd×R

φ′n(v) f (t, x , v) dx dv

≤
∫

Rd×R
φ′n(v) f (0, x , v) dx dv =

∫
Rd

φn(u
0(x)) dx ,

and passing to the limit in n, one obtains the proposition.



Transport-Collapse

It was introduced by Brenier. For any n we define fn recursively on
the ]i/n, (i + 1)/n]. un is then always given by

un(t, x) =

∫
R

fn(t, x , v) dv .

Step 0 : Initialization

fn(0, x , v) =


1 if 0 ≤ v < u0(t, x),

− 1 if u0(t, x) < v ≤ 0,

0 in the other cases.

Step 1 : Transport. Given fn(i/n, x , v), fn on ]i/n, (i + 1)/n[ is the
solution to

∂t fn + a(v) · ∇x fn = 0, t ∈ [i/n, (i + 1)/n[,

with the corresponding initial data at t = i/n.



This explicitly gives

fn(t, x , v) = fn(i/n, x − a(v) (t − i/n), v).

But it is not true that fn is an indicatrix.
Step 2 : Collapse. Define

Lf (v) =


1 if 0 ≤ v <

∫
R

f (v) dv ,

− 1 if

∫
R

f (v) dv < v ≤ 0,

0 in the other cases.

Then pose

fn((i+1)/n, x , v) = L (fn(i/n, x−a(v)/n, v)) = L fn((i+1)/n−, x , v),

where fn((i + 1)/n−, x , v) is the limit of fn(t, x , v) for
t → (i + 1)/n with t < (i + 1)/n.



Therefore one recovers for all i

fn(i/n, x , v) =


1 if 0 ≤ v < un(i/n, x),

− 1 if un(i/n, x) < v ≤ 0,

0 in the other cases.

Finally the main property of the collapse operator : ∀f with
sup |f | ≤ 1 and ∀φ(v) ∈ C 1 with φ′(v) ≥ 0∫

R
φ(v)L f (v) dv ≤

∫
R

φ(v) f (v) dv .



Convergence

In the sense of distribution fn satisfies

∂t fn + a(v) · ∇x fn = gn,

with

gn =
∞∑
i=1

δ(t − i/n) (fn(i/n, x , v)− fn(i/n−, x , v)).

Moreover

sup |fn(0, x , v)| = 1,

∫
Rd+1

|fn(0, x , v) dx dv =

∫
Rd

u0(x) dx < ∞,

and by induction on the intervals [i/n, (i + 1)/n], for any t > 0

‖fn(t, ., .)‖L1(Rd+1) = ‖un(t, .)‖L1(Rd ) = ‖u0‖L1 , sup
x ,v

|fn(t, x , v)| = 1.

Hence we may extract a converging subsequence, still denoted fn,

fn −→ f , w − ∗L∞.



In addition use the property of the collapse operator : ∀Φ(x , v)
with ∂vΦ ≥ 0∫

Rd+1
Φ(x , v) (fn(i/n, x , v)− fn(i/n−, x , v)) dx dv ≤ 0.

Hence there exists a measure Mi ,n(x , v) ≥ 0 s.t.

(fn(i/n, x , v)− fn(i/n−, x , v)) = ∂vMi ,n(x , v).

Obviously this implies that

gn = ∂vmn, mn ≥ 0,

with

mn(t, x , v) =
n∑

i=1

δ(t − i/n) Mi ,n(x , v).



Now define ΦM = vI|v |≤M + MIv>M −MIv<−M .
Multiplying the kinetic equation by ΦM and integrating,∫

Rd+1

ΦM (fn(T , x , v)− fn(0, x , v)) dx dv

= −
∫ T

0

∫
Rd+1

∂vΦM dmn(t, x , v).

So from the L1 estimate on fn∫ T

0

∫ M

−M

∫
Rd

dmn(t, x , v) ≤ 2M‖fn(t, ., .)‖L1 ≤ 2M‖u0‖L1(Rd ).

Therefore still extracting a subsequence, we obtain

mn −→ m, w − ∗M1
loc

with m ≥ 0 in M1
loc(R+ × Rd+1). The limit f then satisfies

∂t f + a(v) · ∇x f = ∂vm.

It remains to show that the constraint on f holds at the limit.
Assuming that un is compact in L1 then this follows from the fact
that it is satisfied at every t = i/n.



Compactness of un

Take a function Φ ∈ C∞(R) satisfying

Φ(v) = 1 if |v | ≤ 1, Φ(v) = 0 if |v | ≥ 2, 0 ≤ Φ(v) ≤ 1 ∀v .

Then define

uR
n =

∫
R

fn(t, x , v) Φ(v/R) dv .

This uR
n is an average of fn for which we can apply averaging

lemmas.
Remember that

∂t fn + a(v) · ∇x fn = ∂vmn.



The measure mn is in any W−r ,p([0, T ]×Rd × [−R, R] for r > 0
and p < (1− r/d)−1 as

‖mn‖W−r,1([0, T ]×Rd×[−R, R] ≤ Cr

∫
W−r,1([0, T ]×Rd×[−R, R]

dmn

≤ Cr R ‖u0‖L1 .

Next ‖fn‖L∞ ≤ 1 so fn ∈ Lp
loc for any p and in particular

‖fn‖L2([0, T ]×B(0,K)×[−R, R]) ≤ C
√

TKR.

Using averaging lemmas, uR
n belongs to W

s,5/3
loc (R+ × Rd) for any

s < 1/5 with

‖uR
n ‖W s,5/3([0, T ]×B(0,K)) ≤ C (s,T ,K ,R),

and therefore uR
n is locally compact so that

uR
n −→ uR =

∫
R

f (t, x , v) Φ(v/R) dv . in L
5/3
loc .



Now as u0 ∈ L1 there exists an even convex function χ ∈ C 2(R)
with χ(ξ)/|ξ| −→ +∞ as |ξ| → +∞ and s.t.∫

Rd

χ(u0(x)) dx < ∞.

From the definition of fn this implies that∫
Rd×R

χ′(v) fn(t = 0, x , v) dv dx =

∫
Rd

χ(|u0(x)|) dx < ∞.

Multiplying the kinetic equation by χ′ and integrating, one gets

d

dt

∫
Rd×R

|χ′(v)| |fn(t, x , v)| dv dx =
d

dt

∫
Rd×R

χ′(v) fn(t, x , v) dv dx

=

∫
Rd×R

gn χ′ dx dv = −
∫

Rd×R
mn χ′′(v) dv dx ≤ 0.



This shows that∫
Rd

|un − uR
n | dx ≤

∫
Rd

∫
|v |≥R

|fn(t, x , v)| dv

≤ 1

|χ′(R)|

∫
Rd×R

χ′ fn dx dv ≤ 1

|χ′(R)|

∫
Rd

χ(u0(x)) dx ,

and so un − uR
n −→ 0 in L1 as R tends to infinity, uniformly in n.

From the compactness of uR
n , we deduce the compactness of un in

L1
loc and we are done.



Uniqueness

Uniqueness was first obtained by Kruzkov. The formal argument
here corresponds to the proof by Perthame.
Consider two entropy solutions u1 and u2, then

Proposition

L1 contractivity : We have for any t > 0

‖u1(t, .)− u2(t, .)‖L1(Rd ) ≤ ‖u0
1 − u0

2‖L1(Rd ).

This of course implies the uniqueness of the solution but it does
even more than that (see next).
Denote f1 and f2 the two functions defined from u1 and u2 and m1,
m2 the measures in the kinetic equations. For simplicity assume
that u1 ≥ 0 and u2 ≥ 0 and hence f1 ≥ 0 and f2 ≥ 0.



First note that as fi ≥ 0, f 2
i = fi . f 2

i solves the same equation but
multiplying the equation by 2fi we also get

∂t f
2
i + a(v) · ∇x f

2
i = 2fi ∂vmi .

Thus
2fi ∂vmi = ∂vmi ,

and ∫
R

fi ∂vmi dv = 0. (12)

Of course this is only formal. The rigourous argument requires the
use of convolution.
Now use the kinetic equation for f1 and f2 and compute

d

dt

∫
Rd×R

|f1 − f2|2 dx dv =

∫
Rd×R

(f1 − f2)(∂vm1 − ∂vm2)

= −
∫

Rd×R
(f1 ∂vm2 + f2 ∂vm1),

by our crucial relation.



As fi is non increasing∫
Rd×R

f1 ∂vm2 dx dv = −
∫

Rd×R
∂v f1m2 dx dv ≥ 0,

and the same is true for the other term. Finally

d

dt

∫
Rd×R

|f1 − f2|2 dx dv ≤ 0.

To conclude note that |f1 − f2| is equal to 0 if 0 ≤ v ≤ u1 and
0 ≤ v ≤ u2 or if v > u1 and v > u2 ; It is equal to 1 if u1 < v < u2

or u2 < v < u1. Therefore∫
Rd×R

|f1 − f2|2 dx dv =

∫
Rd

|u1 − u2| dx ,

and
d

dt

∫
Rd

|u1 − u2| dx ≤ 0.



Propagation of BV norm

Take h ∈ Rd and apply the contractivity for u(t, x) and u(t, x + h
(corresponding to u0(x + h)), it shows that∫

Rd

|u(t, x + h)− u(t, x)| dx ≤
∫

Rd

|u0(x + h)− u0(x)| dx ,

and so ∫
Rd

|u(t, x + h)− u(t, x)|
|h|

dx ≤
∫

Rd

|∇xu
0(x)| dx .

Hence

Corollary

Let u be an entropy solution and assume that u0 ∈ BV (Rd) then
u(t, .) ∈ BV (Rd) and

‖u(t, .)‖BV ≤ ‖u0‖BV .



There are many ways to prove this result.
For example take the sequence fn obtained before

‖fn(t)‖BV (Rd , M1(R)) = ‖fn(i/n+)‖BV (Rd , M1(R)), ∀t ∈ [
i

n
,

i + 1

n
[.

The collapse operator contracts the BV norm so

‖fn(i/n+, ., .)‖BV (Rd , M1(R)) ≤ ‖fn(i/n−, ., .)‖BV (Rd , M1(R)).

One then gets that ‖fn(t)‖BV (Rd , M1(R)) = ‖fn(0)‖BV = ‖u0‖BV .
Going back to the estimate on f the uniqueness proof gives∫

Rd×R

|f (t, x + h, v)− f (t, x , v)|2

|h|
dx dv ,

which is not BV but in fact like a H1/2 norm. Of course

‖u(t, .)‖BV = ‖f (t, ., .)‖BVx (M1
v ),

and this in turn dominates any Hs
x (L

2
v ) norm of f with s < 1/2.



However it is only the very specific form of f which gives the
bound the other way around. In fact the uniqueness argument be
used to directly bound

‖f ‖2
Hs

x (L
2
v ) =

∫
R2d×R

|f (t, x , v)− f (t, y , v)|2

|x − y |2s+d
dx dy dv .



Regularization by averaging lemmas

Define as before for a regular Φ

uR =

∫
R

f (t, x , v) Φ(v/R) dv .

Note that from the definition of f∫
R
|∂v f (t, x , v)| = 1.

so that
‖f ‖L∞(R+×Rd ,BVloc (R)) ≤ C .

As ‖f ‖L∞(R+×Rd+1) = 1, by interpolation

‖f ‖L∞(R+×Rd , Hs(R)) ≤ C , s < 1/2.



Because ‖f ‖L∞(R+, L1(Rd+1)) = ‖u‖L∞(R+, L1(Rd )), with a last
interpolation

‖f ‖L2([0, T ]×Rd , Hs(R)) ≤ C (‖u‖L∞(R+, L1(Rd )), s < 1/2.

The measure m belongs to W s,1
loc (R+ × Rd+1). So we may apply

averaging lemmas and get

uR ∈ W
s,3/2
loc (R+ × Rd+1), ∀ s < 1/3.

Now if u ∈ L∞ then for R > ‖u‖L∞ , uR = u and

u ∈ W
s,3/2
loc (R+ × Rd+1), ∀ s < 1/3.

This is the promised regularity

If u is only in Lp, then the argument would be more complicated.



Olĕınik BV regularization

It is possible to show that the solution immediately becomes BV in
the particular case of a strictly convex flux in dimension 1 :
inf a′(v) > 0.
The original argument was given for the vanishing viscosity
approximation, with first proving a semi-Lipschitz bound on u.
Here we instead use the transport collapse scheme.
To simplify assume that

a(v) = v , u0 ≥ 0, u0 ∈ L∞(R).

The following holds for fn, un defined by Transport-Collapse

Proposition

For any t > 0, any R > 0

‖t ∂xun(t, .)− 1‖M1([−R, R]) ≤ 2R‖u0‖L∞ + 2t ‖u0‖2
L∞ .



Proof. We argue by induction on every interval ]i/n, (i + 1)/n].
Start with ]0, 1/n], fn is simply the solution to the free transport

fn(t, x , v) = f (0, x − vt, v).

So

∂xun(t, x) =

∫
R

∂x fn(0, x − vt, v) dv

=

∫
R
(−1

t
∂v (fn(0, x − vt, v)) +

1

t
(∂v fn)(0, x − vt, v)) dv

=
1

t

∫
R
(∂v fn)(0, x − vt, v) dv .

As such for 0 < t < 1/n, by the definition of f (0)

t ∂xun(t, x)− 1 =

∫
R
(δ(v)− δ(v − u0(x − vt))) dv − 1

= −
∫

R
δ(v − u0(x − vt)) dv .



Therefore∫ R

−R
|∂xun(t, x)− 1| dx =

∫
R

∫ R+vt

−R+vt
δ(v − u0(x)) dx dv

≤
∫ R+‖u0‖L∞ t

−R−‖u0‖L∞ t

∫
R

δ(v − u0(x)) dx dv ≤ 2 R ‖u0‖L∞ .

un is continuous at t = i/n so the same is true at t = 1/n.

Next, assume that the estimate is true at time t = i/n. Define

gn(i , x , v) = fn(i/n+, x + v i/n, v),

and notice that

∂vgn = (∂v fn)(i/n+, x + v i/n, v) +
i

n
∂x fn(i/n+, x + v i/n, v).

On the other hand for t ∈]i/n, (i + 1)/n]

un(t, x) =

∫
R

fn(t, x , v) dv =

∫
R

gn(i , x − vt, v) dv .



So with the same argument as before

∂xun =
1

t

∫
R
(∂vgn)(i , x − vt.v) dv

=
1

t

∫
R
(∂v fn)(i/n+, x + v (i/n − t), v)

+
1

t

i

n

∫
R

∂x fn(i/n+, x + v (i/n − t), v) dv .

By the definition of fn(i/n+), one gets the induction relation

t ∂xun − 1 =

∫
R
(δ(v)− δ(v − un(i/n, x + v (i/n − t)))) dv − 1

+
i

n

∫
R

∂xun(i/n, x + v (i/n − t), v) δ(v − un(i/n, x + v (i/n − t))) dv

=

∫
R
(
i

n
∂xun(i/n, x + v (i/n − t))− 1)

× δ(v − un(i/n, x + v (i/n − t))) dv .



Consequently for i/n < t < (i + 1)/n∫ R

−R
|t ∂xun − 1| dx ≤

∫ R+(t−i/n) ‖u0‖L∞

−R−(t−i/n) ‖u0‖L∞

∫
R
|i/n∂xun(i/n, x)− 1|

δ(v − un(i/n, x)) dv dx

≤
∫ R+(t−i/n) ‖u0‖L∞

−R−(t−i/n) ‖u0‖L∞
|i/n∂xun(i/n, x)− 1| dx

≤ 2(R + (t − i/n) ‖u0‖L∞) ‖u0‖L∞ +
2 i

n
‖u0‖2

L∞

≤ 2R‖u0‖L∞ + 2 t‖u0‖L∞ ,

because we have assumed that u(i/n, x) satisfies the estimate.



Conclusion

In 1d there is a wide gap between the previous BV regularity and
the 1/3 derivative provided by averaging lemmas.
So can we improve averaging lemmas in higher dimensions and
maybe get BV ?
There is an example by DeLellis, Otto, Westdickenberg showing
that for solutions with bounded entropy production, it is not
possible. For entropy solutions it is open.
Regularity in Sobolev spaces is not the only interesting property of
solutions. for example, strong traces are proved to exist for the
solution by Vasseur. More recently it was shown that the solutions
enjoy a “BV like” structure (see Crippa, Otto, Westdickenberg).

And finally kinetic formulations and the corresponding averaging
results are not limited to scalar conservation laws...


