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Presentation of the course

Kinetic equations : Transport equation in phase space, i.e. on
f(x,v) of x and v

Of +v-Vif =g, t>0, x,v € R

As for hyperbolic equation, the solution cannot be more regular
than the initial data or the right hand-side. But averages in
velocity like

plex) = [ Flexv)onde. o€ CEE)

usually are, the question being of course how much?



Plan of the course

1. Introduction

2. L% framework

3. General LP framework

4. One limit case : Averaging lemma with a full derivative
5. An example of application : Scalar Conservation Laws



Plan of the first course

1. Well posedness of the basic equation

2. The 1d case

3. Local equilibrium

4. Application to the Vlasov-Maxwell system



Well posedness of the basic equation

During most of this course, we deal with the simplest
Otf + a(v) - Vif = g(t, x, v), teRy, xeR? vew, (1)
where w = R? or a subdomain ; Or with the stationary
a(v) - Vif = g(x,v), teR,, x€O0, veEuw, (2)
vx;helre O is open, regular in RY and w is usually rather the sphere
gf co.urse (1) is really a particular case of (2) with

d—d+1, x—(t,x), av)— (1,a(v)).



The fundamental relation for solutions to (1) is
f(ta, x,v) =f(t1,x — a(v) (t2 — t1), v)

th—1t
+/ g(tr —s,x —a(v)s,v)ds,Vt1, to
0

or for solutions to (2)

f(x,v) =f(x—a(v)t,v) —i—/otg(x— a(v)s,v)ds,Vt.

Those two formulas may be used to solve the equation but these
are not unique so an initial data must be given

f(t=0,x,v) = )"'O(x7 v), (3)

and for (2) the incoming value of f on the boundary must be
specified

f(x,v)= fi”(x, v), x€00,a(v) v(x) <0, (4)

where v(x) is the outward normal to O at x.



With that the equation is solvable as per

Theorem
Let fO € D'(RY x w) and g € L}, (R4, D'(RY x w)). Then there
is a unique solution in L} (Ry, D'(R? x w)) to (1) with (3) in

the sense of distribution given by

f(t,x,v) = fO(x — av)t, v)+/0 g(t—s,x—a(v)s,v)ds. (5)

Note that if f solves (1) then for ¢ € C°(R? x w)

d

— F(t,x,v) d(x,v) € Lipo(Ry),
dt R xw

so f has a trace at t = 0 in the weak sense and (3) perfectly
makes sense.



On the other hand, the modified equation, which we will frequently

use,
a(v)-Vif+f=g, xeRY veuw, (6)

is well posed in the whole RY without the need for any boundary
condition

Theorem
Let g € S'(R? x w), there exists a unique f in S'(RY x w) solution
to (6). It is given by

f(x,v)= /OOO g(x —a(v)t,v)e tdt. (7)

Notice that taking the Fourier transform in x of (6)
(ia(v)-£+1)f =4,

and of course 1 + ia(v) - € never vanishes contrary to ia(v) - &.



The 1d case
Let us study the easiest case, namely
vof = g.

Of course away from v # 0, if g € LP(IR?) then O.f € LP(R?).
But what if f or g do not vanish around v = 0. For instance

f(x,v) = p(x)o(v),
then of course, whatever p, in the sense of distribution
vOf = 0.

So clearly concentrations have to be avoided. Let us be more
precise. Take ¢ € C°(R), define

p(x) = /R 6(v) F(x,v) dv.



And compute for a bounded interval /
p(x) — p(y)IP
HPHWM’(I) = /I I W dx dy.

Using the equation

1o |</|fxv )[6(v) dv

f(x,v ,V v)dv
_/M\( ) — £y, v)[6(v) +/M>R

and this last term is bounded by

1
/ / x = y| [OxF (0 x + (1 — )y, v)| $(v) dv d6
0 J|v|>R

[v]

_ 1 1/p
< C");?‘l/); </O /R|g(0x+(1—9)y,v)|p¢(v)dvd9> .

! x —y| B
</ /M g0 + (1 - 0) y,v)| 6(v) 0 dv




As for the first it is simply bounded by
1/p
cre ([ Irxn - rlymPota)
R
Minimizing in R, one gets

1/p?
() — p(y)] < Clx — y[F 1P ( [ 176 = P o) dv)

So for k such that p— 1> kpork<1—1/p

1 1-1
lellwesgy < CIFIL gl P



Local equilibrium

Consider (2) in the special case
F(x,v) = p(x) M(v).

This is a simplification but provides many examples of optimality
later on. Some remarks :
We have

M(v)a(v) - Viplx) = .
Write g = M(v) h(x, v).
If his regular, this gives some regularity for p but not necessarily in
term of Sobolev spaces.

Notice first that some assumption is needed on «. Indeed if
3¢ e S 1st.

0] = {veR | a(v) | €}| #0,



and if supp M C O then it is only possible to deduce that
£-Vype L™

Nothing can be said about the derivatives in the other directions.
Even if a(v) is not concentrated like a(v) = £, some assumption is
needed on M. If not, M it self may be concentrated along one
direction & in which case the same phenomenon occurs.



The Vlasov-Maxwell system

It describes the evolution of charged particles
Def+v(p)-Vif+(E(t,x)+v(p)xB(t,x))-Vpf =0, t>0, x,pc R
E and B are the electric and magnetic fields

OtE —curl B=—j, divE = p,
0B+ curlE=0, divB=0,

where p and j are the density and current of charges

pex) = [ Fexpdp i(ex)= [ v(p)f(tx.p) o



Initial data are required
f(t=0,x,p) = f°(x,p), E(t=0,x)=E%x), B(t=0,x)=Bx).

p = impulsion of the particles.

v(p) = p, classical case.
v(p) = (1+|p’2)1/2’ relativistic case.
p

Goal : Weak Stability. Given f, solution to the system, show that

f, — f, solution to the system.



A priori estimates
6ot Masguoey < 1oz 220, WpelL, ool
Conservation of energy
/ E(p)fn(t,x,p)dxdp—i—/ (1Ex(t )2 + |Ba(t, x)[2) dx <
de Rd

[, E@)°tcp)dedp+ [ (EGR+|8%)?) o
R2d Rd

with

classical E(p) = |p|?/2, relativistic  E(p) = (1 + |p|?)*/2.



Weak convergence
After extraction, one has

fo— f, inw—x[®[R., LP(R?*)), V1< p< oo,
and
E,— E, B,— B, inw—x[®R,, [3(RY)).
Through interpolation, it is also possible to prove

pn—p, Jn—J, inw—xL®(Ry, LP(RY)), V1<p<pp.

Problem : How to pass to the limit in

(En(t,x) + v(p) x Bn(t,x)) fn ?



The solution found by DiPerna and Lions uses averaging lemmas.
Take ¢ € D(R?9)

/ Ex(t, %) Fa(t, x, p) &(x, p) e dp
R2d
- / Ed(t.x) / £t %, ) 6(x, p) dp dx,

Rd RY

and what is only needed is the compactness of moments of f, like
[ flex.p) 6(x. ) .

Rd

Notice that

Ot fatv(p)-Vify = =V p-((Entv(p)x By) f) € L2 (Ry xR H_L(RY)),

loc

uniformly in n.



Averaging lemmas then implies that

/R oltx,p) 0l p) dp € HH (R, x BY),

uniformly in n.

Therefore compactness holds and we can pass to the limit in all
the terms.



Second course : L2 framework

1. The result
2. A serious computation
3. Maybe a second serious computation (if | did not talk too much)



Regularity in L?

Assume that
a(v)-Vif =g, xeR? veuw,
with
V¢ e S971 Ve e Ry, {vew; la(v) ¢ <e}] <&

Then

Theorem
Assume |w| < oo, that f and g belong to L2(RY x w) then p
defined through

p(x) = /w f(x,v)dv

belongs to H/?(RY).



The trick

Following Bouchut, simply write
a(v) - Vf+f=Ff+g,

and get
p(x)=TF+Tg,
with

T f(x) = /w/ooo f(x —a(v)t, v)e tdtdv.

The aim is to determine k s.t. T is continuous from L?(RY x w)
to H*(RY). For further use, define

Tsf(x) = /w/ooo f(x —a(v)t, v)t e ‘dtdv.

The L? estimate is the core result for averaging lemmas from
which almost all other can be deduced.



A remark

The dual operator of T is simply
[e.e]
T*h(x,v) = / h(x + a(v)t)e fdt
0
and is related to the X-ray transform X : RY — R9 x S9-1

X h(x,v) = / h(x + vt) dt.
—0o0

This operator was studied separately in harmonic analysis (see for
instance Christ, Duoandikoetxea and Oruetxebarria, Wolff) but
with emphasis on mixed type inequalities like the continuity from
LP(RY) to LY(RY, LP(S91)) and not on the gain of
differentiability which is our main goal here. These other
inequalities are nevertheless very useful and can be seen as a kind
of dispersion estimates.



The proof by Fourier transform

The Fourier transform in x is denoted F and f = F f

n . dx
Ff=f= THEF(X) s
Lo 10) Gyer

We recall that F is an isometry on L2(R9) and that the Sobolev
space is

HA(RY) = {pes @) [ @+l ot )|2ds<oo}

The homogeneous Sobolev space is simply

FH(R) = {pes’Rd | 117 ote )|2d5<oo}



We mainly follow bouchut here. Applying Fourier transform
o] i e—t
FTsf= / Ff(&v) / et =~ dtdv.
w 0
This is simply equal to
f
/ FHEY)
wltio(v)-§

if s=0.
Denote



Notice that of course
e’} e—t
|X(Z)|§/ ?dt§C<OO)
0

provided that s < 1.
This already gives that

FTA < [ 1F AV dv
and thanks to Cauchy-Schwarz that

/ | T F(x)? dx < |w| / f(x, v)|? dx dv.



On the other hand, if |z| > 1, we have in addition

K o ) et
Ix(2)| < / t=Sdt| + / e 't —dt
0 K ts
1 (0.0)
< CK'™s + / e‘tt‘s—st‘s‘lydt‘
Z JK
<ok Sk S
2| 2|1~

through minimization in K. The combination of both yields

< C
14 |z|ts

1x(2)]



Now by Cauchy-Schwarz, we have that

FT.P < / FF(E )P dv / (€ a(v)) 2 dv

C
< f 2 :
_/w|~7'— (& v)|"dv /wl—}—]a(v)-ﬁz_% dv
We recall that for all ¢ € C1(R)

/¢<\a(v)-f\) v = —/OOO §(y) {v e w; la(v) €] <y} dy.
Recall that

VCe ST Vee Ry, [{vew; |a(v) ¢ <e}] <€
We obtain that

C /°° C y‘9 C
dv < L dy < —
/wlﬂa(\/)'é\Hs o TP TP

provided that 0 — 3 + 2s < —1. If |w| < oo, this gives

/ 1+ €N | FTFPdE< C 1F(x, v)|? dx dv.
JRRd

JRIxw



We have proved

Theorem
Assume |w| < oo, that

V¢ € S97L Ve € Ry, {vew; Ja(v)-¢ <e} <.

and that 0 4 2s < 2 then T is continuous from L*(R9 x w) to
HY/2(R9).



Real space method for averaging lemmas
Averaging lemmas rely on orthogonality properties of T so that a
direct proof is difficult. The method presented here uses instead a
T T* argument and is taken from Vega, J.
For simplicity, we restrict ourselves to

alv)=v, w=S89"1

The dual of operator T is

T*h(x,v) = / h(x + vt) e ' dt.
0

Then T : L?(RY x S971) — HY/2 equivalent to
T - H-/2 L2(Rd % Sd—l) or

T - L2(Rd)—>L2(5d_1, H1/2(Rd))



Denote by A% the differentiation operator
Nch=FH([g* Fh),

with obviously Al = —A the laplacian.
Now compute

AT AY*T*hdxdv = | AY?T T*h- h(x) dx.
R2d Rd

We then observe that

T T*h( / / / h(x + (t—u)v)e " " dv dudt
gd—1

:2/ / / h(x + (t—u)v)e " " dv du dt.
0 0 JSd-1



With two changes of variables from t — u to 7 and from the polar
coordinates 7v to y

T T*h( —2/ / / h(x + (t—u)v)e """ dv du dt.
gd-1
:/ // h(x 4+ Tv)e 27 dv dr dt
o Jo Jsd-1
:/ / hx — y) e 2 Y g
0 ly|<t |Y| Jyld=t

Hence when differentiating T T*, we obtain exactly the structure
of a Riesz transform. Therefore the operator T T* is continuous
from L2(R?) to H'(R?) or AY?T T* is continuous inside L2(RY).



Third Course : LP estimates

1. The result

2. Interpolation, Sobolev and Besov spaces
3. LP estimate for the operator T

4. End of the proof

5. Counterexamples for optimality



The problem and the theorem

For simplicity take
v-Vif =Alg, xeR? veR? a<l, (8)

and for the average

p(x) = / f(x,v)o(v)dv.
Rd
Assume the following bounds on f and g

f e WHP(RY, LE(RY), 520,
g € W (R, LE(RY), —co<y<L

with 1 < po, g2 < 00, 1 < p1 < min(p2, p3) and
1< g <min(q2, g5), and vy —1/g1 < 0.



Then, see DiPerna-Lions-Meyer, Bézard, DeVore-Petrova,
Bouchut, J.-Perthame, J.-Vega...

Theorem
With the previous assumptions

IPllbzs . < CUFI S y5my > Il iy
with
1 1-0 0
- = +77 52(1_3)97
r p2 a2
) 1+8-1/p1

T 148-1/p—v+1/q1

This result essentially uses the L? regularizing effect and a lot of
interpolation.



Interpolation, Sobolev and Besov spaces

See Bergh-Lofstrom for more details.
Definition
E and F be two Banach spaces. An interpolated space at order 6

between E and F is a space G C E+ F s.t. VT continuous in E
and in F then T is continuous in G and

—0 0
ITle < ITIENTIE.

Note that there is no reason why the interpolate should be unique.
Proposition

Let T be a continuous operator from E; to E, and from Fy to F».
Let G; be an interpolated space at order 6 between E; and F;.
Then T is continuous from Gi to Gy and

1-60 0
HTHG1~>62 < ” THE1—>E2 H T||F1—>F2'



For example an interpolate at order @ between the spaces [P(RY)
and L9(R?) is the space L"(R9) with

1 1-6 46
— =2

P q
Recall the definition of Sobolev spaces
WHP(RY) = {f € LP(RY)| Vf € LP(RY)},
WLP(RY) = {f = g+ V.h| g € LP(RY), he (LP(RY))“},
and homogeneous Sobolev spaces
WLP(RY) = {f € D'(RY)| Vf € LP(RY)},
WLP(RY) = {f = V.h| h e (LP(RY))7},
with obvious extensions for W where k € Z.
Then the spaces W*P(R?) with s € R can be obtained by
interpolation : If s € [0, 1] then W*P(R?) is an interpolate at

order s between LP(R?) and W1P(RY).

If 1 < p < oo then an equivalent definition is that f € W%P(R9)
iff AS/2f € LP(RY).



We use the so-called K-theory from Lions-Peetre.
For E and F two Banach spaces and p € E + F define

Kp(t) = _inf (llorlle + tllp2llF)-
p=p1+p2

Define (E, F)gx as the space of functions p such that

([wwey ‘f)l/k <o,

sup K,(t) t 7% < oo.
t

and if k =0

All spaces (E, F)g  are interpolated spaces at order 6.

This method generates all Besov spaces (and Lorentz spaces for
the interpolation between LP and L9).

We will use it only for k = oo.



The space (WsP(RY), W*P(R?))y .. is the Besov space
B3P (RY) with
s=(1-0)s1+0s.

This space is very close from the Sobolev space
WeP(R?) c BSP(RY) ¢ W'P(RY) Vs <s.

For the homogeneous spaces (V'Vslvp(IR_id)./ W=2P(RY))g o0, We
obtain the homogeneous Besov space B3 (RY) with on a compact
support

WSP(Q) € BSP(Q) € WEP(Q) Vs <s.

Unfortunately the space (W<'P(RY), W=:9(R9)), ., is not a
Besov space if p # g, we denote it B o but

WeP(RY) C BSP, (RY) € WP(RY) Vs <.



Estimate for the operator T
We perform the same trick and change into
A+ v -V, )f(x,v) = Af/zg(x, v) + Af(x, v).
We denote by T, the operator
Taf(x) = / / f(x — vt, v) e M ¢(v) dv dt.
o JRre
Consequently
p(x) = / F(x, v)o(v) dv = ATAf + A Thg.
Rd

We first study this operator T).



We prove
Proposition

For any 1 < p; < min(p2, p3) with 1 < pp < oo, for any s with
s <1/p1, we have for s >0

Ty : WS ,P1 (Rd Lp2(Rd)) _>W1+571/p1,P2(Rd)7

loc,v
with norm C)\$~1/Pr,

Notice first that with a simple change of variable

/ /Rd (x —vt/A, v)e " o(v)dvdt = XTf)‘()‘X)’

with f(x) = f(x/A, v). Therefore it is enough to do the proof for
A =1, i.e. for the operator T.



Lemma _ _
[Ycase: YO<s<1, T: W3 (R LE(RY)) — WSP(RY),
for every 1 < p < o0.

Proof. It is a direct computation, noticing

Do F(x — vt v) = —%8Vi(f(x vt V) 4+ %(av, F)(x — vt, v).
First of all, simply by commuting
’ /]Rd f(x —vt, v)o(v)dv

where C does not depend on t. Then

< Cllfllees
LP

’ 8X,/ f(x—vt, v)dvl| < Hl Oy, (f(x — vt, v)) p(v) dv
R4 LP t Jrd LP
+|I2 / (0, F)(x — v, V)(v) dv
t Rd Le
C

< ?HfHWVMUX"



By interpolation, we conclude that for any s < 1

C
WSP_ t*

Hf”W51[_Pa

/ f(x —vt, v)o(v)dv
Rd
and by integrating in t against e~ we get the desired result.

With exactly the same idea, one obtains for negative derivatives,

Lemma
Vs<0, T: Wt

loc,v

(RY, LB(RY)) — WSP(RY).



It remains to combine this with the L? case. In fact for any s € R
ASh(x + vt) = A h(x + vt) t°,

which implies for the dual operator T* with s < 1

—t

dt = ¢(v) A (¢~ T h),

AP T h = o(v) Ai/z/ h(x + Vt)eTs

0
according to the definition of Ts.
From the L2 estimate on T,

Lemma

(L? setting) Vs <1/2, T : I-I,ZCN(Li) — {12,

To obtain the behaviour of T on any space of the form

WP (LR?), we cannot simply interpolate between the two lemmas
because we would be restricted to s < 1/2. Instead we have to
interpolate before integrating in t. A slight problem arises because
the operator Ai/2 does not operate nicely on L.

This would require the use of Hardy space, which we skip here...



The end of the proof

We first make the additional assumption that 3 < 1/p;. Indeed
with that we may apply the proposition to both f and g.
We have

p=p"+ 0 = AT + AY? Thg,

with by the proposition
oM lyyres-1/e1, s < CA X ATTPUSCIE o oo,

102 lrerm/m—s 2 < CXTYE gl o

We interpolate between W1tFA=1/pLp2 and Witr—1/a—a @ ysing
the K-method

KO = _inf (Iptlljes-vmm + tloallro-sva-ro)



Take
A= tl/(1+5—1/P1—7+1/CI1)7

and indeed find

9 1-0 9
K(E) < 0 [0 o % ey o
with
1+8-1/p1

1+ 68-1/p—v+1/a’
as given by the theorem.

Consequently p belongs to the space B3 o as the interpolation of
order (6, 00) of the two spaces W1tF#=1/P1.p2 and Witr—1/ai—a.a,



Thecase 3> 1/p

The problem is that the proposition is not true anymore. If one
tries to prove any of the lemmas for 3 > 1/p;1, there is not enough
integrability in t.

More precisely, we have to integrate a term in t—% with k > 1
which is not possible. However

Thf= /OOO y Or(t)f(x — vt, v)e ™ ¢(v) dv dt
= /OO/ f(x — vt, v) Ate M p(v)
o Jrd

- . _ At
—1—/0 /Rdv Vxf(x —vt, v)te " ¢(v)



So eventually
T\f = / / f(x — vt, v) Ate ™ ¢(v)
o Jrd
1 [e.9]
+ / Ai/zg(x — vt, v)Ate M p(v).
)\ 0 Rd

The first term has the same homogeneity as Ty f but with more
integrability around the origin in t. The second term, once it is
multiplied by A behaves exactly like the usual T)g.

Therefore, repeating this simple trick as many times as necessary,
we avoid any problem of integrability in t for T,f and we may
consider 3 as large as we want.



Counterexamples for optimality

This is a slight generalization of two notes of Lions. The examples
are given in dimension two for simplicity.

Consider two C2° functions a and b and take
fu(x, v) = N°/Pr=B) s a(N xq, xo/N) b(N°vy),
gn(x, v) = N10F0/P=08 5 5 a(N x1, xo/N) NOvq b(N°vy).

Then simply choose § such that gy belongs to the space
W, (L) uniformly in N for every go, so

1
C1-1/p+ B+ -7

Notice that if v < 0, we also have to require that wb(w) be the ~y
derivative of some function.

4]




Now
v-Vify = gn + hp,

with for any r
HhNHL&(WX“) < CN_%.

Therefore the contribution from hy to the regularity of the
average is one full derivative and it can be neglected.
To finish, notice that for any 1 < r < oo

lonllyer 2 N0 G710,

Hence for this norm to be bounded uniformly in N, we need that

1-1/p1+

<6(1-1 =
sl =1/p+h) 1-1/p+B+1/q—7

which is precisely the value given by the theorem.



Optimality of the r exponent
Consider

fu(x, v) = NY/PHOQ/P=6) s a(N xq, xp) B(NOvy),

gn(x, v) = NYFL/P=048/Pi=00 o 5 (N xq, x2) NOvq B(NOvy).
To bound uniformly gy in the correct space

1+1/pp—1/q0

J =
1-1/p1+B8+1/q1 —~

We again have
v Vify = gn + hn,
with hpy more regular than gy and so negligible for our purpose.

Finally
||pN||W5v’ > Ns+1/p2—1/r—§(1—1/P1+ﬁ)'

We plug the correct value of s (seen before) and find
1 1 s s

rop P Q@
which is again the predicted value.



Fourth course

Plan of the course

1. The case with a full derivative
1.1 The result

1.2 Proof

2. The L! case

2.1 Known results

2.2 The theorem to be proved
2.3 The proof



The case with a full derivative

The main result here was obtained by Perthame-Souganidis. We

deal with
v Vif =diveg, xeR9 vesd?t

Very little can be expected in this case : All f satisfy the equation
with a right hand side just as regular as themselves. Nevertheless it
is enough to ensure some compactness for the average

Assume that
f e Wphr(s?t L2RY), B>0,
g € WPa(sTh LR®Y), o<y <1,

with 1 < p2, g2 < 00, 1 < p1 < min(pp, p5) and
1 < g1 < min(q2, g3) and assume moreover that v —1/q; < 0.



Then

Theorem
One has
9
Illggs . < CUFIL Do 0n,  llE ooy
with

1 1-6 6

i + —,

r P2 a2

1+8-1/p1

0 = .
1+6—-1/pr—v+ 1/

The space ngfoo is again obtained by interpolation but here as p
trivially belongs to LP2(R?) we have that p belongs to all L with

r' € [p2, r[or]r, pa].



It is possible to deduce

Corollary

Consider two sequences f,, and &n of solutions. Assume moreover
that f, is uniformly bounded in W\,ﬁ’pl(Sd_l7 LP2(RY)) with

5207 1<p2<007 1§P1§min(P2, p;)’

and that gy is uniformly bounded and compact in
W (S91, L%(RY)) with

—co<y<l, 1<g<oo, 1<qg1 <min(q, ¢3).

Then the sequence p, is compact in any L with r' €|pa, r[ or
|r, p2[ and r given by the previous theorem.
This may replace compensated compactness in some situations

(convergence of the vanishing viscosity approximation to scalar
conservation laws for instance).



Proof of the corollary

As f, is uniformly bounded, f, — f, w — % (at least after
extraction). On the other hand, still after extraction, g, — g.
Thus

v Vif =divy g,

or
v V(fp—f)=divs (gn — g).
Applying now the theorem to f, — f and g, — g, we find that

1-0 0
||p_ anBgcroo S CHf - fn| WVB.,P].(LQQ) X ||g - gﬂHW\j’ql(LgQ)-

As g, — g strongly converges toward 0 and f, is uniformly
bounded, we deduce that

pn—p—0, in Bgcroc

Therefore it is the same in all L with r’ €]ps, r[or |r, pa[ since
p — pn is uniformly bounded in LP2.



Proof of the Theorem

We follow the steps described in the third course and decompose
p=p1+p2=AT\f +divy T)g.

From the main proposition

1 ire-1/p1, e < €A NP ”fHWVB’PlLQZ’

16% |l s/ < CXT7H9E  |lg | oo -
So again minimizing in A in the functional K(t), we take

A\ = tl/(l-&-ﬁ—l/m—7—5—1/(;/1)7

and we indeed find

0 —0 0
K@) <t < 1AL E, L % lglloa e,



with
_ 1+8-1/p1
1+8-1/ppr—v+1/q1

Therefore p belongs to B3 ~ and it only remains to notice that

s=(1-0)(1+8-1/p)+0(v—1/q1) =0,

which finishes the proof.



The L! case
A situation of interest is
v-Vyf =g,

where f is only in L}(R? x S9-1),

It is crucial for collisional models : See DiPerna-Lions for the
existence of renormalized solutions to Boltzmann equation, and
Golse, Saint-Raymond for the derivation of hydrodynamic limits.
Here p is not in any Sobolev spaces. But some compactness
property still holds

Theorem

Let f, and g, be two sequences of uniformly bounded solutions in
the space L*(RY x S971). Assume moreover that the sequence f,
is uniformly equi-integrable in v. Then the sequence of averages p,

. . 1 d
is compact in Lj, (RY).



The proof relies first on the fact that if f, is equi-integrable in
velocity then it is in both variables :

Proposition

Let f, and g, be two sequences of uniformly bounded solutions in
LY(RY x S9=1). If the sequence f, is uniformly equi-integrable in
v € S971 then it is uniformly equi-integrable in

(x,v) € RY x §9-1,

It is then possible to get

Theorem

Let f, and g, be two sequences of uniformly bounded solutions in
LY(RY x S9=1). Assume moreover that the sequence f, is
uniformly equi-integrable in (x,v) € RY x S9=1. Then the

sequence of averages p, is compact in LL _(RY).

With the additional assumption that g, is equi-integrable, this last
result was already noticed in Golse-Lions-Perthame-Sentis.

We only give here the proof of the last theorem with a slight
variant of the method used by Golse and Saint-Raymond.



The result to be proved

Take f and g a couple of solutions, and assume 3¢ € C(R) with
#(€)/€ increasing and ®(£)/€ — oo as £ — oo and s.t.

I(F) = /@Sdl (| (x, v)]) dx dv < oo,

Then Je(h) depending only on ® with lime(h) =0 as h — 0 and
such that for any ¢ € C}(RY, R;)

/Iéd p(x + h) = p(x)| ¢(x) dx < Cye(h) ([[F[ler + llgllx + 1(F))-

Of course this property gives the compactness of any sequence
and thus the theorem.



The proof

Notice that
v-Vi(of) =gp+fv Vo,
Now decompose
A+v-V)(of) =g+ A+ 25",
with
M= 6flaem, B =6flom E=go+fv Vo

Then
pp=TrAE+ATAfM + AT\ EM.

Obviously

/ p(x + ) — p(x)] H(x) dx < / 6(x + h)o(x + h) — 3(x)p(x)|
Rd Rd
T H Tl [l



On the other hand
[ Jotx+ bt + ) = 6| < [ |1 Tolox+ ) = Tagl e
+ /Rd INTAFM(x + h) — AT M) dx
+ /Rd ATy B (x + h) — ATy £M] dx
So that finally
Lo ) = 0] ) e < 2 Tl + 20| Ta 8

+ /d IATARM (x + h) = ATAFM| dx + Cy h|f| 11
R



From the main proposition in the third course we have

_ C._ C
[ TAg 1 < B\ gl < By (llgllx + Collfll12),

and
C cC M
M < S M < M
ITa e < S 180 < 5 g 1)

as (remember that ¢(&)/¢ is increasing)
/ [f(x, V)| I} m dx dv
R x §d-1

I
= O(|F I — dxd
Awyﬁ(rumm|mM¢m  dv

£
< ;:I\% () /Rdxsdl O(|f(x, v)|) dx dv.



For the last term TAflM, notice that is is compactly supported in
the support of ¢ so

I wavzagray < Col TARM || /2 ey
Furthermore as £ belongs to L2(RY x S9~1) then
_ _ 1/2
I AR /2 ggay < €AY Y]] 2(gacsa-1y < C A2 MY (M2,
Consequently
AT G ) =ATA R b < B2 | T e

S C¢ h1/2 )\1/2 M1/2 Hf]_MHi{z



Combining all estimates, one obtains

[t 1) = )19 < 5 (el + Cll 1)+ € g 1)

+ Co A2 Y2 MY M2 Coh ||
For any h, it only remains to minimize in A and M to conclude.

Notice finally that in most applications, ®(§) = & log & (from
entropy bounds). In that case, the function e(h) is

1
) =t 1/m



Fifth course : Application to scalar conservation law

Plan of the course :

. Introduction of entropy solution

. Propagation of LP bounds

. Existence | : The transport-collapse method

. Existence Il : Passing to the limit in the method

. Existence Il : Compactness thanks to averaging lemma
. Uniqueness and Propagation of BV bounds.

. Regularity by averaging lemmas.

. Other regularity results.

For most of this part of the course, the convenient reference is
Perthame

O ~NO Ok~ WwWwN



Scalar Conservation Law

Scalar conservation laws are hyperbolic equations on a scalar
u(t,x) eR

Oru+ Vi - (Alu(t,x))) =0, t>0, xR

u(t =0,x) = u°(x),

(9)

where the flux A is regular, namely A € C2(R, RY).
The characteristics for Eq. (9) are lines. More precisely if u is a
regular (C!) solution then

u(t, x + ta(u’(x))) = u°(x),

where a(&) = A'(€).

Of course this also shows that regular solutions cannot exist in
general for all times : if x = x; + t a(u®(x1)) = x2 + t a(v°(x2)),
then u(t, x) would have to be equal to both u%(x1) and v°(x2).

= Necessity of weak solutions and entropy for uniqueness



Entropy solution by kinetic formulation

Assume that u is a classical solution to (9). Define then
1 if0<v<u(tx),
f(t,x,v) =< —1 ifu(t,x)<v<0, (10)
0 in the other cases.
Compute (in the sense of distribution)
Oif = Orud(u(t,x) — v) = —a(u(t,x)) - Veu(t,x)o(u(t,x) — v)
= —a(v) - Veu(t,x)o(u(t,x) — v) = —a(v) - Vif.

When u is no more C! this computation cannot be done. Instead

Definition : A function v € L}, (R4 x R9) is an entropy solution to
(9) if and only if there exists m > 0 in ML _(Ry x R%9), st. f
defined through (10) satisfies

Oef + a(v) - Vif = dym. (11)



u can be recovered through

u(tx)z/Rf(t,x, v) dv

Note that if f is a solution then f is of bounded variation in time,
in BVjoc(Ry, WI=0L(RI*1)), Therefore the trace of f at t =0
(t = 0+ more precisely) is well defined.

So the trace of u is also well defined and we can impose

u(t =0,x) = u°(x).
Assume

3C, V¢ € R, Vr, Ve € Ry,  |{veER; |a(v)-£—7| <e}| < Ce.

Theorem

For any u® € [}(RY), 3lu € L=(R,, LY(RY)), entropy solution to
(9) with u(t = 0) = u®. Moreover if u® € L™ the solution satisfies
(i) u € L®(Ry x RY) and u € WS*(R* x RY) for any s < 1/3.

loc



Propagation of LP norm

The easiest property of entropy solution is

Proposition
Take any ¢ € C?(R), convex and assume that

¢(u°(x)) dx < oo,
Rd
then Yt > 0, if u is an entropy solution with initial data u°
o(u(t, x)) dx < P(u°(x)) dx.
R R

In particular if ui° € LP then u € L>®(R,, LP(RY)).



Proof. Define ¢, — ¢ with ¢}, € C.(R). Because of the definition
of f

/ on(u(t,x)) dx = / @ (v) f(t,x,v)dxdv.
RY RYxR
Now multiplying the equation by ¢/ (v) and integrating

d &L (v) f(t,x,v) dxdv_/ #',(v) Oy mdx dv

dt Jraxr R xR

:—/ "(v)mdx dv <0,
RIXR
because ¢ > 0 and m > 0. Consequently
/ on(u(t,x)) dX:/ L (v) f(t,x,v)dxdv
RY RIxR
< / ¢ (v) f(0,x,v)dxdv = / bn(u0(x)) dx,
R xR Rd

and passing to the limit in n, one obtains the proposition.



Transport-Collapse

It was introduced by Brenier. For any n we define f,, recursively on
the |i/n, (i +1)/n]. uy is then always given by

un(t,x) = / fa(t,x, v)dv.
R

Step 0 : Initialization

1 if0<v<u®tx),
(0, x,v) =< —1 if uo(t,x) <v <0,

0 in the other cases.

Step 1 : Transport. Given f,(i/n,x,v), fyon]i/n, (i+1)/n[is the
solution to

Otfp +a(v) - Vif, =0, teli/n (i+1)/n],

with the corresponding initial data at t = i/n.



This explicitly gives
fn(taX’ V) = f,,(i/n,x - a(v) (t - i/n)’ V)‘

But it is not true that 7, is an indicatrix.
Step 2 : Collapse. Define

1 if0§v</f(v)dv,
R

LFv)=19 —1 if/f(v)dv<v§0,
R

0 in the other cases.
Then pose
fa((i41)/n,x,v) = L(fy(i/n,x—a(v)/n,v)) = Lf((i+1)/n—, x, v),

where f,((i 4+ 1)/n—, x, v) is the limit of f,(t, x, v) for
t— (i+1)/nwith t < (i+1)/n.



Therefore one recovers for all i

1 if0<v<uy(i/nx),
fa(i/n,x,v) =< —1 ifu,(i/n,x) <v <0,

0 in the other cases.

Finally the main property of the collapse operator : Vf with
sup|f| <1 and Vo(v) € Ct with ¢/(v) >0

/Raﬁ(v)Lf(v) dv§/R<z>(v) f(v)dv.



Convergence

In the sense of distribution f,, satisfies
atfn + a(V) . Van = 8n,

with
g,,—Z(S t—i/n)(fa(i/n,x,v) — fa(i/n—, x, v)).
Moreover
sup |f(0,x,v)| =1, / |£2(0, x, v) dx dv = / u0(x) dx < oo,
Rd+1 Rd
and by induction on the intervals [i/n, (i +1)/n], for any t > 0
1fa(t, -, Mirarry = llun(t, ey = 6]l sup |fo(t, x, v)| = 1.

Hence we may extract a converging subsequence, still denoted f,,

fo— f, w—=xL>.



In addition use the property of the collapse operator : V®(x, v)
with 9, >0

/ S(x,v) (fa(i/n,x,v) — fo(i/n—,x,v))dx dv < 0.
Rd+1
Hence there exists a measure M; ,(x,v) > 0 s.t.
(fa(i/n,x, v) — fo(i/n—, x,v)) = O, Mj n(x, v).
Obviously this implies that
gn=0ym,, my, >0,

with

n

ma(t,x,v) =Y _5(t —i/n) Mja(x, v).

i=1



Now define &y = vIj,j<pg + MLy — MIy<—pm.
Multiplying the kinetic equation by ®y; and integrating,

/ Spg (f(T, x,v) — (0, x, v)) dx dv
Rd+1

-
= — / OOy dmp(t, x, v).
0 Rd+1

So from the L! estimate on f,

/OT/_A; /Rd dmn(t, x, v) < 2M||fa(t, ., )| 12 < 2M|[6°]] 2 (ay.-
Therefore still extracting a subsequence, we obtain
m, — m, w—xM}_
with m >0 in M} _(Ry x RYT1). The limit f then satisfies
Otf + a(v) - Vxf =0, m.

It remains to show that the constraint on f holds at the limit.
Assuming that u, is compact in L! then this follows from the fact
that it is satisfied at every t = i/n.



Compactness of u,

Take a function ® € C*°(R) satisfying
d(v)=1 if|lv|<1, P(v)=0 ifjv|]>2, 0<P(v)<1 Vv.

Then define
uf:/fn(t,x, v)d(v/R)dv.
R

This uf¥ is an average of f, for which we can apply averaging
lemmas.
Remember that

Otfp + a(v) - Vxfy = 0ymy,.



The measure m, is in any W="P([0, T] x RY x [-R, R] for r > 0
and p< (1—r/d) !

[mallw—r1(o, T)xRIX[-R, R] < C/ dm,
W-ri([o, T]xRIx[-R, R]

< G R|u® 1.

Next ||fp]|r~ < 1so f, € L} for any p and in particular

loc

||fn”L2([0, TIxB(0,K)x[~R, R]) = CVTKR.

Using averaging lemmas, uf belongs to W}, 5/3(IR{+ x RY) for any
s < 1/5 with

lum lwes/aqo, T1xB0k)) < C(s: T, K, R),

and therefore uf is locally compact so that

loc *

uf — R = / f(t,x,v)®(v/R)dv. in L5/3.
R



Now as u® € L! there exists an even convex function x € C?(R)
with x(&)/|¢] — 400 as || — +oo and s.t.

/Rd V(10(x)) d < 0.

From the definition of f, this implies that

/ X' (v) fo(t =0,x,v)dvdx = / x(Ju°(x)]) dx < oo.
RIxR R

Multiplying the kinetic equation by x’ and integrating, one gets

d

d
S N dvdx =2 [ () e xv) dvdx
dt Jrixr

t JRIxR

:/ an/dXdVZ—/ m, X" (v)dvdx <0.
RIXR RYxR



This shows that

/Rd\un—u,’,?]dxg/Rd/lpR]fn(t,x,v)dv

1
< X frdxdv <
IX'(R)| Jraxr IX'(R)| Jra

and so u, — uff — 0in L as R tends to infinity, uniformly in n.

From the compactness of u?, we deduce the compactness of u, in

1
Lj,. and we are done.

X(u°(x)) dx,




Uniqueness

Uniqueness was first obtained by Kruzkov. The formal argument
here corresponds to the proof by Perthame.
Consider two entropy solutions u; and wup, then

Proposition
L' contractivity : We have for any t > 0

lus(t,) = wa(t, Yl ageay < lof = vdliaray.

This of course implies the uniqueness of the solution but it does
even more than that (see next).

Denote f; and % the two functions defined from u; and uy and myq,
my the measures in the kinetic equations. For simplicity assume
that u1 > 0 and up > 0 and hence f; > 0 and f, > 0.



First note that as f; > 0, f,-2 = f;. fi2 solves the same equation but
multiplying the equation by 2f; we also get

02 + a(v) - Vif? = 2f;0,m;.

Thus
2ﬁ av’ni = &,m,-,
and i
/ f; O,m;dv = 0. (12)
R

Of course this is only formal. The rigourous argument requires the
use of convolution.
Now use the kinetic equation for f; and f» and compute

d

— |fi — )% dx dv = / (A — K)(0,my — 0, my)
dt Jrdxr

R4 xR

= —/ (A Oymy + £ 0,my),
RIxR

by our crucial relation.



As f; is non increasing
/ fi0y,modx dv = —/ Oyfimpy dxdv > 0,
RIxR RIxR
and the same is true for the other term. Finally

d

— fi — H|?dxdv < 0.
dt RdXR‘l 2| xav =

To conclude note that |f; — f;| is equal to 0 if 0 < v < 1y and
O0<v<wmorifv>urandv>uwu;ltisequaltolif iy <v <
or up < v < uy. Therefore

/ |f1—f2]2dxdv:/ |ug — wp] dx,
RIxR R?

qa
dt Rd

and
lug — wp| dx < 0.



Propagation of BV norm

Take h € RY and apply the contractivity for u(t,x) and u(t,x+ h
(corresponding to u®(x + h)), it shows that

/ |u(t,x + h) — u(t,x)| dx < / |u0(x + h) — u®(x)| dx,
R4 Rd

and so

/ |U(t>X+ h) — u(t7X)| dx < / ‘VXUO(X)’ dx.
RY |h| RY

Hence

Corollary

Let u be an entropy solution and assume that u® € BV (RY) then
u(t,.) € BV(RY) and

Ju(t, )llsv < ||u]By-



There are many ways to prove this result.
For example take the sequence f, obtained before

i+1

. i
()l svre, mir)y) = Ifali/n+)lavre, mi(r)y), VYt E [E’

[-
The collapse operator contracts the BV norm so
1£a(i/n+s o lavre, mrwy) < Ifa(i/n—s - )lavre, mi(r)-

One then gets that an(t)”Bv(Rd7 ML(R)) = 1£2(0)]l8v = ||u®]| V-
Going back to the estimate on f the uniqueness proof gives

/ [f(t,x 4+ h,v) — f(t,x,v)]
R9 xR ’h’

2
dx dv,

which is not BV but in fact like a HY/2 norm. Of course

lu(t; Yev = [1F(t, - ) By (mp):

and this in turn dominates any H$(L2) norm of f with s < 1/2.



However it is only the very specific form of f which gives the
bound the other way around. In fact the uniqueness argument be
used to directly bound

Hf‘H2 _ ‘f(t,X, V)_f(t7y7 V)’2
H() ™ Jreasp x — y[25+d

dx dy dv.



Regularization by averaging lemmas

Define as before for a regular ¢
uf = /R f(t,x,v) ®(v/R) dv.
Note that from the definition of f
/ |0V f(t,x,v)| = 1.
R

so that
1l Lo () xR BVe(R)) < C-

As ||fHLoo(R+XRd+1) =1, by interpolation

||f||L°°(R+><Rd, Hs(R)) = C, s<1)2.



Because ||| (., 11(ret1)) = llulloo(m,, 11(re)), With a last
interpolation

1f1l2q0, Tyxre, Ho@)) < C([Ull ooy, 11(rey)s s < 1/2.

The measure m belongs to W,Z’CI(R+ x RI*1). So we may apply
averaging lemmas and get

uRe WZ(R, x RIY), Vs <1/3.

loc

Now if u € L> then for R > ||u||je, uf = u and

ue WSAR, x RITY), Vs <1/3.

loc

This is the promised regularity

If uisonly in LP, then the argument would be more complicated.



Oleinik BV regularization

It is possible to show that the solution immediately becomes BV in
the particular case of a strictly convex flux in dimension 1 :

inf a’(v) > 0.

The original argument was given for the vanishing viscosity
approximation, with first proving a semi-Lipschitz bound on u.
Here we instead use the transport collapse scheme.

To simplify assume that

a(v)=v, u®>0, u®cl®R).

The following holds for f,, u, defined by Transport-Collapse

Proposition
Forany t >0, any R >0

e Deun(t, ) = Ulnng_r, my < 2RI6[ + 2t |63



Proof. We argue by induction on every interval |i/n, (i +1)/n].
Start with 10, 1/n], f, is simply the solution to the free transport

(£, v) = F(0, % — v, v).
So
Dutin(t, x) = /Raxf,,(o,x_ v, v) dv
= /R(_iav(fn(O,x —vt,v)) + %(&,fn)(O,x — vt,v))dv
_1 /(&,fn)(o,x vt v)dv.
t Jr

As such for 0 < t < 1/n, by the definition of £(0)
EOup(t,x) — 1= /((5(v) C5(v— WO — v)) dv — 1
R

= _/ §(v — uO(x — vt)) dv.
R



Therefore

/ 1Oun(t, %) — 1| dx = / /RM 5(v — u0(x)) dx dv

R+vt
Rt[|u® oo t
§/ /5 v—1u(x))dxdv <2R|[u 1.

—R—[|u| o0 t

up is continuous at t = i/n so the same is true at t = 1/n.
Next, assume that the estimate is true at time t = i/n. Define

gn(i,x,v) = f(i/n+,x+ vi/n,v),
and notice that
vgn = (0,f)(i/n+,x+vi/nv)+ %3xfn(i/n+,x +vi/n,v).

On the other hand for t €]i/n, (i +1)/n]

u,,(t,x):/f,,(nx, v)dv:/g,,(i,x—vt, v)dv.
R R



So with the same argument as before

Oy Up, :% /R(ﬁvg,,)(i,x— vt.v) dv

= 1/(8vfn)(i/n+,x+ v(i/n—t),v)
+/a fo(i/n+,x+ v (i/n—t),v)dv

By the definition of f,(i/n+), one gets the induction relation

tOxup — 1= /(5(v) —6(v—up(i/n,x+v(i/n—1t))))dv—1

_ R
+ % / Oxup(i/n,x+v(i/n—1t),v)o(v —un(i/n,x+ v (i/n—t)))dv
R

= /R(Il;ﬁxun(i/n,x—i— v(i/n—1t))—1)
X 0(v—up(i/n,x+ v (i/n—1t)))dv.



Consequently for i/n <t < (i+1)/n

R R+(t—i/n) [|u®|| oo
/ ]t@xun—lldxg/ /\i/naxun(i/n,x)—l
R - R

R—(t=i/n) [|u]| Lo
(v — un(i/n,x)) dv dx

R+(t—i/n) [|u®|| oo
g/ |i/nOxun(i/n, x) — 1| dx
—R—(t=i/n) [t Lo

. 2i
< 2R+ (t—i/n)[u]|roe) |u®]| > + - [u°] e
< 2R||u°| oo + 2 8]t oo,

because we have assumed that u(i/n, x) satisfies the estimate.



Conclusion

In 1d there is a wide gap between the previous BV regularity and
the 1/3 derivative provided by averaging lemmas.

So can we improve averaging lemmas in higher dimensions and
maybe get BV ?

There is an example by DelLellis, Otto, Westdickenberg showing
that for solutions with bounded entropy production, it is not
possible. For entropy solutions it is open.

Regularity in Sobolev spaces is not the only interesting property of
solutions. for example, strong traces are proved to exist for the
solution by Vasseur. More recently it was shown that the solutions
enjoy a “BV like" structure (see Crippa, Otto, Westdickenberg).

And finally kinetic formulations and the corresponding averaging
results are not limited to scalar conservation laws...



