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Abstract. We present a new class of averaging lemmas directly motivated
by the question of regularity for different nonlinear equations or variational
problems which admit a kinetic formulation. In particular they improve the
known regularity for systems like γ = 3 in isentropic gas dynamics or in some
variational problems arising in thin micromagnetic films. They also allow to
obtain directly the best known regularizing effect in multidimensional scalar
conservation laws.
The new ingredient here is to use velocity regularity for the solution to the
transport equation under consideration. The method of proof is based on a
decomposition of the density in Fourier space, combined with the K-method
of real interpolation.
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1 Introduction

Kinetic formulations allow to consider nonlinear problems (balance laws or
variational problems) and, using a nonlinear function f of the unknown, to
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transform these problems in a singular linear transport equation on f . The
simplest example is that of the entropy solution u ∈ C(R+;L1(Rd)) to a
multidimensional scalar conservation law

∂tu(t, x) + divA(u) = 0, t > 0, x ∈ Rd,
∂tS(u(t, x)) + div ηS(u) ≤ 0,

(1.1)

for all convex function S(·) with S(0) = 0 and using the notations ηS(u) =∫ u

0
S ′(·)a(·), a = A′ : R → Rd. Then, we define, for v ∈ R, the ‘equilibrium’

function f(t, x, v) thanks to

f(t, x, v) =


+1, for 0 < v < u(t, x),
−1, for u(t, x) < v < 0,
0, otherwise.

(1.2)

The theory of kinetic formulations states that (1.1) is equivalent to write the
kinetic equation on f

∂tf + a(v) · ∇xf = ∂vm(t, x, v), (1.3)

for some unknown nonnegative bounded measure m. The derivation is ob-
tained by integrating (1.3) against S ′(v), and since we have

S(u) =

∫
R
S ′(v) f(t, x, v) dv, ηS(u) =

∫
R
S ′(v) a(v) f(t, x, v) dv,

the kinetic formulation turns out to provide the inequalities

∂tS(u(t, x)) + div ηS(u) = −
∫

R
S ′′(v)m(t, x, v) dv.

Therefore the inequalities in the second equation of (1.1) are equivalent to the
positivity of m. Also a control of the total mass of the measure is obtained
using S(v) = v2/2 in the above equality∫ ∞

0

∫
R×Rd

m(t, x, v) dt dv dx ≤ 1

2
‖u0‖2

L2(Rd).

This method turns out to provide a tool for studying regularizing effects
for the hyperbolic equation (1.1), when a non-degeneracy condition on the
fluxes A is satisfied. Indeed, averaging lemmas may be applied to the linear
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transport equation (1.3) and provide regularity in low order Sobolev spaces
(it is known that BV regularity is the best that can be expected) for averages
like (1.5) below.
Several other examples of such a kinetic formulation, and of related regular-
izing effects, have been derived and are recalled below.
The purpose of this paper is to show that the known regularizing effects
for these examples can be improved using an additional information on the
function f , namely its v regularity. This motivates to first study a new class
of averaging lemmas.
In the end of this introduction, we first state our averaging results and then
we give three examples of applications to regularizing effects.
In the second and third sections, we prove the results and in a last section
we treat cases (higher v derivability on f) which require another method of
proof.

1.1 The averaging results

We consider the following equation

v · ∇xf = ∆α/2
x g, x ∈ Rd, v ∈ Rd. (1.4)

Now we choose any φ ∈ C∞
c (Rd) and define

ρ(x) =

∫
Rd

f(x, v)φ(v)dv. (1.5)

Assume that

g ∈ Lp(Rd, W β,p
v (Rd)), 1 < p ≤ 2, β ≤ 1

2
,

f ∈ Lq(Rd, W γ,q
v (Rd)), 1 < q ≤ 2, 1− 1

q
< γ ≤ 1

2
.

(1.6)

We also point out that the results and proofs extend in the same way for
exponents p or q larger than 2. Then, we have to replace p and q by min(p, p̄)
and min(q, q̄) in formula (1.7) below (p̄ denotes here the conjugate exponent
to p). It is also possible to deal with exponents β or γ larger than 1/2 but
the question is more delicate. We restrict ourselves to β, γ < 1/2 for the
moment and leave the other cases to the last section of the paper.
As usual for averaging lemmas, we state that the average ρ is in fact more
regular than f itself. This can be quantified as follows
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Theorem 1.1 (Case 0 ≤ α < 1) Let f , g satisfy (1.4) and (1.6), then we
have for s′ < s = θ(1− α) and r′ < r with 1

r
= θ

p
+ 1−θ

q
,

‖ρ‖
W s′,r′

loc

≤ C
(
‖g‖Lp

xW β,p
v

+ ‖f‖Lq
xW γ,q

v

)
,

with θ =
1 + γ − 1/q

1 + γ − β + 1/p− 1/q
. (1.7)

Remark 1.1 1. The constant C appearing in Theorem 1.1 depends on the
size of the domain on which we estimate ρ, on the size of the support of φ
and on its regularity.
2. For γ = 0, β ≤ 0, we are in a case included in standard averaging lemmas
(see in particular [11]). However our result is a bit weaker since it is known
in this case that ρ ∈ W s,r with s and r given by the formulas of Theorem 1.1.

The fact that we do not reach s′ = s and r′ = r is due to a choice in
our method of proof. We decided, for the sake of simplicity, to reduce it to
classical interpolation between Lq and W 1,p through Lions-Peetre K-method.
This looses a little compared to a dyadic decomposition. Nevertheless when
p = q, the previous theorem may be precised and we obtain ρ in a Besov
space but still not the optimal Sobolev space

Theorem 1.2 (Case 0 ≤ α < 1, p = q) Let f , g satisfy (1.4) and (1.6) with
p = q. Assume β, γ ≤ 0 or q = p = 2, then for s = θ(1 − α), θ given by
(1.7), we have

‖ρ‖Bs,p
∞ ≤ C

(
‖g‖Lp

xW β,p
v

+ ‖f‖Lp
xW γ,p

v

)
.

It is also possible to work with α = 1 and we obtain

Theorem 1.3 (Case α = 1) Let f , g satisfy (1.4) and (1.6). Assume β, γ ≥
0, then we have for 1

r
= θ′

p
+ 1−θ′

q
and θ′ < θ given by (1.7) (with equality if

p = q = 2)

‖ρ‖Lr∞ ≤ C‖g‖θ′

Lp
xW β,p

v
‖f‖1−θ′

Lq
xW γ,q

v
.
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Moreover for p = q, then for any β, γ (possibly negative), we have with θ′ < θ
given by (1.7) and with equality for β, γ ≤ 0 or p = q = 2

‖ρ‖Lp ≤ C‖g‖θ′

Lp
xW β,p

v
‖f‖1−θ′

Lq
xW γ,q

v
.

Remark 1.2 1. Here also the constants C depend on the size of the supports
of f and g and on φ.

2. The case p = q, β ≤ 0 and γ = 0 was treated in [25]. We find here almost
the same exponent θ: Our exponent is precisely the limit case in [25]. The
reason why we obtain it is only because we use product Hardy spaces as in [6]
where the limit case was also obtained, our method being exactly the same as
in [25] in this case.

3. For p 6= q and β or γ negative, we are unable to obtain more than the
weak inequality

‖ρ‖Lr∞ ≤ C (‖g‖Lp + ‖f‖Lq) .

4. The main interest of the theorem is to prove that if a sequence fn satisfies
(1.4) with righthand side gn which are compact then fn is also compact.

To conclude, let us mention that these theorems are also true for the evolution
equation

∂tf + a(v) · ∇xf = ∆α/2
x g, (1.8)

when the field v → a(v) satisfies the strongest non degeneracy condition,
namely: for all R > 0, there is a constant C(R) such that for ξ ∈ Rd, τ ∈ R
with |ξ|+ |τ | ≤ 1, then

meas{v s. th. |v| ≤ R, and |a(v).ξ − τ | ≤ ε} ≤ Cε. (1.9)

The regularity on the average ρ is then a regularity in time and space but
all the formulas given above for the exponents are exactly the same. Weaker
non-degeneracy conditions can also be used (see [14], [11], [25]). Also optimal
Sobolev spaces can be reached in some situations (see [4], [29], [9]) and better
adapted Besov-type spaces can also be used as in [26].

5



1.2 Applications to kinetic formulations

Possible applications include in particular kinetic formulations for scalar con-
servation laws (see [21] or [16] for the case with dispersion), multibranch sys-
tems like isentropic gas dynamics with a pressure law p(ρ) = κ ρ3 (see [22],
[3], [28]) and thin micromagnetic films (see [8], [1], [17], [18], [27]). We refer
to the given references and [24] for more details on the kinetic formulations.

Firstly, we wish to give a direct proof of the following

Theorem 1.4 Let u(t, x) ∈ C(R+;L1(Rd)) an entropy solution to a non-
degenerate (in the sense of (1.9)) multidimensional scalar conservation law
(1.1), with u(t = 0) ∈ L1 ∩ L∞(Rd), then locally we have

u ∈ W s,r
t,x for all s <

1

3
, r <

3

2
.

This regularity was obtained in [22] with a more complicate argument which
involves a bootstrap of averaging lemmas combined with the L1 contraction
property. Notice that the optimal regularizing effect, from u0 ∈ L∞ to u(t) ∈
BV is an open question in more than one space dimension. On the other
hand two different methods lead to the same exponents s < 1

3
. Also our

proof below has he advantage to extend to inhomogeneous problems like

∂tu(t, x) + divA(u) = f(t, x) ∈ L1(R+ × Rd), (1.10)

and yields the same regularity. An example in §1.3 below shows that the BV
regularity fails for this problem.

Proof of Theorem 1.4. We define, for v ∈ R, the function f(t, x, v) in
(1.2) and use its kinetic formulation (1.3). We know that the right hand side
is the derivative in v of a bounded Radon measure in (t, x, v). A measure
belongs to any Sobolev space W−α,(1−α/(d+2))−1

with α > 0. Therefore, we
may also write the equation (1.8), and choose in (1.4), (1.6) any α > 0,
β = −α− 1, p = (1−α/(2d+ 1))−1. On the other hand, since the derivative
in v of f is a bounded measure and f belongs to L∞, by interpolation we
know that f belongs to Lq

t,xW
γ,q
v for any q < 2 and γ < 1

2
. Applying Theorem

1.1, with γ ≈ 1
2
, q ≈ 2, α ≈ 0, p ≈ 1, β ≈ −1, we immediately deduce the

regularity result in theorem 1.4.
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As a second example, we consider a solution (ρ, ρu) to one dimensional isen-
tropic gas dynamics with a polytropic pressure law p(ρ) = κ ρ3 (more gener-
ally we could consider a multibranch system). This class of systems admits a
pure kinetic formulation. As for scalar conservation laws, we may define an
equilibrium function f as the indicator function in v of an interval depend-
ing on the solution to the system. This function f again satisfies a transport
equation (1.8) where the right hand side is now the second derivative in v of
a bounded measure. By the same method we now apply Theorem 1.1, with
γ ≈ 1

2
, q ≈ 2, α ≈ 0, p ≈ 1, β ≈ −2, and obtain that, locally,

u ∈ W s,r
t,x for all s <

1

4
, r <

8

5
,

which improves the W 1/7,7/4 regularity proved in [21]. Notice that it is an
open problem to apply averaging lemmas to other pressure laws.

As a third and final example, we consider a variational problem. In some
theories of line energies Ginzburg-Landau for thin micromagnetic films (see
[17] and [27]), it is possible to show that a function f of the magnetization
u(x) ∈ R2, x ∈ R2, satisfies the kinetic equation (1.4) in two space dimensions
where the right hand side is again the divergence in v ∈ R2 of a bounded
measure. The equilibrium function is defined as f(x, v) = Iu(x)·v>0 and thus
we are again in the same situation as for scalar conservation laws. We can
choose the same parameters in Theorem 1.1 and thus the magnetisation
satisfies locally

u ∈ W s,r
x for all s <

1

3
, r <

3

2
.

whereas in [17] we had only W 1/5,5/3 using the classical averaging lemmas of
[11]. Here the BV threshold turns out to be fundamental in the counterex-
ample of [1] and it would be useful to determine the optimal regularity of
the solution.

1.3 Examples and counterexamples of optimality

We discuss here two examples: for optimality of the averaging result itself
and for its application to scalar conservation laws.

We do not know in general if the estimates given in Theorems 1.1, 1.2 and
1.3 are optimal or not, except in the case β = γ = 1/2, p = q = 2. Indeed
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define f(x, v) = Iu(x)·v>0 on R2 × R2 as in the third example of the previous
subsection with u the vortex centered at the origin

u(x) =
x⊥

|x|
, ∀ x 6= 0.

Then f is solution to the equation (in the theory of line energies Ginzburg-
Landau for micromagnetic films, it corresponds to zero energy states, see
[18])

v · ∇xf = 0, ∀(x, v) ∈ R4.

The function f belongs to L2
xH

β
v for any β < 1/2 and so does of course the

right-hand side, so Theorem 1.1 implies that any moment of f belongs to
Hs

loc for any s < 1. We thus obtain that u belongs to Hs
loc for any s < 1,

which is the best range of exponent since u does not belong to H1
loc.

Next, we discuss optimality for scalar conservation laws. In one dimension,
for Burgers-Hopf equation (1.1) with A(u) = u2/2, Olĕınik’s regularizing
effect proves that u becomes BV immediately (see [23]). Our result only

gives W
s,3/2
loc , s < 1/3. Notice however that if we add source terms

∂tu+ ∂x
u2

2
= f(t, x), f ∈M1(R+ × R),

u(t = 0, x) = 0,

then, Olĕınik’s result and method do not apply. For instance take f = mδ(t =
0)δ(x = 0), the solution u is then

u(t, x) =
x

t
, for 0 ≤ x <

√
2mt,

u(t, x) = 0, for x < 0 or x ≥
√

2mt.

Now we superpose such source terms, taking f = 1
2N2

∑N
i=1

∑N
j=1 δ(t =

i/N)δ(x = j/N). Since the waves interactions are very weak, we infer the
following estimate for the Sobolev norm of the solution

‖u‖Lp
t W s,p

x
≥
∫ 1/4

0

N−1∑
j=1

∫ (j+1)/N

j/2N

∫ j/2N

(j−1)/N

|u(x)− u(y)|p

|x− y|sp+1
dxdydt

∼
N/4∑
i=0

∫ (i+1)/N

i/N

N × 1

N2
× 1

Np
× 1

tp/2
×N sp+1

∼ N sp−p/2.
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Therefore the norm of u in Lp
tW

s,p
x can remain bounded as N → ∞ only

for s ≤ 1/2. Of course u does not belong to L∞ so although the kinetic
formulation still applies, u is not an average of f as defined by (1.5) (a
cut-off in velocity is needed). However the above estimate remains valid for
uIu<10 for instance which is a true average and it is worth noticing that for
a function g ∈ L1

t,x,v, Theorem 1.1 shows that the average belongs to W s,1

with the same scaling s < 1/2.

2 Proof of Theorems 1.1, 1.2 and 1.3

2.1 Formulation in Fourier space

Since we average in velocity against φ, we only have to take into account the
velocities in the support of φ and hence we may assume that f and g have
compact support in velocity.
We work in the Fourier space and we denote by f̂(ξ, v) and ĝ(ξ, v) the Fourier
transforms in the x variable of f and g. Equation (1.4) becomes

iξ · vf̂ = |ξ|αĝ. (2.1)

Following the method introduced in [25], we write for any λ > 0 (λ may be
very large or very small)

f̂ =
λ|ξ|

λ|ξ|+ iξ · v
f̂ +

|ξ|α

λ|ξ|+ iξ · v
ĝ. (2.2)

And thus, we obtain
ρ(x) = T1(f) + T2(g), (2.3)

with (F−1 denoting the inverse Fourier transform)

T1(f) = F−1

(∫
Rd

λ|ξ|
λ|ξ|+ iξ · v

f̂(ξ, v)φ(v)dv

)
,

T2(g) =
1

λ
∆(α−1)/2

x T1(g).

(2.4)

2.2 Estimates for the norms of T1 in Lp spaces

We now compute the norm of the operators T1 (and the norms of T2 follows)
from Lp

x(W
s,p
v ) to Lp. We begin with the simpler case p=2.
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Lemma 2.1 for any real number s, T1 : L2
x(H

s
v) −→ L2, with norms

for s ≤ 0, ‖T1‖s,2 ≤ C(λ1/2+s + λ1/2),

for 0 ≤ s < 1/2, ‖T1‖s,2 ≤ C(s) λ1/2+s,

for 1/2 < s ≤ 1, ‖T1‖s,2 ≤ C(s) λ.

We give a proof of this lemma below and we first state the general result in
more general Lp spaces. The proof of the following proposition requires more
technical tools and it is given in next section.

Proposition 2.1 ∀ 1 < p ≤ 2, T1 : Lp
x(W

s,p
v ) → Lp

x, with norm

‖T1‖s,p ≤ C(λs+1−1/p + λ1−1/p), for s ≤ 0,

‖T1‖s,p ≤ Cλr, r < r∗ = s+ 1− 1

p
(r = r∗ for p = 2), for 0 < s < 1/2,

‖T1‖s,p ≤ Cλr, r < r∗ = 2− s+ 2
s− 1

p
(r = r∗ for p = 2), for s > 1/2.

Proof of Lemma 2.1. The Fourier transform in v, for a fixed ξ 6= 0, of
λ|ξ|/(λ|ξ|+ iξ · v) is exactly

Cλe−λζ· ξ
|ξ|H

(
ζ · ξ
|ξ|

)
δξ(ζ),

where C is a given constant independent of λ, H is the heavyside step function
and δξ is the Dirac mass on the line parallel to ξ. We choose a function
ψ ∈ C∞

c (Rd−1) such that ψ(P Rξv)φ(v) = φ(v) with P the projection on the
hyperplane v1 = 0 (Pv = v′ = (v2, . . . , vd)) and Rξ the rotation such that
Rξξ = (|ξ|, 0, . . . , 0). If φ has compact support in the ball B(0, R) of Rd then
for ψ we may take, for instance, any function with constant value 1 in the
ball B(0, R) of Rd−1.
As a consequence, we claim that for any 0 ≤ s < 1/2, there is a constant C
with ∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ|+ iξ · v

∥∥∥∥
H−s

v

≤ Cλ1/2+s. (2.5)
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Indeed, since ξ is kept fixed for the moment, we may choose a basis for v
where ~v1 is parallel to ξ. In this case, we have, thanks to the localization in
velocity, the inequality∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ|+ iξ · v

∥∥∥∥2

H−s
v

≤ Cλ2

∫
(1 + |ζ|2)−se−2λζ1H(ζ1)|ψ̂(ζ2, . . . , ζd)|2dζ

≤ Cλ2‖ψ(v′)‖2
H−s

v′
×
∫ ∞

0

(1 + |ζ1|2)−se−λζ1dζ1

≤ Cλ2

∫ ∞

0

ζ−2s
1 e−2λζ1dζ1

≤ Cλ

∫ ∞

0

(
ζ1
λ

)−2s

e−2ζ1dζ1 ≤ C ′λ1+2s.

With the same computation, we have the bound for s < 0 (notice that it
only holds in the homogeneous space Ḣ−s)∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ|+ iξ · v

∥∥∥∥
Ḣ−s

v

≤ Cλ1/2+s. (2.6)

Now for s > 1/2, we trivially obtain∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ|+ iξ · v

∥∥∥∥
H−s

v

≤ Cλ, (2.7)

because, assuming again that ξ is parallel to the first coordinate axis,∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ|+ iξ · v

∥∥∥∥2

H−s
v

≤ Cλ2

∫ ∞

0

e−2λζ1

(1 + ζ2
1 )s

dζ1 ≤ Cλ2

∫ ∞

0

1

(1 + ζ2
1 )s

dζ1 ≤ Cλ2.

To conclude, for s < 0, for any f ∈ L2
xH

s
v , because of Estimate (2.6)

‖T1(f)‖L2 ≤ ‖fφ‖L2
xHs

v

∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ|+ iξ · v

∥∥∥∥
L∞x H−s

v

≤ C‖f‖L2
xHs

v
×

(∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ|+ iξ · v

∥∥∥∥
L∞x Ḣ−s

v

+

∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ|+ iξ · v

∥∥∥∥
L∞x L2

v

)
≤ Cφ(λ

1/2+s + λ1/2) ‖f‖L2
xHs

v
.
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And for s ≥ 0, for any f ∈ L2
xH

s
v ,

‖T1(f)‖L2 ≤ ‖fφ‖L2
xHs

v

∥∥∥∥λ|ξ|ψ(P Rξv)

λ|ξ|+ iξ · v

∥∥∥∥
L∞x H−s

v

.

The combination of this last inequality and of Estimates (2.5) and (2.7)
finishes the proof of the lemma (we recall that we work with compactly
supported functions in x).

Remark. We do not know what is the best estimate for the critical exponent
s = 1/2. A variant of the previous proof gives

‖T1‖1/2,2 ≤ −Cλ lnλ.

2.3 Conclusion of the proof

We now consider g ∈ Lp
xW

β,p
v and f ∈ Lq

xW
γ,q
v as given by (1.6) and satisfying

Equation (1.4).
We have obtained a decomposition of ρ into a sum of two terms T1(f) and
T2(g) in Lq and in W 1−α,p, depending on a parameter λ. We use this decom-
position through Lions and Peetre’s K-method of real interpolation (see in
particular J.L. Lions and J. Peetre [19], J. Bergh and J. Löfström [2]). We
define

K(t, ρ) = inf
ρ1 ∈ Lq

x, ρ2 ∈ W 1−α,p
x

ρ = ρ1 + ρ2

(‖ρ1‖Lq + t‖ρ2‖W 1−α,p),

and
Φθ,∞(ρ) = ‖t−θK(t, ρ)‖L∞t

.

By standard interpolation results, if Φθ,∞(ρ) < ∞ then ρ belongs to the
interpolation space (Lq,W 1−α,p)θ,∞.

2.3.1 The case of Theorem 1.1

For t > 1, then since we know that ‖ρ‖Lq ≤ C‖f‖Lq
x,v

, we pose

ρ1 = ρ, ρ2 = 0.

Therefore t−θK(t, ρ) is bounded uniformly for t ∈ [1, ∞ [ for any θ ≥ 0.
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For t < 1 we use the natural decomposition given by the equation, i.e we
pose

ρ1 = T1(f), ρ2 = T2(g). (2.8)

Of course it remains to choose λ: Thanks to Proposition 2.1, we have

‖T1(f)‖Lq + t‖T2(g)‖W 1−α,p ≤ Cλr1 + Ctλr2 ,

for any r1, r2 strictly less than r∗1, r
∗
2

r∗1 = γ + 1− 1

p
, r∗2 = β − 1

q
,

because the parameters λ, which we will consider, are bounded from above,
and thus we neglect the terms in λ1−1/p or λ1−1/q in the bounds for the case
β or γ < 0. Minimizing in λ, we take

λ = Ct1/(r1+r2),

and obtain for t < 1 the estimate

K(t, ρ) ≤ Ctθ
′
,

for any θ′ strictly less than the exponent θ given by the formula (1.7).

We eventually deduce that ρ belongs to the space (Lq, W 1−α,p)θ′,∞ for any
θ′ < θ given by (1.7).

This space is included in any W s′,r
loc for s′ < s = θ(1 − α), 1/r′ > 1/r =

(1−θ)/q+θ/p, thus proving Theorem 1.1. Indeed, locally in x, it is included
in (B0

q′q′ , B
1−α
p′p′ )θ′,r for q′ < q, p′ < p, θ′ < θ.

2.3.2 The case of Theorem 1.2

The proof is exactly the same as for Theorem 1.1. But since we also know
that β and γ are non negative or that p = q = 2, we may take the limit values
r1 = r∗1 and r2 = r∗2 and therefore we know that ρ belongs to (Lq, W 1−α,p)θ,∞
with θ given by (1.7). This space turns out to be exactly the Besov space
Bs

r∞ if p = q = r.

13



2.3.3 The case of Theorem 1.3

The subcase p 6= q in Theorem 1.3 is the more complicated because it is the
only one where we have to use the decomposition (2.8) also for large t. By
comparison the subcase p = q in Theorem 1.3 is the easiest because we do
not need the interpolation argument there and so we will not treat it (the
argument would the same as in [25]).

For α = 1, and 0 ≤ β, γ < 1/2, we define ρ1 and ρ2 by (2.8) for any t. Because
of Proposition 2.1, we have for any 0 < δ1 < γ + 1 − 1/q, δ2 < β − 1/p, for
any λ > 0

K(t, ρ) ≤ Cλδ1‖f‖Lq
xW γ,q

v
+ Ctλδ2‖g‖Lp

xW β,p
v
.

Thus choosing λδ1−δ2 = t‖g‖/‖f‖, we obtain

K(t, ρ) ≤ Ctδ1/(δ1−δ2)‖f‖1−δ1/(δ1−δ2)

Lq
xW γ,q

v
‖g‖δ1/(δ1−δ2)

Lp
xW β,p

v
.

The exponent δ1/(δ1−δ2) being as close as we wish to (but less than) θ = (1+
γ−1/q)/(1+γ−1/q−β+1/p), we obtain ρ in the spaces (Lp, Lq)θ′,∞ = Lr∞
(the Lorentz spaces) with 1/r = θ′/p+(1−θ′)/q for any θ′ < θ and with norm
less than ‖t−θ′K(t, ρ)‖L∞t

. This exactly gives the corresponding inequality in
Theorem 1.3, thus concluding the proof.

As a last remark, notice that we cannot treat the case β < 0 or γ < 0 in
Theorem 1.3, only because there the operator T1 (or T2) does not have the
same behaviour in λ for large and small λ.

3 Proof of Proposition 2.1 and the H1 bound

Proposition 2.1 is obtained thanks to standard interpolation results between
the L2 case which has already been proved and a similar estimate in Hardy
spaces. This requires some preliminary lemmas (lemmas 3.1, 3.3, 3.4 below).
Combined with Lemmas 2.1, they prove the proposition.

3.1 The product Hardy spaces

The estimate on T1 from Lp
xW

s,p
v to Lp for p < 2 is obtained by interpolation.

However as it is usual in this case, the operator T1 is not bounded from
L1

xW
s,1
v to L1 and as a consequence we need to work on some kind of Hardy

14



space. Because the term ξ · v yields an operator which is not in Calderon-
Zygmund class, we use here the product Hardy spaces which has been used
in this context by M. Bézard in [4] and F. Bouchut see [6].
We do not recall the definition of product Hardy spaces and refer the reader
to [4] or [6] for details. What we only need is that these spaces, denoted
H1(Rd−1 × R,W s,1), satisfy the two following lemmas

Lemma 3.1 (Interpolation) Let T be bounded on

Hs
v(Rd, L2

x(Rd)) −→ L2
x(Rd), with norm ‖T‖s,2,

W s,1
v (Rd, H1

x(Rd−1 × R)) −→ H1
x(Rd), with norm ‖T‖s,1,

then for any 1 < p ≤ 2, T is bounded on

W s,p
v (Rd, Lp

x(Rd)) −→ Lp
x(Rd), with norm ‖T‖s,p ≤ ‖T‖2/p−1

s,1 ‖T‖2−2/p
s,2 .

This lemma is a direct consequence of Proposition 3.12 in [4] and of standard
results on the interpolation of Lp spaces (see [2]). Next we need a sufficient
condition for a Fourier multiplier to be bounded on H1(Rd−1 × R), which is
exactly Proposition 3.10 in [4] or Lemma 1.8 in [6]

Lemma 3.2 Let K(ξ′, ξd) ∈ C∞ (Rd \
(
(0× R) ∪ (Rd−1 × 0)

))
such that for

all α1 ∈ Nd−1, α2 ∈ N,

|∂α1

ξ′ ∂
α2
ξd
K(ξ′, ξd)| ≤

Cα1,α2

|ξ′|α1 |ξd|α2
,

then K is a bounded Fourier multiplier on H1(Rd−1 × R).

3.2 Estimates for the norms of T1 in Lp spaces

We now denote by Rv the rotation in Rd such that Rvv = |v|ed, where ed is
the last coordinate vector. We perform the change of variable x → Rvx in
definition (2.4) of T1. We obtain that

T1f = T̄1(f(R−1
v x, v)), (3.1)

with

T̄1(f) = F−1

(∫
Rd

λ|ξ|
λ|ξ|+ iξd|v|

f̂(ξ, v)φ(v)dv

)
. (3.2)
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Obviously, the norms of T1 from W s,p
v (Rd, Lp

x(Rd)) into Lp
x(Rd)) are exactly

the same as the norms of T̄1 if s ≤ 0. For this last operator, with the help of
Lemma 3.2, we prove the

Lemma 3.3 (s ≤ 0) T̄1 : W s,1
v (Rd, H1(Rd−1 × R)) −→ H1(Rd) with norm

‖T̄1‖s,1 ≤ C(λs + 1).

Proof. We cannot use here any Fourier transform in v, unlike in the proof of
Lemma 2.1. Since we only know explicitly the s derivative in v of the kernel
λ|ξ|/(λ|ξ| + ξd|v|) for numbers s which are integers, we also perform some
interpolation here.
For any −s ∈ N, we have of course

λ−s∂−s
|v|

(
λ|ξ|

λ|ξ|+ iξd|v|

)
= (−s) !

(−iξd)−sλ1−s |ξ|
(λ|ξ|+ iξd|v|)1−s

.

It is easy to check that this last kernel satisfies the condition in Lemma 3.2
with constants Cα1,α2 independent of λ and vd. Hence for any nonpositive
integers s, T̄ is bounded from W s,1

v (Rd, H1(Rd−1×R)) to H1(Rd) with norm

‖T̄1‖s,1 ≤ C(λs + 1).

Now we interpolate between the spaces W−n,1
v H1

x(Rd−1 × Rd) and W−n−1,1
v

H1
x(Rd−1×Rd), we obtain all the spaces W s,1

v H1(Rd−1×Rd) for any −n−1 ≤
s ≤ n. So the last inequality is also true for any nonpositive s and the lemma
is proved.
We next consider the case where f is more regular in v, i.e. s > 0. Integrating
by parts in T1, we find with K the diameter of the support of φ

T1(f) = F−1

(∫
Rd

λ|ξ|
λ|ξ|+ iξ · v

∫ 0

−∞

(
φ

(
v + t

ξ

|ξ|

)
ξ

|ξ|
· ∇vf̂

(
ξ, v + t

ξ

|ξ|

)
+f̂

(
ξ, v + t

ξ

|ξ|

)
ξ

|ξ|
· ∇vφ

(
v + t

ξ

|ξ|

))
dtdv

)

T1(f) = F−1

(∫
Rd

(∫ 0

−2K

λ|ξ|dt
λ|ξ|+ iξ · v − it|ξ|

) (
φ(v)

ξ

|ξ|
· ∇vf̂(ξ, v)

+f̂(ξ, v)
ξ

|ξ|
· ∇vφ(v)

)
dv

)
.
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The function ∇vφ has exactly the same properties as φ. After performing
the change of variable x→ Rvx, we thus consider the following operator

T ′
1(f) = F−1

(∫
Rd

(∫ 0

−2K

λ|ξ|dt
λ|ξ|+ iξd|v| − it|ξ|

)
ξ

|ξ|
f̂(ξ, v)φ(v)dv

)
.

We prove that

Lemma 3.4 T ′
1 : L1

v(Rd, H1(Rd−1 × R)) → H1(Rd) with norm

‖T ′
1‖ ≤ Cλ lnλ.

Proof. We only have to check that the kernel in the operator T ′
1 satisfies the

conditions in Lemma 3.2. Indeed, we compute∣∣∣∣∣ |ξ′|α1 |ξd|α2∂α1

ξ′ ∂
α2
ξd

∫ 0

−2K

λ|ξ|dt
λ|ξ|+ iξd|v| − it|ξ|

∣∣∣∣∣ ≤
∫ 0

−2K

λ|ξ|dt
λ|ξ|+

∣∣ξd|v| − t|ξ|
∣∣

≤ Cλ lnλ,

which proves the lemma.

4 The case of higher regularity in velocity

In Theorems 1.1, 1.2 or 1.3 we have only considered functions f or g with
less than half a derivative in velocity. From the proof of Proposition 2.1, it
seems that Formula (1.7) is not correct for β or γ larger than 1/2 and should
be modified according to the corresponding estimates in Proposition 2.1 for
the operators. However, at least in the L2 case, such a method does not lead
to an optimal result. Notice also that when β > 1/2 with p = 2 (i.e. g is
very regular in velocity), Theorem 1.1 already gives the best regularity we
may hope for, because θ = 1 and so we gain a full 1 − α derivative for the
average. Throughout all this section, we thus consider the cases p = q = 2,
β < 1/2 and γ > 1/2 in (1.6).
In fact, in such a situation, the operator decomposition leading to Proposition
2.1 is unable to take advantage of the additional regularity of f and Theorem
1.1 gives the same result as for f ∈ L2

xH
1/2
v .

Using another decomposition than in Section 2, we can prove the
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Theorem 4.1 Let 0 ≤ α < 1, let f , g satisfy (1.4) and (1.6) with p = q = 2
and β < 1/2, then for s = θ(1− α),

‖ρ‖Hs
loc
≤ C

(
‖g‖L2

xHβ
v

+ ‖f‖L2
xHγ

v

)
,

with θ =
1/2 + γ

1 + γ − β
. (4.1)

The values of θ given in (4.1) and in (1.7) with p = q = 2 are the same. The
new point here is the extension to values γ > 1/2.
Proof of Theorem 4.1 We introduce a new decomposition of the average
which depends on the point ξ considered in the Fourier space.
For the moment, we keep this point fixed and we may thus assume that
ξ = (|ξ|, 0, . . . , 0). Equation (2.1) becomes simply

iv1f̂ = |ξ|α−1ĝ.

We denote by f̃ and g̃ the Fourier transform of f and g in the x and v
variables and by η the dual variable of v1, and by η′ the dual variable of
v′ = (v2, . . . , vd). We then have for any 0 < λ ≤ 1 (here we only need the
case λ small) and for an even exponent k larger than γ − 1/2

−ληkf̃ + ∂ηf̃ = −ληkf̃ + |ξ|α−1g̃.

We therefore obtain a decomposition (compare with (2.2))

ρ̂ = |ξ|α−1T̃ξĝ + λT̃ξ(∂
k
v1
f̂), (4.2)

with

T̃ k
ξ (h(v)) =

∫
Rd

Fv1φ(η, η′)

∫ ∞

η

Fvh(µ, η
′)e−

λ
k+1

(µk+1−ηk+1)dµdηdη′. (4.3)

The operator T̃ k
ξ is as a matter of fact a linear form, the variable ξ being

only a parameter, with the following estimate

Lemma 4.1 for any real number s < 1/2, T̃ k
ξ : Hs

v1
→ R with norm

‖T̃ k
ξ ‖s,2 ≤ Cλ(s−1/2)/(k+1). (4.4)
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Proof. It is a direct computation from Formula 4.3. Since the function φ
has compact support and belongs to any Hs′ , we have, first for s ≥ 0

|T̃ k
ξ h|2 ≤ C‖φ‖L2

v′H
1
v1
×
∫

Rd−1

sup
η

(∫ ∞

η

Fvh(µ, η
′)e−

λ
k+1

(µk+1−ηk+1)dµ

)2

dη′

≤ C

∫
Rd−1

sup
η

(∫ ∞

η

|µ|2s|Fvh(µ, η
′)|2dµ

)
×
(∫ ∞

η

|µ|2se−
2λ

k+1
(µk+1−ηk+1)dµ

)
dη′

≤ C

(∫
Rd

|µ|2s|Fvh(µ, η
′)|2dµdη′

)
× λ(2s−1)/(k+1) sup

η

∫ ∞

λ1/(k+1)η

|µ|−2se−
2

k+1
(µk+1−ηk+1)dµ

≤ Cλ(2s−1)/(k+1)‖h‖2
Hs .

For the case s < 0, a similar computation leads to

|T̃ k
ξ h|2 ≤ Cλ−1/(k+1)(1 + λ2s/(k+1))‖h‖2

Hs ≤ Cλ(2s−1)/(k+1)‖h‖2
Hs ,

since we only consider parameters λ ≤ 1.

The function ∂k
v1
f̂ belongs to L2

ξH
γ−k
v . Since k > γ − 1/2, we may apply

Lemma 4.1 and find

ρ̂(ξ) = C|ξ|α−1λ(β−1/2)/(k+1)‖ĝ(ξ, .)‖Hβ
v

+ Cλ(γ+1/2)/(k+1)‖f̂(ξ, .)‖Hγ
v
.

We minimize in λ. The aim is of course to control ρ̂(ξ) for large ξ. Also
notice that because of the localization in x, we may take f and g in L1

xH
γ
v

and L1
xH

β
v with consequently f̂ and ĝ in C0

ξH
γ
v and C0Hβ

v . Since α < 1, it is
enough to consider parameters λ ≤ 1 and we obtain

ρ̂(ξ) ≤ C|ξ|(α−1)
1/2+γ
1+γ−β (‖ĝ(ξ, .)‖Hβ

v
+ ‖f̂(ξ, .)‖Hγ

v
).

And finally

‖ρ‖Hs
loc
≤ C(‖g‖L2

xHβ
v

+ ‖f‖L2
xHγ

v
),

with s given by Theorem 4.1.
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