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Abstract

This paper is concerned with the modelling and analysis of the
interaction between particles and fluids with particular regarding to
fragmentation processes. We simplify the model by assuming that the
particles are constituted by spheres jointed by springs. Then the aim
is to deduce the terms appearing in the Navier–Stokes-type equations
for the fluid and the counterpart influence in the Boltznmann system
for the particles. The resulting coupled system is analysed by means
of a refined averaging lemma.

1 Introduction and main results
sec:intro

Modeling complex multiphase fluids (two-phase fluids to fix the ideas) is
an interesting problem which finds important applications in biotechnology,
medicine, ecology, astrophysics, combustion theory or meteorology, such as
the production of aerosols, sprays, polymers or diesel motors, for example,
see []. The dynamics of the fluids is affected by their mutual interaction and
may produce fragmentation or coagulation between the particles constitut-
ing the fluids, which modifies the density or the velocity of them. There are
different ways to model this situation, depending on the nature of the flu-
ids, their densities and all relevant physical parameters. The so-called fully

∗This work was partially supported by MEC (Spain), Proyecto MTM2005-02446.
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Eulerian or Eulerian–Eulerian description provides a formalism under which
the phases are given by physical quantities depending on position and time,
such us velocities, densities or energies associated with each phase, see for ex-
ample []. Another approach consists in a fluid-kinetic (Eulerian–Lagrangian)
description in which the particles (or droplets) are inmersed into the sur-
rounding fluid. The dynamics of the particles is described in this case by a
probability density function (depending on time, position, velocity, mass or
other variables such as the internal energy of the particles) which solves a
kinetic equation in the phase space, see for example the pioneering work

Wi
[26]

or the more recent
JS
[17] for references. This last approach is more adapted if

the particles are very diluted and therefore far from thermodynamical equi-
librium.

This paper is concerned with the understanding and analysis of the evolu-
tion of a two-phase fluids system described by a fluid-kinetic approach that
includes the possibility of particles or droplets fragmentation. The model
consisting in a coupled Boltzmann & Navier–Stokes system is deduced from
first principles. From the modeling point of view, this issue is rather complex.
For instance notice that fragmentation creates kinetic energy in the sense that
the sum of the kinetic energies of the daughter particles is always larger than
the kinetic energy of the mother particle, provided that conservation of mass
and momentum holds. Therefore the model should explain where this energy
comes from, typically directly from the fluid or from the “internal” energy of
the mother particle. In both cases, it is necessary to describe how the fluid
influences the deformation of the particle. As we do not see how to handle
the general case, we make the hypothesis that the particles moving by the
action of a kinetic equation of Vlasov/Boltzmann–type can be represented
by two spherical balls joined together by means of a spring. These particle
structures are moving in a surrounding fluid governed by the Navier–Stokes
system. Under the hypothesis on the particle structure representation, the
number of spherical balls connected by springs and the distribution of the
mass among them are not relevant for our modeling arguments.

We now briefly comment the different approaches to this problem studied
in the literature.

In the coupling between fluid and kinetic (macro and micro) models dif-
ferent problems can be studied: sedimentation, collisions, fragmentation or
coagulation and also the exchanges of mass between a particle and the envi-
ronment (vaporization or chemical reactions, for example).

The sedimentation and dynamics of spherical particles sinking in a viscous
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fluid have been recently investigated when the inertia of the particles and the
fluid are neglected, being the fluid flow quasi–stationary and described by
the incompressible Stokes system, see

JO
[15]. Mathematically, in

DE
[6] it has been

shown that the dynamics has a solution as long as particles do not get too
close. The problem of finding a macroscopic system for the dynamics of rigid
particles in a sedimentation process has been studied by different authors
for particles with or without inertia in compressible or incompressible fluids,
see

CP,GT,GJV1,GJV2,HLP,JP,RK,RS
[5, 9, 11, 12, 13, 16, 22, 23]. This approach is particularly suited to

polydispersed flows, i.e. flows in which the size of the droplets can vary in a
wide range, but each particle has a constant mass.

Fragmentation and coagulation have been studied from different points
of view. The T.A.B. model is a description of the fragmentation founded on
the hypothesis that fragmentation is due to the increase of the amplitude of
the oscillations on the surface of the particles induced by the turbulent char-
acter of the surrounding fluid, see

T,B
[24, 4]. Another interesting approach to

determine fragmentation–coagulation kernels is founded on statistical models
based on energy principles. This approach describes the transient evolution
of the (particle) bubble-size probability density functions resulting from the
break-up of the bubble moving in a turbulent fluid (see

LEMM
[18]). Another ap-

proach to this problem is given by the study of the time evolution of the aver-
age concentration of particles of a given size by means of Smoluchowski-type
equations, see

A,W
[2, 25] for a stochastic point of view. Deterministic studies for

the Smoluchowski diffusive models with coagulation-fragmentation kernels
have been performed in

LM0
[20] while the connection between the determinis-

tic discrete and the continuous coagulation-fragmentation models has been
investigated in

LM1
[21].

Let us introduce our main results as well as comment the techniques used
in this paper.

Assuming that the particles are constituted by balls connected by a elas-
tic spring and that the probability of fragmentation depends only on the dy-
namics of the length of the spring, we deduce in the limit a Boltzmann-type
equation for the particle distribution function f . The particles are immersed
in a fluid and analyzing the exterior Stokes problem first and Navier Stokes
then, we deduce the interaction forces acting between the particles and the
fluid that induce velocity and deformation for the particles and vorticity in
the surrounding fluid. Thus, the particle distribution function depends on the
variables t, x, v, p, q, and r, i.e. time, position, velocity, deformation vector,
velocity of deformation and radius, and we obtain the following expression
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for its evolution

∂f

∂t
+ v · ∇xf +∇v ·

[(
a

r2
(u− v) + b

r

|p|
p⊗ p

|p|2
· (u− v)

)
f

]
+ q · ∇pf

+ ∇q ·
[(

c

r2
(ω ∧ p− q)− d

r

|p|
p⊗ p

|p|2
· (ω ∧ p− q)

−µp− ϕ(p, r)
)
f
]

= Q(f), Vlasov-i

where Q(f) is the fragmentation kernel and u is the velocity of the fluid
which is governed by the Navier–Stokes equations

∂u

∂t
+ u · ∇u−∇Π = ν∆u− 2a

∫ ∞

0

∫
R9

(u− v)rf dv dp dq dr

− 2b
∫ ∞

0

∫
R9

r4

|p|
p⊗ p

|p|2
(u− v)f dv dp dq dr

NS-i

The main difficulty in order to analyze the previous coupled system is that
no control on the moments in q or p is available. To overcome this difficulty,
we reintroduce in the fluid equation the correction up to the second order
in the typical size parameter coming from an additional term in the energy
which is the dissipation energy∫ t

0

∫ ∞

0

∫
R12

r |ω ∧ p− q|2 f.

This gives this new term in the right hand side of the previous Navier–Stokes
equation

2cη curl
[∫ ∞

0

∫
R9
r(p ∧ (ω ∧ p− q))f dv dp dq dr

]
.

Then, by extending our previous analysis concerning the fragmentation pro-
cesses kinetic equation in

JS
[17] together with the use of classical results about

weak existence for the Navier–Stokes system
DLM
[7] combined with a refined

averaging lemma of type of those proved in
GS
[10], allow to prove a stability re-

sult under the hypotheses that the energy, entropy and moments are initially
bounded.

The paper is structured as follows. Section 2 is devoted to model our
problem making the main assumptions and starting our analysis from the
exterior Stokes problem until the complete model including fragmentation.
In Section 3 we deal with the formal analysis of the model that includes the
study of the different conservation laws. Finally, section 4 deals with the
existence and stability properties of weak solutions.
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2 Modeling
sec:mod

2.1 General Assumptions

We consider particles moving freely within a fluid. They are assumed to be
dispersed enough such that their effect on the fluid is additive: The interac-
tion between the fluid and the particles is just the sum of the interactions
the fluid would have with every particle taken separately.

Without any particles, the velocity and pressure of the fluid would be
regular solutions to the incompressible Navier-Stokes equations.

In order to determine the interaction between a particle and a fluid, each
particle is represented by two balls connected through a elastic spring. The
probability of break-up is assumed to depend only on the length of the spring.
Note that the possibility of break-up implies that this representation is only
a way of making computations possible, indeed as each daughter particle
would be composed of two balls, that should make at least four for the
mother particle. This is nevertheless very useful for the computations and
very much in agreement with the idea behind the T.A.B. model for instance.

Our last assumption is that the length of the spring is much larger than
the diameter of the balls composing the particle. This is more a way of
simplifying the computations than an absolute requirement and it is of not
much consequence with respect to the previous one. In agreement with this
assumption we neglect the rotation of each ball.

2.2 Case of a single particle: reduction to Stokes equa-
tion

Consider two spherical particles, B(X i, R), both of radius R centered in
the points X1 and X2, respectively, such that the distance between them
is |X1 − X2| = l. The particles are moving with velocities V 1 and V 2,
respectively. We also assume that these particles are connected by a spring.
Let ε be the mean scaled dimensionless path associated with the distance
between the particles and let us assume that ε is very small. We denote X
the center of the spring, i.e. (X1 + X2)/2 = X. The spring is moving in
a fluid governed by the Navier–Stokes equations that, in velocity–pressure
formulation, can be written as follows

∂u

∂t
+ (u · ∇)u−∇Π = ν∆u+ IP , (2.1) n-s
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with boundary condition on each sphere

u(t, x) = V i(t, x), on ∂B(X i, R). (2.2) n-s-bc

In these relations u is the velocity, Π the pressure and ν the (dynamic)
viscosity of the fluid, and ∂B(X i, R) denotes the boundary of the spherical
ball B(X i, R). The term IP denotes the influence of the particles in the
fluid evolution and needs to be modelled according to the hypothesis on the
oscillating particles.

To allow the Navier–Stokes system to observe the spring, we decompose
the velocity field (and therefore also the pressure) into a slowly varying part
U(t, x) and a second part uε which may change over the length of the spring.
The idea is that U represents the natural evolution of the fluid (without
the influence of any spring) and uε the local modification due to the spring.
Hence

u(t, x) = U(t, x) + uε

(
t,
x−X

ε

)
,

Π(t, x) = P (t, x) +
1

ε
Πε

(
t,
x−X

ε

)
. (2.3) escales

These lead to the rescaled Navier–Stokes system for uε and Πε

∂uε

∂t
+

1

ε
(uε · ∇)uε −

1

ε2
∇Πε −∇P (t, x)

= ν
1

ε2
∆uε −

1

ε
U(t, x) · ∇uε − uε · ∇U(t, x) +O(ε), (2.4) escaled-n-s

which is complemented with the condition at infinity

uε(t, x) −→ 0, as |x| → ∞, (2.5) stokes-inf

where U(t, x) = U(t,X) +O(ε).
At the first order in ε, the rescaled Navier–Stokes system (

escaled-n-s
2.4) becomes

the Stokes system, i.e.

−ν∆uε = ∇Πε +O(ε), (2.6) stokes

with boundary condition (
stokes-inf
2.5) and

uε(t, x) = Ṽ i(t, x) = Vi − Ũ(t,X i
ε), on ∂B(X i

ε, Rε), (2.7) n-s-bcn

where X i
ε = (X −X i)/ε is the rescaled center of the corresponding ball and

we define the rotational part of the fluid

Ũ(t, x) = U(t,X) + εω(t,X) ∧ x,
with ω = curl U the vorticity of the fluid and “∧” the crossed product.
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2.3 The effect of the spring: An approximation of uε

Let lε = |X1
ε −X2

ε | and Rε = R/ε. We denote by G the fundamental solution
of Stokes’ equations in dimension three with zero condition at infinity, i.e.

G(x) = C
Id

|x|
− x× x

|x|3
,

where Id is the identity matrix.

Proposition 2.1. The velocity uε can be approximated by uε = u1,1
ε + u1,2

ε +
u2,1

ε + u2,2
ε , where

ui,1
ε (t, x) = CRεG(x−X i

ε)Ṽ
1 +O

(
R2

ε

|x−X1
ε |2

)
, (2.8) u11

and with (j = 2 if i = 1 and j = 1 if i = 2)

ui,2
ε (t, x) = CRεG(x−Xj

ε )u
i,1
ε (t,Xj

ε ) +O

(
Rε

lε

(
Rε

lε
+

R2
ε

|x−X2
ε |2

))
. (2.9) u12

compueps

Proof. We have to solve Stokes’ equation in the domain out of two balls.
Depending on the respective orientation of Ṽ 1 and Ṽ 2, some explicit formulas
are known (using bispherical coordinates), see [], but here as Rε << lε we
may obtain the desired result very simply.

Let us start by decomposing uε into u1
ε + u2

ε, with ui
ε the solution to

Stokes’ equations out of the two balls, vanishing at infinity and with boundary
condition Ṽ i on ∂B(X i

ε, Rε) and 0 on ∂B(Xj
ε , Rε) with j 6= i.

Then we use the method of reflection to compute each ui
ε. We refer to

JO
[15] for a full description of the method with many particles and the exact
conditions under which it works. Let us focus on u1

ε, u
2
ε being dealt with in

the same manner. We pose

u1
ε =

∞∑
k=1

u1,k
ε ,

with u1,1
ε the solution to

∆u1,1
ε = ∇p1,1

ε , div u1,1
ε = 0, in R3 \B(X1

ε , Rε),

u1,1
ε (∞) = 0, u1,1

ε = Ṽ 1 on ∂B(X1
ε , Rε),
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and for k ≥ 1

∆u1,2k
ε = ∇p1,2k

ε , div u1,2k
ε = 0, in R3 \B(X2

ε , Rε),

u1,2k
ε (∞) = 0, u1,2k

ε = −u1,2k−1 on ∂B(X2
ε , Rε),

and finally

∆u1,2k+1
ε = ∇p1,2k+1

ε , div u1,2k+1
ε = 0, in R3 \B(X1

ε , Rε),

u1,2k+1
ε (∞) = 0, u1,2k+1

ε = −u1,2k on ∂B(X1
ε , Rε).

It is easy, at least formally, to check that u1
ε satisfies the right equations.

Moreover, as Rε << lε the convergence of the series defining u1
ε poses no

difficulty.
Now, note first that u1,1

ε may be computed explicitly very easily and

u1,1
ε (t, x) = Rε

(
Ṽ 1(t,X1

ε )

|x−X1
ε |

+
R2

ε − |x−X1
ε |2

4
∇
(
Ṽ 1 · (x−X1

ε )

|x−X1
ε |3

))
,

which after neglecting the term in R2
ε/|x − X1

ε |2 gives the desired result.
Therefore, in a neighbourhood of B(X2

ε , Rε), u
1,1
ε is equal to u1,1

ε (X2)ε up to
a correction of order R2

ε/l
2
ε . This leads to the corresponding formula for u1,2

ε .
Finally we remark that u1,k

ε is automatically of order Rk−1
ε /lk−1

ε , justifying
our approximation at order 2.

In itself uε is of no interest. It is however required to compute the forces
acting on each ball. Still neglecting the rotation we define with the usual
formula, see [],

F i =
∫

∂B(Xi,R)
σ · ndS, σ = −Π Id+ ν(∇u+∇uT ),

where the T superscript denotes the transposed matrix. This means that we
have to compute

F i
ε = ε

∫
∂B(Xi

ε,Rε)
σε · ndS, σε = −Πε Id+ ν(∇uε +∇uT

ε ).

The previous approximation of uε leads to the following

Corollary 2.1. The local force acting on the particle is

F 1
ε = −6πνR

(
Ṽ 1 + C

Rε

lε

(
Ṽ 2 +

Ṽ 2 · (X1
ε −X2

ε )

l2ε
(X1

ε −X2
ε )

))
+O

(
R3

ε

l2ε

)
.
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Proof. We use the decomposition introduced in Proposition
compueps
2.1. Note first

that Stokes’ equations imply that σε is divergence free in the fluid domain.
Therefore u1,1

ε induces no force on the second ball B(X2
ε , Rε) and u1,2

ε does
not contibrute to the force term on B(X1

ε , Rε).
Moreover the force acting on a particle alone, moving with velocity W ,

may be computed explicitly very easily and is just −6πνW , see [] . Conse-
quently, the contribution from u1,1

ε on B(X1
ε , Rε) is exactly

−6πνRε Ṽ
1.

The contribution from u2,1
ε on B(X1

ε , Rε) is then

−6πνRεC
Rε

lε

(
Ṽ 2 +

Ṽ 2 · (X1
ε −X2

ε )

l2ε
(X1

ε −X2
ε )

)
+O

(
R3

ε

l2ε

)
.

Note that the exact value of the constants is not very important, as this
computation relies on the assumption that the particle is composed of two
identical balls and this constant is affected if we apply our model to a chain
of N > 2 particles jointed by springs.

2.4 The model without fragmentation

Let us denote by m the mass of the particle under consideration, V the
velocity of its center of mass V = V 1/2 + V 2/2, P its rescaled deformation
vector P = (X1

ε −X2
ε )/ε and Q = Ṗ = (V 1 − V 2)/ε.

Given the computations of the forces that we have performed, we may take
(up to the second order in R/l) the following equations for these quantities

Ẋ = V, V̇ = α
Rν

m

(
U(t,X)− V + β

R

ε

(U(t,X)− V ) · P
|P |3

P

)
,

Ṗ = Q,

Q̇ = γ
R ν

m

(
ω(t,X) ∧ P −Q− δ

R

ε

(ω(t,X) ∧ P −Q) ·W
|P |3

P

)
− µP − ϕε(P ),

(2.10)
where −µP is the term due to the spring and α, β, γ, δ are numerical con-
stants, which could be computed but whose exact value is most certainly
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irrelevant. In fact, the model can be modified by adding any kind of non-
linear spring g(P ) (instead of the linear one −µP ) such that g(P )P > 0.
The function ϕε represents the repulsive force preventing the two spheres
composing the particle from overlapping.

Considering now a large number of such particles, we introduce R̄ the
average radius, with ρ the density of each particle (assumed to be uniform).
Let us define the following constants

a = α
ν

ρ R̄2
, b = a β

R̄

ε
, c = γ

ν

ρ R̄2
, d = c δ

R̄

ε
. (2.11)

The regime in which we are interested R << ε corresponds to the case
a = O(1) (in which case c = O(1) as well). Note that b and d are typically
small, first order corrections, which we keep as they are reasonably simple.

As the number of particles is taken to be too large to write down a set
of equations for each, we consider the particle distribution function f of
the variables t, x, v, p, q, and r, i.e. time, position, velocity, deformation
vector, velocity of deformation and radius. This function satisfies the kinetic
equation

∂f

∂t
+ v · ∇xf +∇v ·

[(
a

r2
(u− v) + b

r

|p|
p⊗ p

|p|2
· (u− v)

)
f

]
+ q · ∇pf

+ ∇q ·
[(

c

r2
(ω ∧ p− q)− d

r

|p|
p⊗ p

|p|2
· (ω ∧ p− q)

−µp− ϕε(p, r)
)
f
]

= 0, (2.12) Vlasov

where ϕ can be defined by ϕε(p) = ∇p

[
(|p| − 2R

ε
r)+

]−1
or alternatively by,

for instance, ϕ(p) = ∇p(|p| − 2R
ε
r)−2. Notice that there is naturally a R/ε

factor in this function which is due to the rescaling of the length of the string
by ε whereas the size of each ball was R.

This has to be coupled with an equation for the evolution of the sur-
rounding fluid. The simplest way of obtaining it is through the balance of
forces. That means that the fluid should satisfy a Navier–Stokes equation
with a force term locally equal to the opposite of the sum of the forces acting
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on the particle at the same point. This gives

∂u

∂t
+ u · ∇u−∇Π = ν∆u− 2a

∫ ∞

0

∫
R9

(u− v)rf dv dp dq dr

− 2b
∫ ∞

0

∫
R9

r4

|p|
p⊗ p

|p|2
(u− v)f dv dp dq dr

(2.13) NS

It is also possible to obtain (
NS
2.13) directly from our modeling, which

has the advantage of making explicit the scaling between the number of
particles and their size. Let us first take a finite but large number of particles,
numbered from 1 to N . Denote by ui

ε the correction to the fluid velocity due
to the i-th particle, which is computed in the previous sections. Then the
velocity u satisfies in the whole R3

∂u

∂t
+ u · ∇u−∇Π = ν∆u

+
N∑

i=1

1

ε2
(ν∆ui

ε + Πi
ε)−

1

ε
((U + ui

ε) · ∇ui
ε)− ∂tu

i
ε − ui

ε · ∇U,

where the terms in ui
ε and Πi

ε depend on t and (x − X)/ε. Moreover if we
denote by F 1,i

ε and F 2,i
ε the forces acting on each sphere of the i-th particle,

we have that, with X i the center of the corresponding particle,

1

ε2

(
ν∆ui

ε + Πi
ε

)
((x−X)/ε) ∼ −(F 1,i

ε + F 2,i
ε ) δXi(x).

Each of this force term behaves like νR̄. The number of particles at a given
space point is given by

N
∫ ∞

0

∫
R6
f dv dp dq dr

when N is large, which induces the scaling

λ = N ν R ∼ 1.

In the sense of distributions, one may then easily prove that

N∑
i=1

1

ε2
(ν∆ui

ε + Πi
ε) −→ λ

(
−ρu+ j −

∫
R3

∫
R3

r

|p|
p⊗ p

|p|2
(u− v)f dv dp

)
.
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The other terms converge toward zero (as they are at least one order less in
ε) and we obtain (

NS
2.13).

Let us remark that there is no term in (
NS
2.13) corresponding to the defor-

mation of the spring in (
Vlasov
2.12) (the term with the divergence in q). This is

again a matter of scaling, as the length of the string (and therefore the force
which is applied to it) is small.

It is however possible to derive the corresponding additional terms by
doing an expansion in ε in the previous computation. Indeed

1

ε2

(
ν∆ui

ε + Πi
ε

)
((x−X)/ε) =− (F 1,i

ε + F 2,i
ε )δXi − ε(F 1,i

ε + F 2,i
ε ) P i · ∇δXi

− ε2

2
(F 1,i

ε + F 2,i
ε ) P i ·D2δXi

· P i +O(ε2),

where P i is the rescaled deformation of the i-th particle. Note that, in this
expansion, both terms after the first are of order ε2, the difference F 1,i

ε −F 2,i
ε

being itself of order ε (and contrary to the sum which is of order 1).
Passing to the limit in the number of particles and taking b = d = 0 so

as to simplify the expressions, this would give in the fluid a correction like

2cε2 curl
[∫ ∞

0

∫
R9
r(p ∧ (ω ∧ p− q))f dv dp dq dr

]
− 2aε2∇⊗∇ :

[∫ ∞

0

∫
R9
rp⊗ p⊗ (u− v) f dv dp dq dr

]
.

Finally note that in this case other corrections should be added from the low
order terms like 1

ε
((U +ui

ε) ·∇ui
ε) as this term for instance should contribute

at order ε.

2.5 The complete model including fragmentation

Consider the scaling

R << ε,
ν

ρ R̄2
∼ 1, N ν R̄ ∼ 1,

where ν is the viscosity, N the number of particles, ε the average size and R̄
the average radius of each sphere composing a particle.
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Then we obtain the equations

∂f

∂t
+ v · ∇xf +∇v ·

[(
a

r2
(u− v) + b

r

|p|
p⊗ p

|p|2
· (u− v)

)
f

]
+ q · ∇pf

+ ∇q ·
[(

c

r2
(ω ∧ p− q)− d

r

|p|
p⊗ p

|p|2
· (ω ∧ p− q)

−µp− ϕ(p, r)
)
f
]

= Q(f), (2.14) Vlasov2

coupled with (
NS
2.13). The fragmentation kernel Q(f) reads

Q(f) = −1

2
f(t, x, v, p, q, r)B1(p, q, r)

+
∫

R6
f(t, x, v − q′, p′, q′, 21/3 r)B2(p

′, q′, 21/3r, p, q, ) dp′ dq′

(2.15) kernel

with ∫
R6
B2(p

′, q′, r′, p, q) dq dp = 21/3B1(p
′, q′, r′). (2.16) kernel2

This corresponds to the fact that one particle with parameters x, v′, p′, q′, r′

may break-up into two identical particles with parameters x, v, p, q, r and
x, v∗, p∗, q∗, r∗. Those two particles correspond to the two spheres of which
the first was composed. Therefore, their size r = r∗ is exactly such that
2 r3 = r′3 and their velocities are the same v = v′ = v∗. In fact, remembering
the physical scalings, one would have v = v′ + εq′ and v∗ = v′ − εq′, which
gives v = v′ = v∗ at the first order in ε. Finally the process is assumed to be
invariant under galilean transformations, which means that the probability
that it occurs does not depend on the position or velocity of the mother
particle.

We refer to
JS
[17] and the references therein for a generic study of fragmen-

tation kernels.
Note that the model we propose does not induce itself any extra effect on

the fluid, but it is via the distribution function f how the interaction with
the fluid is produced.

3 Formal analysis of the model

Let us first check the consistence of our model (
NS
2.13), (

Vlasov2
2.14) and (

kernel
2.15) by

analyzing the balance of conservation laws associated to it, such as mass,

13



moments, energy, ... The precise study must be done as usual in the dis-
tributional formulation of (

NS
2.13), (

Vlasov2
2.14) and (

kernel
2.15) by choosing especial test

functions, truncations and approximations of the unity moments, energy, ...
We omit here this standard method and the calculations are kept in a formal
ambience. We begin this analysis with the mass preservation law for the
kinetic equation

Lemma 3.1. The system (
Vlasov2
2.14) and (

kernel
2.15) preserves mass, i.e.

d

dt

∫ ∞

0

∫
R12

2r3f d(x, v, q, p, r) = 0. (3.1) cl1

mass-cons

Proof. Since the other terms have divergence form, to prove mass conserva-
tion it is enough to check that∫ ∞

0

∫
R12

r3Q(f) d(x, v, q, p, r) = 0.

Using (
kernel2
2.16) and making the change of variables 2

1
3 r → r, we have∫ ∞

0

∫
R12

r3Q(f) d(x, v, q, p, r)

= −2−
1
3

2

∫ ∞

0

∫
R12

r3f(t, x, v, p, q, r)B2(p
′, q′, r′, p, q) d(x, v, q, p, r)

+
2−

1
3

2

∫ ∞

0

∫
R18

r3f(t, x, v, p′, q′, r)B2(p
′, q′, r, p, q, ) d(x, v, q, p, p′, q′, r)

mass-cons2

Obviously the right hand side of the above equality is zero.

Let us now analyze the balance of the first momentum with respect to
velocity.

Lemma 3.2. The balance of momentum for the whole system (
NS
2.13), (

Vlasov2
2.14)

and (
kernel
2.15) is preserved and defined by the equation

d

dt

∫ ∞

0

∫
R12

2r3v f d(x, v, q, p, r) = − d

dt

∫
R3
u dx. mom-cons0

mom-cons

14



Proof. We first deal with calculus for the momentum of the fragmentation
kernel ∫ ∞

0

∫
R12

r3v Q(f) d((x, v, q, p, r)

= −2−
1
3

2

∫ ∞

0

∫
R12

r3v f(t, x, v, p, q, r)B2(p
′, q′, r′, p, q) d(x, v, q, p, r)

+
2−

1
3

2

∫ ∞

0

∫
R18

r3v f(t, x, v, p′, q′, r)B2(p
′, q′, r, p, q, ) d(x, v, q, p, p′, q′, r)

mom-cons2

which is zero as in the previous lemma. Then, the balance of momentum for
the Vlasov equation (

Vlasov2
2.14) reads

d

dt

∫ ∞

0

∫
R12

r3v f d(x, v, q, p, r)

=
∫ ∞

0

∫
R12

r3

[(
a

r2
(u− v) + b

r

|p|
p⊗ p

|p|2
· (u− v)

)
f

]
d(x, v, q, p, r). mom-cons3

Taking into account the fluid equation (
NS
2.13) we can identify the term in the

right hand side as∫ ∞

0

∫
R12

2r3

[(
a

r2
(u− v) + b

r

|p|
p⊗ p

|p|2
· (u− v)

)
f

]
d(x, v, q, p, r)

= − d

dt

∫
R3
u dx, mom-cons4

form which we deduce the announced result.

In the next step we deal with the study of the energy balance. Define the
energy associated with (

Vlasov2
2.14)-(

NS
2.13)

e(t) =
∫ ∞

0

∫
R12

r3|v|2f d(x, v, q, p, r) +
1

2

∫
R3
|u|2dx.

Note that this energy does not include the deformation of the particles. The
full energy would be∫ ∞

0

∫
R12

r3(|v|2 + ε2|q|2 + µε2|p|2 + ε2Φ(p, r)) f d(x, v, q, p, r)

+
1

2

∫
R3
|u|2dx, (3.2) energytotal

with Φ a primitive of ϕ in p. Taking ε to 0, the formula for e(t) is recovered.
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Lemma 3.3. The energy is a decreasing function and verifies the following
balance law

d

dt
e(t) ≤− 2

∫ ∞

0

∫
R12

[
a r(u− v)2 + b

r4

|p|3
(
p · (u− v)

)2]
f d(x, v, q, p, r)

−
∫

R3
ν|∇u|2dx.

As a consequence, the moments defining the energy are bounded as well as
the following quantity∫ t

0

{∫ ∞

0

∫
R12

[
r(u− v)2 +

r4

|p|3
(
p · (u− v)

)2]
f +

∫
R3
|∇u|2

}
. ener-cons1/2

ener-cons

Remark. If instead of e(t), one uses (
energytotal
3.2) as the energy, it is also necessary

to include in the equation for the fluid all corrections up to the order ε2.
There is then an additional term in the energy dissipation which reads∫ t

0

∫ ∞

0

∫
R12

r(ω ∧ p− q)2f.

Proof. From now on in this lemma we avoid to mention the differential un-
der integrals for simplicity. As in the previous analysis for the mass and
momentum conservation laws, we have∫ ∞

0

∫
R12

2r3|v|2Q(f) = 0. ener-cons1

Indeed, as before ∫ ∞

0

∫
R12

r3|v|2Q(f)

=
2−

1
3

2

{
−
∫ ∞

0

∫
R12

r3|v|2f(t, x, v, p, q, r)B2(p
′, q′, r′, p, q)

+
∫ ∞

0

∫
R18

r3|v|2f(t, x, v, p′, q′, r)B2(p
′, q′, r, p, q)

ener-cons2

which is zero.
Let us turn now on the energy moment for the other terms of the system.

We first compute it for the kinetic part of the model obtaining

−2
∫ ∞

0

∫
R12

r3
[
v ·
(
a

r2
(u− v) + b

r

|p|
p⊗ p

|p|2
· (u− v)

)
. (3.3) ener-cons3
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We now proceed with the contribution to the energy of the fluid coupled
equation:

−
∫

R3
ν|∇u|2

−2
∫ ∞

0

∫
R12

r3u ·
[
a

r2
(u− v)r + b

r

|p|
p⊗ p

|p|2
(u− v)

]
f. (3.4) ener-cons4

Combining (
ener-cons3
3.3) and (

ener-cons4
3.4) we deduce

d

dt
e(t) = −2

∫ ∞

0

∫
R12

[
a r(u− v)2 + b

r4

|p|3
(
p · (u− v)

)2]
f

−
∫

R3
ν|∇u|2. (3.5) ener-cons5

There is only a contribution of positive sign in the right hand side of the
above equality and we conclude the announced result.

4 Existence of weak solutions to (
Vlasov2
2.14)-(

NS
2.13)

The analysis of the coupled system (
NS
2.13), (

Vlasov2
2.14) and (

kernel
2.15) is hard to deal

with. The most difficult terms probably are∫ ∞

0

∫
R9

(u− v)rf dv dp dq dr,

and ∫ ∞

0

∫
R9

r4

|p|
p⊗ p

|p|2
(u− v)f dv dp dq dr.

In order to obtain weak solutions (in a sense left unprecise for the moment),
one would indeed need to show, using only a priori estimates, that if (fn, un)
is a sequence of solutions (for instance classical) converging in some sense to
(f, u) (typically weak for fn and strong for un) then∫ ∞

0

∫
R9

(un − v)rfn dv dp dq dr −→
∫ ∞

0

∫
R9

(u− v)rf dv dp dq dr.

Assuming we have suitable compactness for un, this would require some
control on the moments of fn so that∫ ∞

0

∫
R9
r (1, v) fn dv dp dq dr −→

∫ ∞

0

∫
R9
r (1, v) f dv dp dq dr.
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However with the type of a priori estimates that we detailed in the previous
section, no control on the moments in q or p is available. Therefore in order
to stabilize the system, we reintroduce in the fluid equation the correction
term at order 2 and study instead of (

NS
2.13)

∂u

∂t
+ u · ∇u−∇Π = ν∆u− 2a

∫ ∞

0

∫
R9

(u− v)rf dv dp dq dr

− 2b
∫ ∞

0

∫
R9

r4

|p|
p⊗ p

|p|2
(u− v)f dv dp dq dr

+ 2cη curl
[∫ ∞

0

∫
R9
r(p ∧ (ω ∧ p− q))f dv dp dq dr

]
. (4.1) NS2

We may then get

Theorem 4.1. Take any u0 ∈ L2(R3), and f 0 ∈ L1(R12 ×R+), f 0 ≥ 0 such
that initially energy, mass and some higher moment in r are bounded∫

R+

∫
R12

r3 (|v|2 + |p|2 + |q|2 + Φ(p) + r3) f 0(x, v, p, q, r) <∞, (4.2) initialenergy

and in addition the entropy is bounded∫
R12

∫
R+

r3f 0(x, v, p, q, r) log f 0 <∞. (4.3) initialentropy

Assume moreover that

|B1| << C (1 + r3 + r3 |p|2 + r3 |q|2) as |p|+ |q|+ |r| → ∞,

Φ(p, r) = +∞ if r > |p|.

Then there exist u ∈ L∞(R+, L
2(R3)) and f ∈ L∞loc(R+, L

1(R12 × R+)),
solutions in the sense of distributions to (

Vlasov2
2.14) and (

NS2
4.1), and satisfying∫

R3
|∇u|2 dx ∈ L1(R+),∫

R+

∫
R12

r3 (|v|2 + |p|2 + |q|2 + Φ(p) + r3) f(t, x, v, p, q, r) ∈ L∞(R+),
(4.4) energyestimate

and ∫
R12

∫
R+

r3f(t, x, v, p, q, r) log f ∈ L∞loc(R+). (4.5) entropy

existtheorem
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Let us comment briefly some aspects concerning the hypothesis of The-
orem

existtheorem
4.1. The notation a << b simply means that b/a → +∞. The initial

conditions on f 0 are fairly natural: number of particles + total mass + total
energy bounded. The entropy condition (

initialentropy
4.3) is of a more technical nature

as entropy does not seem to play any particular role. It appears to be nev-
ertheless rather necessary.

The assumption on Φ seems logical from the derivation of the model: It
only forces the deformation (distance between the centers of the two spheres)
to be larger than the radius. The assumption on B1 is purely technical and
it is needed in order to control the terms in the fragmentation kernel.

Sketch of the Proof. We only sketch the main steps that would be required
to prove Theorem

existtheorem
4.1. For some complementary details we will address the

reader to the references
DLM,GS,JS
[7, 10, 17].

The idea is, as usual, to prove a weak stability result, i.e. to show that
a sequence of solutions un, fn (satisfying the assumptions in the theorem)
converges to another solution in the sense of distributions.

Step 1 : A priori estimates. First of all from the formal analysis in the
third section, one deduces from the conditions on the initial data that indeed
un ∈ L∞(R+, L

2(R3)) uniformly in n and that (
energyestimate
4.4) holds (except the r6

part), also uniformly in n. Now we also need to control the total number of
particles. For that, simply integrate (

Vlasov2
2.14) in x, v, p, q and r to get formally

d

dt

∫
R+

∫
R12

fn =
1

2

∫
R+

∫
R18

fn(t, x, v, p, q, r)B1(p, q, r).

Now, using the assumption on B1 and the energy bound we have

d

dt

∫
R+

∫
R12

fn ≤ C + C
∫

R+

∫
R12

fn(t, x, v, p, q, r),

which shows that this integral is bounded, locally in time.
The bound on the entropy requires a more careful calculation. It is iden-

tical to that performed in
JS
[17], thus we do not reproduce it here. If by any

chance ∫
R+×R12

rα f 0 <∞,

for some α > 3 (or any superlinear function of r3) then this bound remains
true for all time, which finishes the proof of (

energyestimate
4.4).

19



Note that we also have additional estimates for the energy dissipation,
namely (

ener-cons1/2
3.3) and ∫ ∞

0

∫
R12

r |wn ∧ p− q|2 fn ∈ L1(R+). (4.6) ener-dissip

Those are not convex however and therefore they cannot be used directly.
Finally we will need some more precise estimate on un and wn = ∇∧ un.

We proceed in the usual manner for Navier–Stokes (only a sketch again). We
know that

∂un

∂t
+ un · ∇un −∇Πn = ν∆un +Gn,

with Gn uniformly bounded in L1 thanks to the energy dissipation, the con-
trol on the total number of particles and (

energyestimate
4.4). First take the divergence of

the previous equation to get

∆Πn = −∇ ·Gn +∇ · (un · ∇un) = ∇Hn,

with Hn locally in L1. By standard elliptic arguments this shows that Πn is
locally in anyW s,1 with s < 1. Introducing this estimate in the Navier-Stokes
equation,

∂tun − ν∆un = In,

with In locally in W s,1 for any s < 0. Using the semi-group for the heat
equation

un = St u
0
n +

∫ t

0

∫
R3

C

(t− s)3/2
e−

ν
2
|x−y|2/(t−s) In(s, y) dy ds.

Consequently, and again locally, un is uniformly in W s,1 for any s < 2 and
so wn is uniformly in W s′,1 for any s′ < 1. This gives the compactness of the
sequence wn in Lp

loc(R+ × R3) for all 1 ≤ p < 2.

Step 2 : Compactness of the moments of fn. A necessary ingredient is the
compactness of objects like∫

R+×R9
ψ(r, v, p, q) fn,

for a regular and compactly supported ψ. For this averaging lemmas are
classically used. However here, as for other kinetic models, one only has a
L logL estimate on fn instead of Lp. This would therefore require the use of
more refined versions of averaging lemmas, like the one in

GS
[10].
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Unfortunately the theorem as it is stated in
GS
[10] cannot handle the v

derivative in Eq. (
Vlasov2
2.14). We briefly explain how this can be overcome. Fix

M > 0, a regular cut-off χ (χ(ξ) = 1 for ξ ≤ 1 and χ(ξ) = 0 for ξ > 2) and
define

fM = fn χ(fn/M).

Notice that simply multiplying (
Vlasov2
2.14) by χ′(fn/M), an equation may be

obtained for fM , namely

∂fM

∂t
+v · ∇xfM +∇v ·

[(
a

r2
(u− v) + b

r

|p|
p⊗ p

|p|2
· (u− v)

)
fM

]
+ q · ∇pfM

+∇q ·
[(

c

r2
(ω ∧ p− q)− d

r

|p|
p⊗ p

|p|2
· (ω ∧ p− q)

−µp− ϕ(p, r)
)
fM

]
= χ′(fn/M)

M
Q(f) +

(
3a
r2 + 3b r

|p| + 3c
r2 + 3dr

|p|

)
χ′

M
fn. (4.7)

The right hand side is locally in L1 (for r3 times the Lebesgue measure) and
fM is now in any Lp, both uniformly in n (but not M of course). So applying
standard averaging lemmas (see

DLM
[7] for instance), one gets that∫

R+×R9
r3 ψ(r, v, p, q) fM ∈ W s,p

loc (R+ × R3),

for some s > 0 and some p between 1 and 2, and this uniformly in n. From
the entropy estimate (

entropy
4.5), it is then easy to deduce the compactness of∫

R+×R9
r3 ψ(r, v, p, q) fn

locally in L1. Combining this with the energy estimate (
energyestimate
4.4) and the L1

bound on fn, one may further obtain the compactness of all quantities like∫
R+×R9

r3 fn,
∫

R+×R12
r fn,

∫
R+×R9

r v fn,

and so on.

Step 3 : Passing to the limit. Extracting subsequences (still denoted by n
for simplicity), one gets

un −→ u in L2, ∇x ∧ un = wn −→ ∇x ∧ u = w weak − ∗ L2,

fn −→ f weak − L1,
∫

R+×R9
r3 ψ fn −→

∫
R+×R12

r3 ψ f in L1
loc,
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for any regular ψ(r, p, q, v) dominated by 1 + |v|2 + |p|2 + |q|2. Moreover the
limits u and f satisfy the bounds (

energyestimate
4.4) and (

entropy
4.5).

We now have to pass to the limit in the equation and that means taking
the limit of terms like r(wn ∧ p) fn (as always one takes r3dr as measure for
r). This is not possible with the bounds that we have for the moment and we
would need to use renormalized solutions. So even though it is not a priori
convex, one should try to use the dissipation bounds (

ener-cons1/2
3.3) and (

ener-dissip
4.6). Let us

illustrate the way to proceed with (
ener-dissip
4.6), which is the most difficult.

Denote

AM
n =

∫ T

0

∫
R+×R12

r |wn ∧ p− q|2 fn Ir+|x|+|p|+|q|+|v|≤M I|wn|≤M .

The sequence |wn ∧ p − q|2I|wn|≤MIr+|x|+|p|+|q|+|v|≤M is compact in any Lp

(thanks to the two cut-off) and in fact in any space “less” than L∞. On the
other hand

∫
R+×R9 ψ(p, q) r fn Ir+|x|+|p|+|q|+|v|≤M is compact in L1 and in any

space “between” L1 and LlogL (thanks to the cut-off again). Therefore it
is possible to pass to the limit in AM

n (with some easy extra technical work
that we omit here) and to get

AM =
∫ T

0

∫
R+×R12

r |w ∧ p− q|2 f Ir+|x|+|p|+|q|+|v|≤M I|w|≤M ≤ liminfAM
n ≤ A0.

Note that the sequence in M , r |w ∧ p− q|2 f Ir+|x|+|p|+|q|+|v|≤M I|w|≤M is non
decreasing. As its integral is uniformly bounded in M , one may pass to the
limit in M to finally obtain∫ T

0

∫
R+×R12

r |w ∧ p− q|2 f ≤ A0 <∞.

This estimate combined with the energy dissipation (
ener-dissip
4.6) and the entropy

bound (
entropy
4.5) is now enough to pass to the limit in terms like (wn ∧ p) fn,

enabling us to derive the equation at the limit.
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