Mathmatiques L3 - 2007/2008 T.D. d'analyse Numérique

Feuille n4

Exercice 1 On veut appliquer la méthode de Newton à un polynôme f. On suppose qu'il existe y tq f(y) = 0 et que y est une racine d'ordre l, i.e.

$$f(y) = f'(y) = \dots = f^{l-1}(y) = 0$$
 mais $f^{l}(y) \neq 0$.

- 1) Montrer que l'on peut définir l'application S_f de façon continue et dérivable sur un voisinage de y même si l > 1 et que l'on a toujours $S_f(y) = y$.
- 2) Prouver que $S'_f(y) = 1 1/l$.
- 3) En déduire qu'il existe $\eta > 0$ et $\mu < 1$ tel que si $|x y| < \eta$ alors $|S_f(x) y| < \mu |x y|$.
- 4) Pour x_0 tq $|x_0 y| < \eta$, conclure que

$$|x_k - y| \le \eta \, \mu^k.$$

Exercice 2 Soit $f \in C(I, \mathbb{R})$ avec I = [a, b] et f(a) < 0, f(b) > 0.

- 1) Estimer le nombre de fois (en fonction de ε) où l'on aura besoin de calculer une valeur de f pour approcher une racine à ε près.
- 2) On modifie la méthode dichotomie en divisant à chaque fois l'intervalle en trois parties au lieu de deux. Reprendre la question précédente dans ce cas et comparer les deux résultats.

Exercice 3 Soit $f(x) = \arctan x \in C^2(\mathbb{R}, \mathbb{R})$. On cherche la racine y = 0 par la méthode de Newton. On définit donc

$$S_f(x) = x - \frac{f(x)}{f'(x)},$$

et on s'intéresse à la suite définie par

$$x_{n+1} = S_f(x_n).$$

1) Montrer que si

$$\arctan|x| > \frac{2|x|}{1+x^2},$$

alors $|S_f(x)| > |x|$.

- 2) Étudier la fonction $\phi(x) = (1 + x^2) \arctan x 2x$.
- 3) En déduire que si

$$\arctan|x| > \frac{2|x|}{1+x^2},$$

alors

$$\arctan |S_f(x)| > \frac{2|S_f(x)|}{1 + (S_f(x))^2}.$$

4) On suppose que

$$\arctan|x_0| > \frac{2|x_0|}{1 + x_0^2}.$$

Montrer qu'alors $|x_k|$ tend vers ∞ .