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Abstract. The purpose of this paper is to investigate the limit of some kinetic equa-
tions with a strong force. Due to friction, the solution concentrates to a monokinetic
distribution so as to keep the total of force bounded and in the limit we recover a
macroscopic system. This kind of asymptotics is a natural question when the mass
of the particles is very small or their inertia is neglected. After that we also study
the properties of the limit system and especially the uniqueness of solutions which
provides the full convergence of the family of solutions to the kinetic equation.

Résumé. Cet article se propose d’étudier la limite de solutions d’une équation cinétique
avec frottement lorsque les termes de force deviennent prédominants. A cause du frot-
tement, les solutions se concentrent progressivement en vitesse de manière à ce que la
somme des forces reste bornée ; à la limite cette concentration nous oblige à remplacer
l’équation cinétique par un système macroscopique. Cette problème apparait notam-
ment quand on fait tendre vers zéro la masse des particules ou quand on néglige leur
inertie. Enfin certaines propriétés du système, et particulièrement l’unicité, seront
détaillées afin d’obtenir une convergence de toute la suite des solutions et pas seule-
ment d’une suite extraite.

Introduction

We are interested in the behaviour when ε vanishes of kinetic equations of the kind

(1)







∂fε

∂t
+ v · ∇xfε +

1

ε
divv

(

(F [fε] − v)fε

)

= 0 , t ≥ 0, (x, v) ∈ IR2d,

fε(t = 0, x, v) = f0(x, v) .

Here we work in any dimension d and the force term F [fε] only depends on the mass
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density ρε or on the first moment jε of fε, defined by

(2)















ρε(t, x) =

∫

IRd

fε(t, x, v)dv ,

jε(t, x) =

∫

IRd

vfε(t, x, v)dv .

The guiding example throughout this paper will be the modified Vlasov Stokes system

(3)







∂fε

∂t
+ v · ∇xfε +

1

ε
divv

(

(g +K ?x jε − v)fε

)

= 0 , t ≥ 0, (x, v) ∈ IR6,

fε(t = 0, x, v) = f0(x, v) .

While the general equation (1) contains for instance the classical Vlasov-Poisson sys-
tem, the system (3) is a simplified model for the dynamics of dilute particles in a Stokes
flow and submitted to gravity (g in the above equation) when we take for the matrix K

(4) K(x) = −c

(

Id

|x|
+
x⊗ x

|x|3

)

, c > 0 .

This model is derived by P-E Jabin and B. Perthame in [15] and its basic properties
are stated in [14] and in [6] by I. Gasser, P-E Jabin and B. Perthame. K. Hamdache also
worked on the existence for a slightly different model in [11]. In another situation, kinetic
equations for a system of particles in a potential flow have been introduced by D. Herrero,
B. Lucquin-Desreux and B. Perthame in [12] and by G. Russo and P. Smeraka in [17]. An
evolution equation, close to the limit systems we obtain here (see (5) and (6) below), has
also been derived for an infinite suspension of particles (see J. Rubinstein and J.B. Keller
in [16]).

Formally, when ε converges to zero, the limits of the systems (1) is

(5)















∂ρ

∂t
+ divj = 0 ,

j(t, x) = ρF [ρ, j] ,

ρ(t = 0, x) = ρ0(x) ,

and in the special case of (3), we obtain

(6)







∂ρ

∂t
+ divj = 0 ,

j(t, x) = ρ(K ?x j + g) .

This paper aims at proving this limit rigorously, for some F or K regular enough and
in particular more regular than the matrix K defined by (4). This additional regularity is
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necessary because in these limits, fε concentrates to a monokinetic distribution ρ(x)δ(v−
u) with ρu = j. Notice that the initial data is given and does not depend on ε, the
concentration is thus only due to the natural evolution of the equation.

This kind of singular perturbation and this way of deriving macroscopic limits is quite
recent and the usual methods, see for instance R.T. Glassey in [7], do not apply. The
main difficulty is that the density function f , in this limit, concentrates as a Dirac mass.
This problem is related to the quasi-neutral limit for plasmas (see Y. Brenier [3], and
E. Grenier [9]) or the limit of the Vlasov-Poisson system towards the pressureless Euler-
Poisson system (see V. Sandor [18]) where the same phenomenon of concentration occurs.
A remarkable difference is however that here the only scaling of the force term is enough,
and it is not necessary to also scale the initial data. Another remarkable feature is that our
limiting system does not have a notion of dissipative solution and the method of [3] cannot
be used here. Another class of singular perturbation problems with strong force terms has
been treated by E. Frnod and E. Sonnendrcker in [5] (fixed magnetic force) and F. Golse
and L. Saint-Raymond in [8] (the so-called gyrokinetic limit). Keeping Lp (p > 1) bounds
on f , the analysis in [5] is then based on two-scale Young measures (see G. Allaire [1] and
G. N’Guetseng [10]), and in [8] it is based on a compactness argument due to Delort. The
methods developed in these papers cannot be applied here because of the concentration
phenomenon and the different structure of the force term.

We will first present three theorems : the first one proves the limit for “regular” force
terms, the second gives some properties of existence and uniqueness for the macroscopic
system with the same regularity assumption, whereas the last one studies the system (6).
The rest of the paper will be devoted to the proof of these theorems.

1. Main results

We will only deal with force terms F [ρε, jε] which are a sum of two convolution oper-
ators in ρε and jε

(7) F [ρε, jε] = A ?x ρε +K ?x jε +G(x) ,

with the assumption

(8) A,G ∈ (C0(IR
d))d, K ∈ (C0(IR

d))d
2

.

Alternatively, we will aslo use the assumption of the negativity of the operator K,
more precisely

(9)

∫

IRd

u(x) · (K ?x u(x)) ≤ 0 , ∀u ∈ (C0(IR
d))d .

We consider equation (1) for a non-negative bounded initial data with finite mass and
finite kinetic energy
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(10)







f0 ∈ L1 ∩ L∞(IR2d) ,

E0 =

∫

IR2d

|v|2f0(t, x, v)dxdv < +∞ .

For developments we will also use the functional

(11) ∆ε(t) =

∫

IR2d

|v − F [ρε, jε]|
2fε(t, x, v)dxdv .

The systems (1) admit the following a priori estimates

‖fε(t, ., .)‖L1(IR2d) = ‖f0‖L1(IR2d) ,(12)

‖fε(t, ., .)‖L∞(IR2d) ≤ e
dt
ε ‖f0‖L∞(IR2d) .(13)

We will consider weak solutions of equation (1), which we define as distributional
solutions to (1) satisfying the natural conditions

(14)







































fε ∈ L∞([0, T ], L1 ∩ L∞(IR2d)) ∀T ≥ 0,

fε ∈ C([0, ∞ [ , L1(IR2d)),

Eε(t) =

∫

IR2d

|v|2fε(t, x, v)dxdv <∞ ∀t ≥ 0,

fε is the weak* limit in L∞([0, T ], Lp(IR2d))

of classical solutions to (1) for all 1 < p ≤ ∞.

Notice that the energy and L1 estimates in (14) give estimates in L1 for ρε and jε.
We are thus able to give a precise meaning to (1) in the space of distributions for weak
solutions since F [ρε, jε] ∈ L1

loc. They also satisfy the a priori estimates (12) and (13). For
a precise theory of existence and estimates of this kind of systems, see A. Arsenev [2], R.J.
DiPerna and P.L. Lions [4], and also [6], [7], E. Horst [13] and [14].

In all the paper, M1 will denote the space of Radon measures. We are now ready to
state our three theorems

Theorem 1 : Let (fε) be a sequence of weak solutions in the sense of (14) to equation (1).
Assume (7), (8) and that the kinetic energy Eε(t) is uniformly bounded over any interval

[0, T ]. Then, as ε converges to zero, there is a subsequence such that

(i) ρε ⇀ ρ̄(x), jε ⇀ ̄(x) weakly in L∞([0, T ],M1(IRd)),
and ρ̄ and ̄ are solutions to the system (5),

(ii) if ‖K‖L∞‖f0‖L1 < 1 or if (9) holds, then

∆ε(t) → 0 in C([t?,∞ [ ) for all t? > 0.
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(iii) if K, A, G are in W 1,∞ and (9) holds, then there exists a constant C > 0 such that

∆ε(t) ≤ C(t?)ε2 ∀t ∈ [t?,∞ [ , t? > 0 and

fε ⇀ ρ̄(x)δ(v − F [ρ̄, ̄]) weakly in L∞([0, T ],M1(IR2d)) .

Moreover if condition (9) holds true, the kinetic energy is bounded.

Remarks.

1.The main limitation of this theorem comes from assumption (8), because it does not
allow the natural singularity in the forces. This is due to the fact that we only have M 1

estimates in the phase space for fε, ρε or jε and we need to pass to the limit in the term
ρεF [ρε, jε]. However, if we suppose that divF [ρ̄, ̄] = 0 (again a natural condition in view
of (4)), then the limit system (5) conserves all Lp norm of ρ̄ and of ̄ because we then have

∂ρ̄

∂t
+ F [ρ̄, ̄] · ∇ρ̄ = 0 ,

while the second equation of (5) shows that the Lp norm ̄ is dominated by the Lp norms
of ρ̄, (see the theorem 3 below). Since it is very natural to get divF [ρ̄, ̄] = 0, especially
in the case of Vlasov-Stokes equation (A = 0, G = cst, divK = 0), it is a natural open
question to know if condition (8) can be removed in that case.

2. A crucial step in this theorem is the estimate for the functional ∆ε(t) and the main
difficulty is to prove that it converges to zero even if K, A or G are not differentiable and
without condition (9). If K, A and G are C1 and if (9) is true, we prove that ∆ε is less
than ε2. Notice nevertheless that, even in this case, the decay is not enough to compensate
the exponential growth of fε and the question of the regularity in x of ρε or jε is still not
solved.

3. From the first remark we can expect that ρ̄ and ̄ have the same regularity as ρ0

and j0 (L1 ∩ L
5
3 for ρ̄ in dimension three for example). Another natural question arising

from theorem 1 would hence be to prove weak L1 convergence instead of weak measure
convergence.

Theorem 2 : Let F be given by (7), with conditions (8) and (9), and assume that div K,

div A and ∇G belong L∞. Then

(i) the second equation of the system (5) determines uniquely j in L1 as a function of ρ in

L1,

(ii) the system has distributional solutions ρ, j ∈ L∞([0, T ], L1(IRd)), ∀T > 0 for any

non-negative ρ0 in L1,

(iii) if ρ0 belongs to W 1,1, and is small in L1 the solution is unique for small times,

(iv) if K and A ∈W 1,∞, uniqueness holds globally in time.

This theorem provides a framework for existence of solutions to the system (5) also.
But a more general existence framework is easy to settle. It should also be noticed that
theorem 1 already provides a partial existence result (at least for ρ0 and j0 given by the
second equation being the zeroth and the first moment in velocity of a function in L1∩L∞).
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However existence can be proved more generally for ρ0 ∈ L1. We can still get a stronger
result (no smallness assumption) if we precise the structure of the matrix K. It shows
that we can allow a singularity in the matrix whereas we are unable to prove a variant of
theorem 1 with any singularity.

Theorem 3 : Assume d = 3, F is given by (7) with A = 0, G ∈W 1,∞ and K the matrix

given by (4). Then, the system (5) has distributional solutions ρ, j ∈ L∞([0, T ], L1(IR3))

for any initial data ρ0 in L1 ∩ L
3
2 . If ρ0 belongs to W 1,3, this solution is unique locally in

time.

2. Proof of theorem 1

This proof is divided into four parts. First of all we show that the main quantities have
limits and we explain why ρ̄ and ̄ satisfy the system (5) (part (i) of the theorem), then we
prove that the functional ∆ε defined by (11) converges to zero (part (ii) of the theorem),
the next subsection being devoted to the case A, K, G ∈W 1,∞ and the Dirac form of the
limit of fε. At last we explain why condition (9) ensures the uniform boundedness of the
kinetic energy.

2.1 Existence of limits for fε, ρε, jε and ρεF [ρε, jε]

We prove the point (i). First of all the conservative form of equation (1) and condition
(14) imply the estimate (12). We therefore have

(15) ‖ρε‖L∞([0, T ],L1(IRd)) = ‖f0‖L1(IR2d) .

(16) ‖jε‖L∞([0, T ],L1(IRd)) ≤ ‖f0‖
1
2

L1(IR2d)
sup E

1
2
ε (t).

Therefore, we can extract a subsequence so as to get

fε ⇀ f̄ weakly in L∞([0, T ],M1(IR2d)),

ρε ⇀ ρ̄ weakly in L∞([0, T ],M1(IRd)),

jε ⇀ ̄ weakly in L∞([0, T ],M1(IRd)),

The continuity equation ∂ρε

∂t
+ divjε = 0 is obviously satisfied thanks to the bounded-

ness of the force term F [ρε, jε] (assumption (8)). To show that ρ̄ and ̄ are solutions to the
system (5) and end the proof of the first part of theorem 1, we only need to apply lemmas
1 and 2.

Lemma 1 : Assume ρε and jε are two sequences uniformly bounded in L∞([0, T ], L1(IRd)),
weakly converging in L∞([0, T ],M1(IRd)) and satisfying the continuity equation. Then the

product ρεF [ρε, jε] converges weakly in L∞([0, T ],M1(IRd)) towards ρ̄F [ρ̄, ̄].
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Proof of lemma 1

Notice first that, using assumption (8), F [ρ̄, ̄] belongs to L∞([0, T ], C0(IR
d)) and

therefore ρ̄F [ρ̄, ̄] is well defined.
Formula (7) allows us to decompose ρεF [ρε, jε] in three terms

ρεF [ρε, jε] = ρε(K ? jε) + ρεA ? ρε + ρεG(x).

We will show that the three terms converges weakly in L∞([0, T ], C0(IR
d)). This is

obvious for ρεG(x). The only problem is to get some time compactness in the two other
products, which is done by using the continuity equation. This is well known for ρεA ? ρε

and so we only explain the procedure for the first term since ∂tjε is not a priori uniformly
in any negative Sobolev space.

The term ρε(K ? jε) is bounded in L∞([0, T ], L1(IRd)) and so, extracting a subse-
quence, it converges weakly in L∞([0, T ],M1(IRd)). We only have to identify its limit.
Let us first choose a regularization Kδ of K in C1(IRd). For all φ(t, x) in C1

0 (IRd+1), we
have

∫

IRd

φ(t, x)ρε(t, x)(Kδ ? jε)dx =

∫

IRd

jε(t, x)(K̃δ ? ρεφ)dx ,

with, if KT denotes the transpose of the matrix K,

K̃δ(x) = KT
δ (−x).

The continuity equation and the L1 bound on jε imply that ρε belongs toW 1,∞([0, T ],
W−1,1(IRd). Applying Ascoli theorem, this shows that K̃δ ? φρε converges strongly in
C0([0, T ], C0(IR

d)) towards K̃δ ? φρ̄, which enables us to conclude.

Lemma 2 : The limit of ρεF [ρε, jε] in w−L∞([0, T ],M1(IRd)) is precisely the limit ̄ of

jε in the same space.

Proof of lemma 2

Multiplying the equation (1) by v and integrating in velocity, we obtain

(17)

∂jε
∂t

+ divxEε +
1

ε
(jε − ρεF [ρε, jε]) = 0 ,

Eε(t, x) =

∫

IRd

v ⊗ vfε(t, x, v)dv .

The uniform bound on the kinetic energy gives a uniform bound on Eε in L∞([0, T ],
L1(IRd)). As a consequence we immediately deduce that jε −ρεF [ρε, jε] converges towards
zero in W−1,1([0, T ] × IRd)).

Since we already know that jε and ρεF [ρε, jε] converge towards ̄ and ρ̄F [ρ̄, ̄] in
w − L∞([0, T ],M1(IRd)), the two limits are necessarily equal.
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2.2 Concentration in velocity

First of all, let us consider sequences of regularisations Kδ, Aδ and Gδ in C1
0 (IRd) of

K, A and G. Using these sequences, we define a force term Fδ and the functional

(18) ∆ε,δ =

∫

IR2d

|v − Fδ[ρε, jε]|
2fε(t, x, v) dxdv .

We are able to prove lemma 3 which almost directly implies that ∆ε vanishes with
ε (thus ending the proof of part (ii) of the theorem), since ∆ε,δ converges to ∆ε with δ,
uniformly in ε.

Lemma 3 : if ‖Kδ‖L∞‖f0‖L1 < 1, then ∆ε,δ = α(ε, δ) + β(δ) , on [t?, T ] for all

t? > 0, with α a function vanishing with ε for δ fixed and β a function vanishing with δ.

Proof of lemma 3

d

dt
∆ε,δ = −2

∫

IR2d

(v − Fδ[ρε, jε]) · (Kδ ? ∂tjε)fε(t, x, v) dxdv

− 2

∫

IR2d

(v − Fδ[ρε, jε]) · (Aδ ? ∂tρε)fε(t, x, v) dxdv

+

∫

IR2d

|v − Fδ[ρε, jε]|
2∂tfε(t, x, v) dxdv = I + II + III .

Let us first deal with I. Using equation (17) on jε, we find

I = 2

∫

IR2d

(v − Fδ[ρε, jε]) ·
(

Kδ ?
(

divx(E) +
1

ε
(jε − ρεF [ρε, jε])

)

)

fε(t, x, v)dxdv

= 2

∫

IR2d

(v − Fδ[ρε, jε]) · (∇Kδ ? E)fε(t, x, v)dxdv

+
2

ε

∫

IR2d

(jε − ρεFδ[ρε, jε]) · (Kδ ? (jε − ρεF [ρε, jε]))dxdv .

Thus, setting c = ‖Kδ‖L∞‖f0‖L1 ,

I ≤ 2∆
1
2

ε,δ × ‖f0‖
1
2

L1 × ‖∇Kδ‖L∞ × ‖E‖L1 +
2c

ε
∆ε,δ

+
2

ε

∫

IR6

(jε − ρεFδ[ρε, jε]) · (Kδ ? (ρεFδ[ρε, jε] − ρεF [ρε, jε]))dxdv

≤

(

C(δ) +
γ(δ)

ε

)

∆
1
2

ε,δ +
2c

ε
∆ε,δ ,

with C(δ) bounded for δ fixed (it depends on ‖∇Kδ‖L∞) and γ(δ) → 0 as δ → 0. Notice
that if condition (9) holds we can take c equal to zero.

8



For II, we use the continuity equation

II = 2

∫

IR2d

(v − Fδ[ρε, jε]) · (Aδ ? divjε)fε(t, x, v) dxdv

= −2

∫

IR2d

(v − Fδ[ρε, jε]) · (∇Aδ ? jε)fε(t, x, v) dxdv

≤ C(δ)∆
1
2

ε,δ .

And for III, we insert equation (1) on fε

III = −

∫

IR2d

|v − Fδ[ρε, jε]|
2divx(vfε)dxdv

−
1

ε

∫

IR2d

|v − Fδ[ρε, jε]|
2divv((F [ρε, jε] − v)fε)dxdv

= −2

∫

IR2d

(

(v · ∇x)Fδ[ρε, jε]
)

· (v − Fδ[ρε, jε])fεdxdv

+
2

ε

∫

IR2d

(v − Fδ[ρε, jε]) · (F [ρε, jε] − v)fεdxdv

= −2

∫

IR2d

(

(v · ∇x)Fδ[ρε, jε]
)

· (v − Fδ[ρε, jε])fεdxdv

−
2

ε
∆ε,δ +

2

ε

∫

IR2d

(v − Fδ[ρε, jε]) · (F [ρε, jε] − Fδ[ρε, jε])fεdxdv ,

which shows that

III ≤ C(δ)∆
1
2

ε,δ −
2

ε
∆ε,δ +

γ(δ)

ε
∆

1
2

ε,δ .

Putting all this together, we get

d

dt
∆ε,δ ≤

(

C(δ) +
γ(δ)

ε

)

∆
1
2

ε,δ −
2(1 − c)

ε
∆ε,δ .

We recall here that c = ‖Kδ‖L∞‖f0‖L1 (c = 0 if (9) is true) and is strictly less than
1. Using Gronwall lemma, we eventually end up with

∆ε,δ(t) ≤ Max

(

e−
(1−c)t

ε ∆ε,δ(0),
ε2

(1 − c)2
C2(δ) +

γ(δ)

(1 − c)2

)

,

which proves the lemma.

2.3 A simpler case

We now prove (iii). When K, A and G belong to W 1,∞ and condition (9) is true,
then minor modifications of the above proof show that
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∆ε(t) ≤ Max
(

e−
2t
ε ∆ε(0), Cε2

)

,

indeed, in the calculation of section 2.2 we do not regularize with δ and the main difficult
term

∫

(jε − ρεF [ρε, jε]) ·K ? (jε − ρεF [ρε, jε]) is negative. So we obtain the inequalities

I ≤ C∆
1
2
ε , II ≤ C∆

1
2
ε , III ≤ C∆

1
2
ε −

2

ε
∆ε .

Knowing that ∆ε is dominated by ε2, we are able to prove the Dirac form of f̄ .
The convergence towards zero is not enough in itself, because to prove the special form
ρ̄(x)δ(v − F [ρ̄, ̄]) we need some information on a functional like

(19) ∆̄ε(t) =

∫

IR2d

|v − F [ρ̄, ̄]|2fε(t, x, v)dxdv .

This new functional converges towards zero on all [t?, T ] whenever

∫

IR2d

|F [ρε, jε] − F [ρ̄, ̄]|2fε −→ 0 in L∞([t?, T ]),

and this is proved by the following lemma (notice that its hypothesis holds under the
assumption of part (iii) of theorem 1)

Lemma 4 : If ∆ε is less than Cε2 on [t1, t2], then F [ρε, jε] converges strongly towards

F [ρ̄, ̄] in C0([t1, t2]× IRd). In particular if K, A and G belong to W 1,∞ and if condition

(9) is true, F [ρε, jε] converges strongly towards F [ρ̄, ̄] in C0([t
?, T ] × IRd) for all t? > 0.

Proof of lemma 4

The only difficulty is again time continuity, which is dealt using the specific form of
F [ρε, jε].

To prove the lemma, we first claim that

∂tjε ∈ L∞([t1, t2], W
−1,1(Rd) + L1(IRd)).

This is deduced from equation (17) on jε and from the following inequality

‖jε − ρεF [ρε, jε]‖L∞([t1, t2], L1(IRd)) ≤ sup
t∈[t1, t2]

∫

IR2d

|v − F [ρε, jε]|fε(t, x, v)dxdv

≤ (sup ∆ε(t))
1
2 ‖f0‖

1
2

L1

≤ C̃ε .

Secondly, we use the bounds on ∂tjε and ∂tρε to conclude by Ascoli’s theorem and
arguments similar to those of lemma 1.
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To complete the convergence proof of fε, we use lemma 5

Lemma 5 : If ∆̄ε(t) converges towards zero in L∞([t?, T ]) for all t? > 0, then fε converges

towards ρ̄δ(v − F [ρ̄, ̄]) in w − L∞([0, T ],M1(IR2d)).

Proof of lemma 5

For φ and ψ in C0([t
?, T ] × IRd), we have

∫

IR2d

φ(t, x)ψ(t, v)fεdxdv −

∫

IRd

φψ(t, F [ρ̄, ̄])ρεdx =

∫

|v−F̄ |<η

φ(ψ(t, v)− ψ(t, F̄ ))fεdxdv

+

∫

|v−F̄ |>η

φ(ψ(t, v) − ψ(t, F̄ ))fεdxdv

≤ C sup
t,|x−y|<η

|ψ(t, x)− ψ(t, y)|+
C

η2

∫

IR6

|v − F [ρ̄, ̄]|2fεdxdv

≤ C sup
|x−y|<η

|ψ(t, x)− ψ(t, y)|+
C

η2
sup

t
∆̄ε(t) .

Since we already know that fε converges towards f̄ in w − L∞([0, T ],M1(IR2d)), ρε

towards ρ̄ in w − L∞([0, T ],M1(IRd)) and since ψ(v − F [ρ̄, ̄]) is in C0([t
?, T ] × IRd)

(because ψ and F [ρ̄, ̄] belong to this space), the previous computation means that

fε ⇀ ρ̄(t, x)δ(v − F [ρ̄, ̄]) in L∞([t?, T ],M1(IR2d)), ∀t? > 0.

Taking now any Φ in L1([0, T ], C0(IR
2d)), we have

∫ T

0

∫

IR2d

Φ(t, x, v)fεdxdvdt =

∫ T

t?

∫

Φ(t, x, v)fεdxdvdt+

∫ t?

0

∫

Φ(t, x, v)fεdxdvdt ,

and
∫ t?

0

∫

IR2d

Φ(t, x, v)fεdxdvdt ≤ C

∫ t?

0

‖Φ(t, ., .)‖C0
dt → 0 as t? → 0,

which ends the proof.

2.4 Uniform bound for the kinetic energy

Here, we prove bounds for the kinetic energy under condition (9). we multiply (1) by
|v|2 and integrate in space and velocity, we find

∂tEε(t) −
2

ε

∫

IRd

jε · F [ρε, jε]dx+
2

ε
Eε(t) = 0 .

Since

11



∫

IRd

jε · F [ρε, jε]dx =

∫

IRd

jε · (K ? jε)dx+

∫

IRd

jε · (A ? ρε)dx+

∫

IRd

jε ·G(x)dx ,

the condition (9) gives

∂tEε(t) ≤ −
2

ε
Eε(t) +

2

ε

∫

IRd

jε · (A ? ρε)dx+
2

ε

∫

IRd

jε ·G(x)dx

The assumption (8) and the uniform bound of ρε in L∞([0, T ], L1(IRd)) imply that
A ? ρε and G(x) are bounded in L∞([0, T ] × IRd) and thus

∂tEε(t) ≤ −
2

ε
Eε(t) +

C

ε
‖jε‖L1(IRd) ,

using (16), we deduce from this last inequality that

Eε(t) ≤ Min

(

E0,
C2

4

)

.

Remark.

The condition (9) is used to deal with the quadratic term in jε. However, just like in
lemma 3, here we can replace this condition by the smallness assumption ‖K‖L∞‖f0‖L1 <
1 and still get the boundedness of kinetic energy.

3. Proof of theorem 2

We first deal with the existence problem and in a second part we will prove the
uniqueness result.

3.1 Existence of solutions in L1

First of all notice that with the condition (9) the second equation of system (5) has
only one solution j in L1 for a given ρ. Indeed for two solutions j1 and j2, the difference
j = j1 − j2 satisfies, thanks to (7), the equation

j(t, x) = ρ(t, x)(K ? j) .

Multipliing the equation by j/ρ (which exists and belongs to C0 since it is equal to K ? j)
and integrating, we find

∫

IRd

|j|2

ρ
dx =

∫

IRd

j · (K ? j)dx ≤ 0 ,

which means that j = 0.

Theorem 1 provides an existence result for an initial data ρ0 in C0(IR
d). Indeed in

that case it is very easy to find a function f 0 in L1 ∩ L∞, with bounded kinetic energy,
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which two first velocity moments are ρ0 and j0. For example we can take for f 0 a local
maxwellian in velocity. Since we satisfy the asssumptions of theorem 1, we get a couple
ρ, j in L∞([0, ∞ [ , L1(IRd)), solution to (5). To complete the existence proof in L1, we
only need a stability result for the system (5) which is given by lemma 6.

Lemma 6 : Let ρn, jn ∈ L∞([0, ∞ [ , L1 ∩ Lp(IRd)), p > 1, be two sequences of dis-

tributional solutions to (5). Assume (9), and that ρ0
n → ρ0 in L1(IRd). Then, extracting

subsequences, ρn and jn converge weakly in L∞([0, ∞ [ ,M1(IRd)) to ρ and j. Also, ρ
and j belong to L∞([0, ∞ [ , L1(IRd)) and are solution to the system (5).

Proof of lemma 6

Since ρ0
n converges strongly in L1, ρn is bounded in L∞([0, ∞ [ , L1(IRd)). Multipliing

the second equation of (5) by jn/ρn and integrating, we find thanks to (9)

∫

IRd

|jn|
2

ρn

dx ≤

∫

IRd

j · (A ? ρn +G(x))dx ,

which gives a uniform bound on |jn|
2/ρn in L∞([0, ∞ [ , L1(IRd)). We deduce a bound

on jn in the same space

∫

IRd

|jn(t, x)|dx ≤

(
∫

IRd

|jn|
2

ρn

dx

)

1
2

·

(
∫

IRd

ρndx

)
1
2

.

Extracting subsequences if necessary, we now suppose that ρn and jn converge towards
ρ and j in L∞([0, ∞ [ ,M1(IRd)). The first equation of system (5) is linear in ρn and jn,
so we can pass to the limit and we find in distributional sense

∂tρ+ divj = 0 .

We now consider the limit of the term ρnF [ρn, jn]. The only difficulties arise in
ρn(K ? jn) and ρn(A ? ρn). We use the lemma 1 for ρn and jn instead of ρε and jε and as
a consequence ρnF [ρn, jn] converges towards ρF [ρ, j] in w? − L∞([0, ∞ [ , M1(IRd)) and
we get the second equation of the system (5)

j(t, x) = ρ(t, x)F [ρ, j] .

To prove that ρ and j are functions and not only measures, we notice that, since ρ0

is in L1, there exists a function β from IR+ to IR+ with

β(x) ≥ |x|,
β(x)

|x|
−→ ∞ as |x| → ∞ ,

and such that

∫

IRd

β(ρ0(x))dx < ∞ .
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Regularizing ρn if necessary, we can suppose that
∫

IR3 β(ρ0
n) are uniformly bounded.

Then since ρn are solutions to the system (5) and since the divergences of K, A and G are
bounded, the quantities

∫

IRd β(ρn) are uniformly bounded in L∞ [0, ∞ [ and finally

∫

IRd

β(ρ(t, x))dx ∈ L∞ [0, ∞ [ ,

which shows that ρ belongs to L∞([0, ∞ [ , L1(IRd)). Using the second equation of the
system (5), we find that j has the same property. Notice that this proves that we have
weak convergence in L∞([0, T ], L1).

3.2 Uniqueness in W 1,1(IRd)

Choose any ρ0 in W 1,1(IRd) with

‖ρ0‖L1(IRd) × ‖K‖L∞(IRd) < 1, ‖ρ0‖L1(IRd) × ‖div K‖L∞(IRd) < 1 .

Suppose that we have two couples of solutions (ρ1, j1) and (ρ2, j2) to the system
(5) with initial data ρ0 in L∞([0, ∞ [ , L1(IRd)). Applying lemma 7 shows that these
quantities are also in L∞([0, T ], W 1,1(IRd)) for a time T depending only on the initial
data and on the norms of K, A and G in L∞. We prove uniqueness only on this time
interval.

Lemma 7 : For all constant C with C‖K‖L∞ < 1, there exists a time T such that if

‖ρ0‖L1 ≤ C and if ρ0 belongs to W 1,1, then any solution ρ in L∞([0, ∞ [ , L1(IRd)) to

the system (5) belongs to L∞([0, T ], W 1,1(IRd)).

Proof of lemma 7

We first differentiate the equation (7)

∇F [ρ, j] = A ?∇ρ+K ?∇j + ∇G .

Using now the second equation of (5), we find

∇F [ρ, j] −K ? (ρ∇F [ρ, j]) = A ?∇ρ+ ∇G .

Thanks to the smallness assumption on the L1 norm of ρ0 and thus on the L1 bound on
ρ, we deduce the estimate

‖∇F [ρ, j]‖L∞ ≤ k
(

‖∇ρ(t, .)‖L1(IRd) + 1
)

.

Now, we replace j by ρF [ρ, j] and we differentiate the continuity equation in (5)

∂t∇ρ+ div(ρ∇F [ρ, j]) + div(∇ρF [ρ, j]) = 0 ,

which shows that
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d

dt

∫

IRd

|∇ρ|dx ≤

∫

IRd

|∇F [ρ, j]| · |∇ρ|dx ≤ k‖∇ρ(t, .)‖L1(IRd) ,

the constant k depending only on the bound on ‖ρ0‖L1 and on the norms of K, A and G.
As a consequence there exists a constant T depending only on these quantities such

that ρ belongs to L∞([0, T ], W 1,1(IRd)).

Notice that of course if K and A are in W 1,∞, the same proof holds without any
assumption on the L1 norm of ρ0 and for all times.

We are now able to prove uniqueness. Let us substract F [ρ1, j1] and F [ρ2, j2] by using
formula (7)

F [ρ1, j1] − F [ρ2, j2] = A ? (ρ1 − ρ2) +K ? (j1 − j2) ,

and denoting F [ρ1, j1] by F1 and F [ρ2, j2] by F2, since

K ? (j1 − j2) = K ? (ρ1F1 − ρ2F2) = K ? (ρ1(F1 − F2)) +K ? ((ρ1 − ρ2)F2) ,

we have

F1 − F2 −K ? (ρ1(F1 − F2)) = A ? (ρ1 − ρ2) +K ? ((ρ1 − ρ2)F2) .

The bound ‖ρ0‖L1‖K‖L∞ < 1 gives the estimate

‖(F1 − F2)(t, .)‖L∞(IRd) ≤ k‖(ρ1 − ρ2)‖L1(IRd) .

Moreover taking the divergence of the previous expression and since we also have
‖ρ0‖L1‖div K‖L∞ < 1, we obtain

‖div(F1 − F2)(t, .)‖L∞(IRd) ≤ k‖(ρ1 − ρ2)‖L1(IRd) .

Eventually, we substract the two continuity equations satisfied by ρ1 and ρ2 with j1
and j2 replaced by F1 and F2 and we get

∂t(ρ1 − ρ2) + div
(

(ρ1 − ρ2)F1

)

+ div
(

ρ2(F1 − F2)
)

= 0 ,

which leads to

d

dt

∫

IRd

|ρ1 − ρ2|dx ≤

∫

IRd

|F1 − F2| · |∇ρ2|dx+

∫

IRd

|div(F1 − F2)| · |ρ2|dx ,

and combining this with the previous estimates

d

dt
‖(ρ1 − ρ2)(t, .)‖L1(IRd) ≤ k‖(ρ1 − ρ2)(t, .)‖L1(IRd) .
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Gronwall lemma implies

ρ1 = ρ2 ,

and the proof of theorem 2 is complete.

4. Proof of theorem 3

Throughout this section, we consider the system (6) with the matrix K given by
formula (4) (in particular we work in dimension 3). The first part of the proof is devoted
to getting j as a function of ρ with the second equation of (6), after that we prove the
existence result and the uniqueness. These last two subsections use the same methods as
in section 3 and so we do not write the details.

4.1 The second equation of (6)

Here we show the following lemma
Lemma 8 : Assume that ρ(x) belongs to L1 ∩ L

3
2 (IR3). Then, there is a function j(x) in

L1 ∩ L
3
2 such that the second equation of (6) is satisfied. Moreover this function is unique

in every Lp, 1 ≤ p ≤ 3
2 .

Proof of the lemma

First of all notice that the singularity in K is in 1/|x|. As a consequence j lies in Lp

with p ≤ 3
2

to define the term K ? j.

Now if ρ belongs to L1 ∩L
3
2 , the product ρ(K ? j) is well defined for any j in Lp with

1 ≤ p ≤ 3
2
. Indeed K ? j belongs to Lq with 1/q = 1/p− 2/3 and so q is always between 3

and ∞.
To prove the existence of a j in L1∩L

3
2 , we use an iterative procedure. We define the

following sequence

j0(x) = gρ(x) ,

jn+1(x) = ρ
(

K ? jn + g
)

.

We assume that ρ is small enough in L1 ∩ L
3
2 . More precisely for |K| ≤ c/|x|, we

assume

C = c‖ρ‖
L1∩L

3
2
< 1 .

Since we have

‖jn+1‖
L1∩L

3
2

≤ C
( |g|

c
+ ‖jn‖

L1∩L
3
2

)

,

we deduce that the sequence jn is uniformly bounded in L1 ∩ L
3
2 . Hence we extract a

subsequence weakly converging in L1 ∩ L
3
2 towards a function j. The convolution K ? jn

thus converges strongly towards K ? j in L3 ∩ L∞ and so we obtain
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j(x) = ρ(x)
(

K ? j + g
)

.

Eventually if ρ is not small, then we use this argument to find j such that

j(x) = N2ρ(Nx)
(

K ? j +
g

N2

)

,

with N large enough so that ‖N 2ρ(Nx)‖L1 is small enough (we work in dimension 3) and
the function j(x/N) satisfies the second equation of (6) with ρ.

The uniqueness of such a function is proved exactly as in the beginning of subsection
3.1 because the matrix K given by (4) satisfies condition (9).

4.2 Existence of solutions

Let us denote Kδ a sequence of regularisations of K in W 1,∞. Theorem 2 provides
the existence of ρδ and jδ, solutions to (5) with Kδ, A = 0 and G = g. As a consequence,
we prove that these two sequences converge towards the solution of (6).

Since jδ/ρδ is divergence free, the continuity equation implies that

‖ρδ‖
L∞([0, ∞],L1∩L

3
2 )

≤ ‖ρ0‖
L1∩L

3
2
.

Now using lemma 8, jδ is uniformly bounded in L∞([0, ∞], L1 ∩ L
3
2 ). We then extract

subsequences (still denoted ρδ and jδ) which converge weakly in L∞([0, ∞], L1 ∩ L
3
2 )

towards ρ and j.
The couple ρδ, jδ satisfying the continuity equation, it is also true for ρ, j. As to

the second equation of (6), we have to prove that the term ρδ(Kδ ? jδ) converges weakly
towards ρ(K ? j). This is done as in lemma 1, since the convolution provides compactness
in space and the continuity equation provides compactness in time.

4.3 Uniqueness

We show first that the system (6) propagates the W 1,3 norm of ρ in small time.

Lemma 9 : Assume that ρ0 ∈ W 1,1 ∩W1, 3. Then, there exists a time T such that for

any solution ρ to (6) obtained by weak limit of classical solution to a regularisation of (6),
we have ρ ∈ L∞([0, T ],W 1,1 ∩W 1,3(IR3)).

Proof of the lemma

We use the same ideas as in lemma 7. By Sobolev inequalities, for all p < ∞, ‖ρ‖L
p
x

is less than ‖ρ‖L1∩W 1,3 . From the second equation of (6) and the bounds on ‖j‖
L

3
2

and

‖ρ‖L1 , we deduce the a priori estimate for all p < 3

‖j‖W 1,p ≤ C‖ρ‖W 1,1∩W 1,3 .
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This new estimate implies that

‖K ? j‖W 1,∞ ≤ C‖ρ‖W 1,1∩W 1,3 .

After differentiating the continuity equation, we eventually find for all 1 ≤ p ≤ 3

d

dt
‖ρ(t, .)‖W 1,p ≤ C‖ρ(t, .)‖W 1,p × ‖ρ(t, .)‖W 1,1∩W 1,3 ,

which by Gronwall lemma means that ‖ρ‖W 1,1∩W 1,3 remains bounded on an interval [0, T ],
T depending on ‖ρ0‖W 1,1∩W 1,3 . Of course this computation is only formal. However we
assume that ρ is a weak limit of classical solution to (6) with a regularized K and thus we
can make it rigorous.

Consider now any ρ0 in L1 ∩W 1,1 ∩W 1,3. Assume we have two couples (ρ1, j1) and

(ρ2, j2) in L1 ∩L
3
2 of solutions to (6) with initial data ρ0. We suppose that ρ1 satisfies the

assumption of lemma 9 (this is possible because section 4.2 ensures that such a solution
exists). Hence ρ1 belongs to L∞([0, T ], W 1,1 ∩W 1,3) for some time T and we will prove
that ρ1 = ρ2 on this time interval.

We first estimate j1 − j2 in term of ρ1 − ρ2

j1 − j2 = (ρ1 − ρ2)(K ? j1 + g) + ρ2(K ? (j1 − j2)) ,

using now the uniform L1 ∩ L
3
2 on ρi and ji, i = 1, 2, a minor modification of lemma 8

gives

‖j1 − j2‖
L∞([0, T ], L

3
2 )

≤ C‖ρ1 − ρ2‖
L

3
2
.

We replace the ji in the two continuity equations by their value given by the second
equation of (6) and we substract using the divergence free condition of K

∂t(ρ2 − ρ1) + (K ? j2 + g) · ∇(ρ2 − ρ1) + (K ? (j2 − j1)) · ∇ρ2 = 0 ,

multiplying by (ρ2 − ρ1)/|ρ2 − ρ1|
1
2 , integrating and using Holder inequalities and the

previous estimate for j1 − j2, we find

∂t‖(ρ2 − ρ1)(t, .)‖
L

3
2

≤ C‖(ρ2 − ρ1)(t, .)‖
L

3
2
,

with C a constant depending on the W 1,1 ∩W 1,3 norm of ρ2 and on the L1 ∩ L
3
2 norms

of ρ1, ρ2, j1, j2. To end the proof of theorem 3, we apply Gronwall lemma to show that
ρ1 = ρ2 .

REFERENCES

[1] G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal.,
XXIII(12), (1992), 1482–1518.

18



[2] A.A. Arsenev. Global existence of a weak solution of Vlasov’s system of equations.
U.S.S.R. Comp. Math. and Math. Phys. 15, (1975), 131–141.

[3] Y. Brenier. Convergence of the Vlasov-Poisson system to the incompressible Euler
equations. To appear in Comm. PDE.

[4] R.J. DiPerna and P.L. Lions. Solutions globales d’quations du type Vlasov-Poisson.
C.R. Acad. Sci. Paris Sr. I, 307, (1988), 655–658.
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