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Abstract

We introduce a new approach to prove the regularity of solutions to
transport equations of the Vlasov type. Our approach is mainly based
on the proof of propagation of velocity moments, as in a previous paper
by Lions and Perthame [16]. We combine it with Moment Lemmas
which assert that, locally in space, velocity moments can be gained
from the kinetic equation itself. We apply our theory to two cases.
First, to the Vlasov-Poisson system, and we solve a long standing
conjecture, namely the propagation of any moment larger than two.
Next, to the Vlasov-Stokes system where we prove the same result for
fairly singular kernels.

1 Introduction

We consider the regularity of solutions to Vlasov sytems. These are nonlinear
transport equations arising as the mean field limits of many-particles systems
and are classical models arising for instance in plasma physics, astrophysics,
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fluid dynamics etc. . . Due to the nonlinearity, which arises because the force
field acting on the particles depends on the density repartition of the particles
themselves, these models exhibit a rather complex behavior. A particular
example of this complexity is the difficulty to prove the regularity of solutions
with smooth initial data.

We will describe our method on two examples of such systems. The first
example is the famous Vlasov-Poisson system (VP in short). It describes
the evolution of a density f(x, v, t) of particles which at time t ≥ 0, position
x ∈ IR3, move with the velocity v ∈ IR3 and interact through self consistent
coulombic or newtonian forces. It reads

∂
∂t

f + v · ∇xf + divv(Ff) = 0,
f(x, v, 0) = f 0(x, v) ≥ 0,

(1.1)

with the force field
F (t, x) = ± x

|x|3
? ρ(t, x), (1.2)

and, as usual, from the microscopic density f , we compute the macrospopic
density ρ and the current j with the formulas

ρ(x, t) =
∫

IR3
f(x, v, t) dv, j(x, t) =

∫
IR3

v f(x, v, t) dv. (1.3)

The second example is the Vlasov-Stokes system (VS in short) which de-
scribes the evolution of particles interacting through a fluid described by a
Stokes flow (see K. Hamdache [10] for another Vlasov-Stokes system, P.E.
Jabin and B. Perthame [14] for the derivation of the system below from an
interacting system of particles)

∂
∂t

f + v · ∇xf + divv[(F − v)f ] = 0,
f(x, v, 0) = f 0(x, v) ≥ 0,

(1.4)

F (x, t) = A(x) ? j(x, t). (1.5)

Here, the matrix A ∈ C∞(IR3\0) is assumed to satisfy two properties. The
first property gives a limitation on the possible singularity at the origin, the
second expresses the dissipation of the kinetic energy of the system (a natural
condition since it is realized for the particle system),

|A(x)| ≤ C

|x|β
, 0 < β < 2, (1.6)
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∫
IR3

j(x) · A(x) ? j(x)dx ≤ 0, ∀j ∈
(
D(IR3)

)3
. (1.7)

For these two models, we are interested in the propagation of v-moments,

Mk(t) = sup
0≤s≤t

∫
IR6
|v|kf(x, v, s) dvdx. (1.8)

Classical energy bounds (see [8], [13]) show that the second moment is a
priori bounded

M2(t) ≤ C(‖f 0‖∞, M2(0)), (1.9)

where we denote by ‖u(·)‖p the Lp norm of the function u in its arguments
x or (x, v) depending on the context.

Here, we prove the propagation of v-moments for k larger than 2. As it
is wellknown, this is a definitive step towards regularity of solutions because
of the classical interpolation inequalities

‖ρ(·, t)‖(k+3)/3 ≤ C‖f(·, ·, t)‖k/(3+k)
∞ Mk(t)

3/(3+k),

‖j(·, t)‖(k+3)/4 ≤ C‖f(·, ·, t)‖(k−1)/(3+k)
∞ Mk(t)

4/(3+k).
(1.10)

These inequalities, combined with Young (or generalized Young) inequalities
furnish regularity for the force fields F .

‖ x
|x|3 ? ρ‖r ≤ C‖f(t)‖k/(k+3)

∞ Mk(t)
3/(3+k) , r = 33+k

6−k
,

‖A ? j‖r ≤ C‖f(t)‖(k−1)/(k+3)
∞ Mk(t)

4/(3+k) , 1
r

= β
3

+ 1−k
k+3

.
(1.11)

For k large enough (k > 6 for the VP case, k > 3β+1
3−β

for the VS case), a
control of Mk therefore yields an L∞ bound on F and thus allows to prove
the propagation of the (x, v) support of f , or of its derivatives, and thus to
deduce its regularity.

Let us recall that the issue of the regularity of large solutions to non-
linear transport equations is a classical question still unresolved for several
3 dimensional models (Vlasov-Maxwell, Boltzmann). Several theories have
been proposed for understanding the mechanisms that provide regularity.
For the VP system, a method based on proving directly regularity through
characteristics has been proposed by K. Pfaffelmoser [20], J. Batt [1], [2]
and [3], J. Batt and G. Rein [6], J. Schaeffer[21], and E. Horst [11] and [12].
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The case of 2D (or 2D and a half) Vlasov-Maxwell system is treated in R.
Glassey and J. Schaeffer [9]. For the BGK-model of the Boltzmann equa-
tion, existence of smooth solutions follows from the control of propagation of
the L∞(IR6) norms of |v|f(·, ·, t) (see B. Perthame and M. Pulvirenti [19]).
For the Vlasov-Poisson Fokker-Planck system, still another theory has been
developed by F. Bouchut [4].

Here, we will rather follow an approach based on proving the propagation
of the velocity moments Mk, as in a previous paper by P.L. Lions and B.
Perthame [16]. We combine it with Moment Lemmas which assert that,
locally in space, velocity moments can be gained from the kinetic equation
itself (see B. Perthame [17], P.L. Lions and B. Perthame [15], I. Gasser, P.A.
Markowich and B. Perthame [7] or 2.2 below). This induces a difficulty in
getting back global regularity in space despite the local aspect of the moment
lemmas. We solve it using indirectly the propagation of x-moments of f . This
method allows to simplify the method of [16], and to improve the results in
the sense that we can prove the propagation of lower moments as we show
it on the Vlasov-Poisson system, and also to handle stronger singularities in
the nonlinearity as we illustrate it on the Vlasov-Stokes system. Namely, for
the Vlasov-Poisson system, we prove the following result.

Theorem 1.1 (Vlasov-Poisson system) We assume that f 0 ∈ L∞(IR6) and
that, for some k0 > 2, we have∫

IR6
(1 + |v|k0 + |x|

1
3
+0)f 0(x, v) dvdx < +∞, (1.12)

ρ0(x, t) :=
∫

IR3
f 0(x− vt, v) dv ∈ L1

loc(0, +∞; L3(k0+3)/(k0+6)(IR3)). (1.13)

Then, there exists a weak solution to (1.1), which satisfies for all t, T > 0

f(x, v, t) ≥ 0, ‖f(·, ·, t)‖∞ ≤ ‖f 0(·, ·)‖∞ (1.14)

∫
IR6

(1 + |v|k0 + |x|
1
3
+0)f(x, v, t) dvdx ∈ L∞(0, T ), (1.15)

F ∈ L1(0, T ; Lk0+4−0(IR3)), (1.16)

ρ ∈ L∞(0, T ; L(k0+3)/3(IR3)). (1.17)
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Remarks
1. Throughout this paper, when we use notations like u ∈ Lp+0, we mean
that there exists an ε > 0 such that u ∈ Lp+ε.
2. Let us notice that in the above theorem, we solve a question asked in
[16]. Namely, to prove the propagation of a v-moment of order larger than
2, while in [16] it is fundamental to control initially moments larger than 3.
3. Also, the regularity of the force field can be completed as follows

F ∈ L∞(0, T ; Lr(IR3)),

r = 3
k + 3

6− k
for 2 < k < 6, r = ∞ for k > 6.

4. An improvement is still possible. A careful application of the same proof
shows that the assumption f 0 ∈ L∞ can be relaxed to some Lp.

Turning now to the Vlasov-Stokes system, we prove the following result.
It is the first regularity result for this system. The difficulty here comes
from the lower Lp regularity available on j compared to ρ, and thus on the
corresponding force F .

Theorem 1.2 (Vlasov-Stokes system) We assume that 0 < β < 8/5, f 0 ∈
L∞(IR6) and that, for some k0 > 2, we have∫

IR6
(1 + |v|k0 + |x|2)f 0(x, v) dvdx < +∞, (1.18)

J0(x, t) :=
∫

IR3
|v|f 0(x− vt, v) dv ∈ L1

loc(0, +∞; Lp(IR3)),
1

p
≤ k0 + 5

k0 + 4
− β

3
.

(1.19)
Then, there exists a weak solution to (1.4), which satisfies for all t, T > 0

f(x, v, t) ≥ 0, ‖f(·, ·, t)‖∞ ≤ e3t‖f 0(·, ·)‖∞, (1.20)

∫
IR6

(1 + |v|k0 + |x|2)f(x, v, t) dvdx ∈ L∞(0, T ), (1.21)

F ∈ L1(0, T ; Lk0+4−0(IR3)), (1.22)

j ∈ L∞(0, T ; L(k0+3)/4(IR3)). (1.23)
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Remarks
1. Improving the possible singularity of the matrix A i.e. the upper value of
β is an open question.
2. Again, the regularity of the force field can be completed as follows

F ∈ L∞(0, T ; Lr(IR3)), 1
r

= β
3

+ 1−k
k+3

, for 2 < k < 3β+1
3−β

,

r = ∞, for k > 3β+1
3−β

.
(1.24)

The end of this paper explains the proof of these results. In a second
section, we give the main lemmas and show the strategy of proof. The most
fundamental estimate is specific to each case and its proof is detailed in
separate sections.

2 Proofs of the main Theorems

In this section we are concerned with the proofs of the main Theorems (1.1)
and (1.2). Before going to the new ingredients, we recall the general method
and some necessary preliminary lemmas valid for both Vlasov-Poisson and
Vlasov-Stokes system.

First of all, as usual to prove these theorems, we consider a sequence of
classical solutions to a regularized system (with regularized positive convolu-
tion operators which define the forces, this is possible in truncating for high
frequencies), with regularized and compactly supported initial data. It is
enough to prove the estimates of the theorems for these solutions and then,
to pass to the limit on the regularization. Secondly, for such solutions, the
positivity and L∞ bounds stated in the theorems are true thanks to the max-
imum principle, as well as the kinetic energy bounds (see [8] or [13]) which
can be kept by appropriate regularizations of the force kernel. The only
difficult point is then to prove the propagation of moments higher than 2.
This proof follows the same lines for the two systems. But the form of the
Vlasov Stokes system makes it longer due to the friction term which however
does not add any specific difficulty. Therefore, we restrict our proof to the
simplified system where we neglect the friction term i.e. we only consider
the equation (1.1) with the two cases of forces F .

In the following, we set

K∞ = ‖f 0‖∞, (2.1)
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and we recall some technical lemmas.

2.1 Preliminary lemmas

The first Lemma concerns the propagation of moments for solutions to the
equation (1.1).

Lemma 2.1 Let k > 0. Then, for 0 ≤ t ≤ T , the moments Mk(t), defined
in (1.8), satisfy

Mk(t) ≤ C(T,K∞)
(
Mk(0) + (

∫ t

0
||F (s)||k+3ds)k+3

)
. (2.2)

This lemma is well known and can be proven easily using explicitely the
Vlasov equation and the inequality

∫
IR3
|v|k−1f(x, v, t)dv ≤ C(K∞)

(∫
IR3
|v|kf(x, v, t)dv

)(k+2)/(k+3)

, (2.3)

which generalizes (1.10).

The second result is a so called Moment Lemma about the gain of velocity
moments by integration in time. It was first used in [17] to solve the BGK
model. A more direct and systematic approach was deviced in [15]. The
possibility to use it in order to control macroscopic quantitites was proved
in [7].

Lemma 2.2 Let α > 0, k ≥ 1 and t > 0 and let f be a smooth solution to
the Vlasov equations (1.1), ‖F (.)‖k+3 ∈ L1(0, T ) and Mk(t) < ∞. Then, the
inequality

∫ t
0

∫
IR6

|v|k+1

1+|x|1+α f(x, v, s)dx dv ds ≤ C(K∞)
[
Mk(t)

+
∫ t
0 ‖F (s)‖k+3ds Mk(t)

(k+2)/(k+3)
]
(2.4)

holds for some constant which also depends upon t, k, α.
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Proof. We multiply the Vlasov equation by

|v|k−1 x · v
(1 + |x|α)1/α

, α > 0, k ≥ 1, (2.5)

and integrate over IR3
x × IR3

v × (0, t). After integration by parts and using
(2.3), this yields∫ t

0

∫
IR6

|v|k+1

(1 + |x|α)1/α

(
1− |x|α−2(x · v)2

(1 + |x|α)|v|2

)
f(x, v, s)dxdvds

≤
∫

IR6
|v|k(f(x, v, t) + f(x, v, 0))dvdx

+k
∫ t

0

∫
IR3

x

|F (x, s)|
(∫

IR3
v

|v|k−1f(x, v, s)dv

)
dxds

≤ 2
(
Mk(t) + C(K∞, k)

∫ t

0
||F (s)||k+3ds Mk(t)

(k+2)/(k+3)
)

. (2.6)

Thanks to (2.3). Finally, we remark that∫ t

0

∫
IR6

|v|k+1

1 + |x|1+α
f(x, v, s)dxdvds

≤ C(α)
∫ t

0

∫
IR6

|v|k+1

(1 + |x|α)1/α

(
1− |x|α−2(x · v)2

(1 + |x|α)|v|2

)
f(x, v, s)dxdvds,

which concludes the result. 2

2.2 Another formula for the force fields

The following result is the main new ingredient in the proofs of the Theorems.
It improves the method introduced in the analysis of the Vlasov-Poisson sys-
tem by [16] in order to use the moment Lemma 2.2. Since the exponents
coming in for the two systems are quite different, we state the result sepa-
rately.

Lemma 2.3 (VP system) Smooth solutions to the regularized Vlasov Pois-
son system (1.1) (see above) satisfy∫ T

0 ‖F (t)‖rdt ≤ C(T )
∫ T
0 ‖ρ0(t)‖pdt

+C1

(∫ T
0

∫
IR6

|v|k+1

1+|x|1+0 f(x, v, t)dxdvdt
)1/r

,
(2.7)
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for all 3 < r < k+4 and with 1
r

= 1
p
− 1

3
and where C1 also depends on the pa-

rameters k, r and K∞, the initial energy M2(0) and
∫
IR6 |x| 13+0f 0(x, v)dx dv.

Lemma 2.4 (VS system) Smooth solutions to the regularized Vlasov Stokes
system (1.4) (see above) satisfy∫ T

0 ‖F (t)‖rdt ≤ C(T )
∫ T
0 ‖J0(t)‖pdt

+C2

∫ T
0

∫
IR6

(
|v|k+1

1+|x|1+0 f(x, v, t)dxdvdt
)1/r

,
(2.8)

for all r such that 1
k+1

+ β−2
3

< 1
r

< β−1
3

and with 1
r

> 1
p

+ β−3
3

. Here C2

also depends on the parameters β, p, k, r and K∞, the initial kinetic energy
M2(0) and

∫
IR6 |x|2f 0(x, v)dx dv.

The proofs of these lemmas are given in the next section. With these
three types of lemmas, we are now able to prove our main theorem.

2.3 Concluding the proofs of the main theorems

2.3.1 Vlasov-Poisson case

We combine the lemmas 2.3 and 2.2 so as to get

∫ T
0 ‖F (t)‖rdt ≤ C

∫ T
0 ‖ρ0(t)‖pdt

+C
(
Mk(T ) + Mk(t)

(k+2)/(k+3)
∫ T
0 ‖F (t)‖k+3dt

)1/r
, (2.9)

with 3 < r < k + 4, and 1
r

= 1
p
− 1

3
.

The assumption on ρ0 in the theorem 1.1 allows us to control the integral
of ‖ρ0‖p for all corresponding r between 3 and k0 + 3 included. We already
know that the kinetic energy M2 is bounded in time and thus we can apply
the result (2.9) for k = 2 (recall we already control F in L1

t L
p
x for all p < 5

thanks to (2.7)), thus obtaining that the integral in time of the Lr norm of
F is bounded for any 3 < r < 6.

As a consequence, using lemma 2.1, we immediately propagate every mo-
ment 2 < k < 3, thus concluding the theorem for k0 < 3. Then, for k0 ≥ 3,
we repeat the above argument using any k < 3, which allows, with (2.9), to
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reach r < 7 and therefore, using lemma 2.1 again, to propagate any moments
up to k < 4, thus concluding the theorem for k0 < 4. One can easily see
that each repetition of these two steps allows to gain one order on k for the
propagation of moments, and we are thus able to reach any value k0.

2.3.2 The Vlasov-Stokes case

The proof for Vlasov-Stokes system follows the same lines. We use lemmas
2.4 and 2.2 to obtain

∫ T
0 ‖F (t)‖rdt ≤ C

∫ T
0 ‖J0‖pdt

+C
(
Mk(T ) + Mk(t)

(k+2)/(k+3)
∫ T
0 ‖F (t)‖k+3dt

)1/r
,

(2.10)

with 3
β−1

< r < ( 1
k+1

− 2−β
3

)−1 and 1
p

< 1
r

+ 3−β
3

.

Like for the VP case, the assumption on J0 in the theorem is enough to
upper bound the J0 term in the above inequality (2.10), and this for all for

3
β−1

< r ≤ k0 + 3. First, we use, from the energy, that M2 is bounded, and

from (2.8), we deduce that F is bounded in L1
t L

p
x for all p < 5. And thus,

from the inequality (2.10), we get that F belongs to L1
t L

r
x, r being given

by the above formula, and, using lemma 2.1, we propagate every moment of
order k′ less than r − 3 i.e.,

1

k′ + 3
>

1

k + 1
− 2− β

3
. (2.11)

For k = 2 this allows to control moments with k′ > 2 (this explains the
limitation β < 8/5). Moreover, iterating the argument, for k larger or equal
to 2, k′ can be chosen strictly larger (with a uniform gap) than k because
the Lk+3

x bound on F is then automatic. And we can repeat this procedure
until we propagate all the desired moments thus concluding the proof.

3 Estimates on the force fields

In this section, we prove the fundamental lemmas 2.3 and 2.4 stated in the
previous section and which allow to obtain a better Lr estimate on the force
field, working in L1 in time rather than L∞, and using some kind of localisa-
tion in space. The exponents arising in the proof depend on the specific form
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of the force fields and therefore differ somewhat in the two cases of Poisson
and Stokes flows. The proofs are thus presented in two subsections.

They both use the following common expression for the Vlasov equation
(recall that we neglect the friction term in the Stokes case to simplify the
proofs)

∂

∂t
f + v · ∇xf + divv(FLf) = divv(FSf), (3.1)

where the long range part of the force is given by FL = FS +F , and the short
range part of the force is defined for the VP system as FS := ±ρ ? (χR

x
|x|3 ),

and for the VS system as FS := j ? (χRA), where χR is a smooth cut-off
function of the ball of radius R, which vanishes for |x| > 2R and such that
χR(x) = 1 for |x| ≤ R. We also use a representation of the solution related
to the well defined characteristics

d
dt

X(t) = V (t), X(0) = x,
d
dt

V (t) = FL(t,X(t)), V (0) = v.
(3.2)

We now choose the truncation parameter R large enough compared to the
final time T , so that these characteristics and their partial jacobians, behave
like X(t) = x− vt, V (t) = v which are obtained for FL = 0 i.e. the limit as
R → ∞. For the sake of simplicity, the proofs below are written for these
limiting characteristics, but the arguments hold for those given by (3.2) as it
was checked in [16], the numerous changes of variables only require to control
jacobians of ∂X

∂x
, ∂X

∂v
. . .

With this simplification, we have

f(x, v, t) = f 0(x− vt, v) +
∫ t
0(divvFSf)(x− vs, v, t− s) ds

= f 0(x− vt, v) +
∫ t
0 divv(FS)f(x− vs, v, t− s) ds

+
∫ t
0 divx(FS)f(x− vs, v, t− s) s ds.

(3.3)

3.1 The Vlasov Poisson System

Now, we restrict our attention to the Vlasov-Poisson case. From the above
formula, we deduce,

ρ(x, t) =
∫

IR3
f 0(x− vt, v)dv +

∫ t

0

∫
IR3

divx(FSf)(x− vs, v, t− s) s ds dv.
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Using that F wins a full derivative compared to ρ in Lp norms, we deduce,
from Calderon-Zygmung theory (see [22]), with 1/r = 1/p−1/3 and recalling
the definition of ρ0 in the Theorem 1.1,

‖F (·, t)‖r ≤ ‖ρ0(·, t)‖p +
∫ t

0
‖
∫

IR3
(FSf)(x− vs, v, t− s)dv‖r s ds. (3.4)

We now treat the second Lr(IR3
x) norm term in a new way. We write, x being

fixed, using Holder inequality in dv,

|
∫
(FSf)(x −vs, v, t− s)dv|

≤ ‖FS(x− vs, t− s)|(1 + |x− vs| 13+0)‖ 3
2
+0

×‖f(x− vs, v, t− s)(1 + |x− vs| 13+0)−1‖3−0

≤ K
2
3
−0

∞
1

s2−0‖FS(·, t− s)|(1 + | · | 13+0)‖ 3
2
+0

×
(∫

IR3 f(x− vs, v, t− s)× (1 + |x− vs|1+0)−1dv
) 1

3
−0

≤ K
2
3
+ k+1

k+4
−0

∞
1

s2−0‖FS(·, t− s)(1 + | · | 13+0)‖ 3
2
+0

×
(∫

IR3 |v|k+1f(x− vs, v, t− s)

×(1 + |x− vs|1+0)−1dv
) 1

4+k
−0

,

here we have used a variant of the general interpolation inequality (2.3). We
now conclude, using r = 4 + k − 0 that

‖F (·, t)‖r ≤ ‖ρ0(·, t)‖p + C(K∞)
∫ t
0 ‖FS(·, t− s)(1 + | · | 13+0)‖ 3

2
+0

×
(∫

IR6 |v|k+1f(x− vs, v, t− s)(1 + |x− vs|1+0)−1dvdx
)1/r

ds
s1−0 .

(3.5)
After integrating in time and changing the variable dx = d(x−vs) we obtain
the lemma 2.3. Indeed, the mass and energy propagations imply that

|FS(x, σ)|(1 + |x|α)| ≤ C
∫
|x−y|≤R

ρ(y, σ)

|x− y|2
(1 + |x− y|α + |y|α)

≤ Cρ ?
1

|x|2
+ Cρ ?

1

|x|2−α
+ C(|x|αρ ?

1

|x|2
).

For 0 ≤ α < 2, each of these terms is bounded in L1 ∩ Ls for some s > 3/2
thanks to the a priori estimates ρ ∈ L∞(0,∞; L1) (mass conservation), ρ ∈
L∞(0,∞; L5/3) (energy conservation and (1.10)), and |x|αρ ∈ L∞(0,∞; L1 ∩
Ls) (propagation of x-moments of order less than 2 and interpolation with
ρ ∈ L∞(0,∞; L5/3)). 2
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3.2 The Vlasov Stokes system

The proof of lemma 2.4 for the Vlasov-Stokes system follows the same ideas
as for the Vlasov Poisson system. First of all, in place of (3.2) we use the
characteristics defined by the regular force term which is the sum of the
friction term and the long range part of the force F (t, x) to find the estimate
(see the beginning of section 3 for notations)

∫ T
0 ‖F (., t)‖rdt ≤

∫ T
0 ‖J0(t)‖pdt

+
∫ T
0 ‖

∫ t
0

∫
IR3 FSf(x−vs, v, t−s)dvds‖adt

+
∫ T
0 ‖

∫ t
0 s
∫
IR3 |v||FS|f(x−vs, v, t−s)dvds‖bdt ,

(3.6)

with the relations

1

r
=

1

a
+

β

3
− 1 =

1

b
+

β − 2

3
, (3.7)

We denote

I =
∫ T
0 ‖

∫ t
0

∫
IR3 FSf(x− vs, v, t− s)dvds‖adt ,

II =
∫ T
0 ‖

∫ t
0 s
∫
IR3 |v||FS|f(x− vs, v, t− s)dvds‖bdt .

(3.8)

In the next two subsections, we explain how we can upperbound these
two terms.

3.2.1 Bound on the term I in the inequality (3.6)

We write

I ≤
∫ T

0
‖
∫ t

0
‖FS(..)‖Lc

v
× ‖f(..)‖Lc?

v
ds‖La

x
dt , (3.9)

where c? is the conjugate exponent of c and with

‖FS(x− vs, t− s)‖Lc
v

= s−3/c‖FS(., t− s)‖Lc
x
≤ Cs−3/c, for c > 3. (3.10)

Indeed the conservation of the kinetic energy implies that j belongs to
L1∩L5/4(IR3) and hence we already know that FS belongs to L3/β∩L15/(5β−3).
For 1 ≤ β < 8/5, we have 15/8 < 3

β
≤ 3 and 3 < 15

5β−3
≤ 15/2. Therefore the

force term FS always belongs to L∞([0, T ], Lc(IR3)) for some c > 3.
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Next, we recall that∫
IR3

f(x−vs, v, t−s)dv ≤ CK∞

(∫
|v|δf(x− vs, v, t− s)dv

)3/(3+δ)

. (3.11)

Combining the last two inequalities, for any 3
2

< a < 5
2
,

I ≤ C
∫ T
0 ‖

∫ t
0 s−3/c‖f(x−vs, v, t−s)‖Lc?

v
ds‖La

x
dt

≤ C
∫ T
0

∫ t
0s

−3/c‖(
∫
f(x−vs, v, t−s)dv)1/c?

‖La
x
dsdt

≤ C
∫ T
0

∫ t
0s

−3/c(
∫
|v|δfdvdx)1/adsdt

≤ C ,

(3.12)

since we have 3+δ
3

= a
c
, and so δ is less than 2, for a is less than 5

2
and c? is

less than 3
2

but as close to 3
2

as we want.
Sinece the system conserves mass and kinetic energy, it also conserves all

the moments between 0 and 2 in velocity. Eventually, we have proved that∫ T
0 ‖

∫ t
0

∫
IR3 |FS|f(x− vs, v, t− s)dvds‖adt is bounded for all a between 3

2
and

5
2

included. Using relation (3.7), this can be used for any r between 3/(β−1)
and +∞ since β is less than 9

5
(we work with β less than 8

5
).

3.2.2 Bound on the term II in the estimate (3.6)

First, we perform the same manipulation as in the previous section

II ≤
∫ T
0 ‖

∫ t
0‖(1 + |x−vs|)FS(x−vs, t−s)‖Ld

v

×‖vf(x−vs,v,t−s)
1+|x−vs| ‖Ld?

v
ds‖Lb

x
dt .

(3.13)

We choose for d a number slightly greater than 3
2

and we bound the term
with FS by s−3/d‖(1 + |x|)FS(x, t− s)‖d and we decompose this last term as

|(1 + |x|)FS(x, t− s)| ≤
∫
(1 + |x|)χR(x−y)

|x−y|β |j(y)|dy

≤
∫ χR(x−y)

|x−y|β j(y)dy

+C
∫ χR(x−y)
|x−y|β−1 j(y)dy

+C
∫ χR(x−y)

|x−y|β |y|j(y)dy .

(3.14)

For β less than 2, the first two terms on the right handside are obviously
in Ld for some d larger than 3

2
but as close as we wish. To bound the last

term in Ld, we need an L1 estimate on |y|j(y) which is given by the following
lemma

14



Lemma 3.1 If the kinetic energy is bounded, then the equation (1.4) con-
serves all the moments in

∫
|x|δρ(x, t)dx for δ between 0 and 2.

Proof. This lemma is a straightforward consequence of the simple relation

d

dt

∫
IR3

(1 + |x|)δρ(x, t)dx =
∫

IR6
δ(1 + |x|)δ−1 x

|x|
· vf(x, v, t)dxdv . (3.15)

2

Thanks to this lemma, we know that
∫
|x|2ρ(x, t)dx belongs to L∞([0, T ])

and thus
∫
|x| · |j(x, t)|dx also because of the inequality∫

IR3
|x| · |j(x, t)|dx ≤ 1

2

∫
IR6
|v|2fdxdv +

1

2

∫
IR3
|x|2ρ(x, t)dx . (3.16)

As a consequence for any d greater than 3
2

but close enough, we have

‖(1 + |x−vs|)FS(..)‖Ld
v
∈ L∞([0, T ]× IR3) . (3.17)

We immediately deduce that

II ≤ C
∫ T
0

∫ t
0s

1− 3
d‖vf(x−vs,v,t−s)

1+|x−vs| ‖Lb
x(Ld?

v )dsdt

≤ C
∫ T
0

∫ t
0s

1− 3
d‖(

∫ |v|d?
f(x−vs,v,t−s)

(1+|x−vs|)d? dv)1/d?

‖bdsdt,
(3.18)

using the inequality

∫
IR3

|v|αf(x−vs, v, t−s)

(1 + |x− vs|)δ
dv ≤≤ C

(∫
IR3

|v|γf(..)

(1 + |x− vs|)δ
dv

)(3+α)/(3+γ)

.

(3.19)
Then recalling that d = 3

2
+ 0, if b is greater than d? we find

II ≤ C
∫ T
0

∫ t
0s

1− 3
d

(∫
IR6

|v|δf(x−vs,v,t−s)
(1+|x−vs|)d? dvdx

)1/b
dsdt

≤ C
∫ T
0

∫ t
0s

1− 3
d

(∫
IR6

|v|δf(x,v,t−s)
(1+|x|)d? dvdx

)1/b
dsdt

≤ C
∫ T
0

∫ T
s s1− 3

d

(∫
IR6

|v|δf(x,v,t−s)
(1+|x|)d? dvdx

)1/b
dtds

≤ C̃
∫ T
0

(∫
IR6

|v|δf(x,v,t)
(1+|x|)d? dvdx

)1/b
dt

≤ C ′
(∫ T

0

∫
IR6

|v|δf(x,v,t)
(1+|x|)d? dvdxdt

)1/b
,

(3.20)
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with the relation d?

b
= 3+d?

3+δ
. Since d? = 3 − 0, if we denote k = δ − 1 this

implies
k = b− 1 + 0 . (3.21)

We can now conclude the proof. The result from section 3.2.1 is valid for
r between 3/(β − 1) and +∞, and the result from section 3.2.2 for b larger
than 3 − 0 which means r larger than 3/(β − 1) thanks to relation (3.7).
Hence for r larger than 3/(β − 1), we can put together these two results and
get

∫ T
0 ‖F (., t)‖rdt ≤

∫ T
0 ‖J0‖pdt + C

(
1 +

(∫ T
0

∫
IR6

|v|k+1f(x,v,t)
(1+|x|)d? dvdxdt

)1/b
)
,

(3.22)

with

1

b
=

1

r
+

2− β

3
, k = b− 1 + 0 , (3.23)

which is exactly the lemma 2.4.
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