MATHEMATIQUES L3 -2007/2008

T.D. d'Analyse numérique

Feuille n°1

Exercice 1 : Soit $M = \begin{pmatrix} -5 & -4 & 2 \\ 0 & 1 & 0 \\ -6 & -4 & 3 \end{pmatrix}$. Déterminer si M est diagonalisable sur $\mathbb R$ et la diagonaliser le cas échéant.

Exercice 2 : Résoudre l'équation AX = Y par la méthode du pivot de Gauss, où $A = \begin{pmatrix} 0 & 3 & 2 \\ -1 & 4 & 1 \\ 5 & 1 & -3 \end{pmatrix}$, $Y = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$ et X est un vecteur de \mathbb{R}^3 .

Exercice 3 : On note $M_n(\mathbb{K})$ l'ensemble des matrices carrées $n \times n$ à coefficients dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On définit les normes matricielles, subordonnées à des normes vectorielles, comme étant

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}.$$

On rappelle que les 3 normes usuelles sont

$$||x||_1 = \sum_{i=1}^n |x_i|, ||x||_{\infty} = \max_{1 \le i \le n} |x_i|, ||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}.$$

Par ailleurs, le rayon spectral $\rho(A)$ d'une matrice A de $M_n(\mathbb{K})$ est par définition

$$\rho(A) = \max\{|\lambda_i|; \ \lambda_i \ valeurs \ propres \ de \ A, \ i = 1, ..., n\}.$$

- a) Montrer que $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|.$
- **b)** Montrer que $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$.
- c) Montrer que $||A||_2 = \sqrt{\rho(A^*A)}$, où A^* est l'adjoint de A.

Exercice 4: Soit $f: \mathbb{R} \to \mathbb{R}$ uniformément continue. Soit en outre $\Phi: \mathbb{R} \to \mathbb{R}$ une fonction positive, continue et nulle en dehors d'un compact, vérifiant $\int_{\mathbb{R}} \Phi(x) dx = 1$.

On définit la suite de fonctions $(\Phi_n)_n$ par $\Phi_n(x) = n\Phi(nx)$.

On rappelle que le produit de convolution de deux fonctions g et h est défini par : $(g\star h)(x)=\int_{\mathbb{R}}g(x-y)h(y)dy=\int_{\mathbb{R}}g(y)h(x-y)dy.$

- a) Montrer que pour tout n, $\Phi_n \star f$ est bien définie.
- b) Prouver que pour tout n, $\int_{\mathbb{R}} \Phi_n(x) dx = 1$.
- c) Montrer que $(\Phi_n \star f)_n$ converge uniformément vers f sur \mathbb{R} .