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Abstract. We consider a simple model for the immune system in which virus are able to undergo
mutations and are in competition with leukocytes. These mutations are related to several other concepts
which have been proposed in the literature like those of shape or of virulence – a continuous notion.
For a given species, the system admits a globally attractive critical point. We prove that mutations
do not affect this picture for small perturbations and under strong structural assumptions. Based on
numerical and theoretical arguments, we also examine how, releasing these assumptions, the system
can blow-up.
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1. A model in virus dynamics

Modelling the immune system is a classical and widely treated question in mathematical biology. It covers
several different aspects including for instance detailed description of the virus, antivirus and body dynamics,
drug therapy, quasi-species and description of virus “shape” . . . A general account of these aspects can be found
in the survey paper by Perelson and Weisbusch [10] and in the books by May and Nowak [9] and Dieckmann
and Heersterbeek [6]. The departing mathematical objects are differential systems for the (average) number
of virus v(t), the (average) number of leukocytes l(t) and possibly other quantities like available resources
or various states of virus. A recent tendency has been to introduce more structure in the description of the
populations under investigation and for instance Bellomo et al. [1], De Angelis and Jabin [4], Chaplain [3]
consider a virulence (or shape) parameter leading to a system of transport equations on v(t, µ) and l(t, µ),
which are now to be considered densities of virus and leukocytes, respectively, with virulence (or shape) µ, so,
roughly speaking, v(t, µ) dµ and l(t, µ) dµ are, respectively, the (average) numbers of virus and leukocytes of
virulence (or shape) µ.
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The goal of this paper is to analyze the mathematical properties of a simple model, maybe the simplest one,
which keeps the following features.

(i) When a single kind of virus is present, the immune response leads to a steady state where both virus
and leukocytes are present and their interaction is at equilibrium. This corresponds to the recent tendency
of immunology to postulate that the normal life follows from an equilibrium between various such interacting
entities.

(ii) Mutations are present. To do that, we introduce a parameter µ which allows to represent various kinds of
virus and leukocytes, and the mutation from one kind to another. The notion of physical shape has been used
in order to describe these different kinds of virus, more genetic basis for explaining them are also advocated
now. For our purpose this disctinction is not fundamental and we will think of µ as a real parameter which
influences the dynamics. The possibility of an evolution of virus is the only issue on which we focus. Also, we
prefer to choose µ continuous in order to take into account the extremely large number of possible shapes and
also the possible discontinuity of effects when a small variation of µ occurs.

(iii) In the absence of virus, the leukocytes of all “shapes” are present, therefore they can adapt to the appearance
of a new virus and do not need mutations to do so.
We insist that at this stage, this model is not supposed to be predictive, the above references contain many
essential additional phenomena which are not present here. But it is intended to capture the previous features
and see the effect of mutations on the global stability of the system, or by opposition, to the possible blow up.
On the other hand it is not far from the behavior of experimental virus load curves that one can find in the
literature. For instance numerical simulations show a pick after infection and afterwards, either a steady state
is reached, or the total load increases slowly until a fast blow up occurs.

We denote by σ = σ(µ) > 0 the reproduction rate of viruses, by η = η(µ) > 0 a background nutriment for
leukocytes. The parameters α = α(µ) > 0, resp. β = β(µ) > 0, denote the efficiency of leukocytes, resp. virus,
against the opposite species. From a biological point of view it is natural to consider the case where these
functions are not very smooth: small shape variation can induce large variations on these parameters.

We first consider the following system of ordinary differential equations modelling the virus and leukocyte
populations dynamics without mutation:

dv
dt

=
(
σ − αl

1 + v

)
v, (1.1)

dl
dt

=
(

Σ
(
η + v

l

)
− β

)
l. (1.2)

We will prove that, as postulated in (i), it has indeed a single positive global attractor. It is a standard prey-
predator system with the specificity that, according to our assumption (iii), without virus leukocytes are present
with a positive (a priori small) density, while virus without leukocytes, develop with a exponential law. This
is due to our simplifying assumption of infinite resource. This system always reaches a steady state v∗, l∗,
whatever is the initial state v(0) > 0, l(0) > 0 and under assumptions that are presented below (see the typical
leukocites load in Figure 1. Here Σ > 0 represents a nonlinear reproduction rate of leukocytes that are feeded
by the virus and by the background of resources.

The corresponding integro-differential system modelling the situation when mutations occur is written

dv
dt

= (1− θ)σv + θK[σ v]− αlv

1 + v
, (1.3)

dl
dt

=
(

Σ
(
η + v

l

)
− β

)
l, (1.4)
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Figure 1. Typical leukocytes load as a function of time for equations ((1.1)–(1.2)) i.e. for a
single value of µ.

where 0 < θ < 1 is a real parameter, K[w] is defined by

K[w](µ) =
∫
K(µ, µ′)w(µ′) dµ′,

where K is a nonnegative function, and we assume that∫
K(µ, µ′) dµ = 1 ∀µ′ ∈ R,

∫
K(µ, µ′) dµ′ = 1 ∀µ ∈ R. (1.5)

As for the function Σ(s), it satisfies, for s ∈ [0,∞)

Σ(0) = 0, Σ′(s) > 0, Σ′′(s) ≤ 0, and β < Σ∞ := lim
s→∞Σ(s) <∞. (1.6)

Furthermore, we assume
lim
s→∞ sΣ′(s) = 0. (1.7)

Our purpose here is to analyze several properties of this system with mutations. We show that it still has a
single steady state, this is performed in Section 2, and that it is stable under small perturbations (Section 4).
Releasing some assumptions we show that the system can however blow up; bounded steady states do not exist
and the dynamical blow-up is asserted by numerical simulations in Section 5.

We begin by analyzing the steady states of ((1.1)–(1.2)). This requires some assumptions, on the coeffi-
cients σ(µ), η(µ), α(µ) and β(µ), that we explain now. As can be easily checked, there are exactly three such
states, namely,

P1 = (0, 0), P2(µ) =
(

0,
η

Σ−1(β)

)
, P3(µ) =

(
κ− η

1− κ
,
σ

α

1− η

1− κ

)
, κ(µ) =

σ

α
Σ−1(β), (1.8)

and we denote by l̄(µ) = η
Σ−1(β) . In order to ensure that P3 lies in the interior of the first quadrant

Q+ = {(v, l) : v > 0, l > 0},
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we impose the condition

inf
µ∈R

(
κ(µ)− η(µ)

)
> 0, sup

µ∈R

κ(µ) < 1, (1.9)

and we discard the other alternative, 1 < κ(µ) < η, for stability reasons that we explain now.
We denote

f(v, l) =
(
σv − αlv

1 + v
,

(
Σ

(
η + v

l

)
− β

)
l

)
.

The Jacobian matrix of f is then given by

Df(v, l) =


σ −

(
αl

1+v −
αlv

(1+v)2

)
−αv
1+v

Σ′
(
η+v
l

)
Σ

(
η+v
l

)
− β − Σ′

(
η+v
l

)
η+v
l


 . (1.10)

We then have

Df(P1) =
[
σ 0
0 Σ∞ − β

]
,

Df(P2) =
[
σ − αl̄ 0
Σ−1(β) −Σ−1(β)

]
,

so that (1.6) and (1.9) imply that P1 is a hyperbolic repeller and P2 is a saddle point with stable manifold
coinciding with the axis v = 0. The study of the character of the singularity P3, as well as the knowledge of
global structure of the phase portrait, depends on more detailed informations about the system ((1.1)–(1.2))
and so we postpone this study to Section 3 where we show that, for a prototypical function Σ, system (1.1)
has P3 as a global attractor for the whole region Q+.

We now make a brief discussion concerning the system studied here and relations to other models. Firstly,
writing a continuous integral kernel to take into account for the mutations can be related to general formalisms
used in mathematical biology, see Bürger [2] (Ch. 4.1), Waxman [14]. Secondly, full understanding of the effect
of mutations is far from understood and one can consult [11] for relations between various mutation models
and experiments in vitro. For example the intergal mutation operator can also be related to the “virulence”
equations developed in the context of tumor and immune system interactions by several authors see [1,3,4]. We
would like to give a fast formal derivation of virulence from mutations based on different assumptions on the
effect of mutations. For the sake of simplicity, we restrict our attention to the case of a single species (virus) and
therefore we do not consider the loose part due to leukocytes in the equation for the virus. We also scale the
mutation kernel in such a way that it represents very fast mutations with little effects, and an asymetric shape
which creates a systematic shift in “virulence”. This is the main modelling difference with the equation (1.3)
studied in this paper where the time scale of dynamics is not distinguished from the scale of mutations. Hence
we introduce a small parameter ε and the scaled kernel Kε is assumed to satisfy

Kε(µ, µ′) =
1
ε2
K

(
µ,
µ− µ′

ε

)
, K(µ, z) ≥ 0,

and thus we may define the function A(·) as

∫
K(µ, z) z dz = A(µ) > 0.

In other words, mutations are very numerous but with very small effects. As we said earlier, this scaling is
incompatible with the assumption (1.5) thus showing clearly the difference between the two models, we also
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refer to [7] for another scalling and different point of view on this subject of mutation and selection. From the
above assumption we deduce

Kε(µ, µ′) (µ′ − µ) → −A(µ)δ(µ− µ′), A(µ) > 0.

For simplicity, let us here take σ as independent of µ. Introducing a strong death rate to compensate the strong
birth rate, the dynamics is given by

dv
dt

= σ1v +
∫
Kε(µ, µ′)

(
v(µ′)− v(µ)

)
dµ′.

Since Kε concentrates on small mutations (µ close to µ′) we may write the approximations

dv
dt

≈ σ1v +
∫
Kε(µ, µ′)(µ′ − µ)

∂v(µ)
∂µ

dµ′

≈ σ1v −A(µ)
∂v(µ)
∂µ

· (1.11)

Such a model is a simplified variant of those derived and studied in [1,3,4] where µ is interpreted as a virulence
parameter. We refer to these papers and the references therein for more complete models and biological inter-
pretations. Notice also that this kind of asymptotics can be rigorously proved, indeed it is classical in kinetic
theory (grazing collisions), cf. Degond and Lucquin [5], Villani [13]. See also comments in this direction in
Bürger [2] and the possibility to derive a diffusion limit.

2. Stationary solutions for the model with mutation

In this section we prove that there is a unique steady solution of ((1.3)–(1.4)) with values in Q+, and present
a constructive algorithm to approach it. Our result is the following

Theorem 2.1. Assuming ((1.5)–(1.7)) hold, for θ ∈ (0, 1), there exists a steady solution to ((1.3)–(1.4)),
(vst(µ), lst(µ)) ∈ L∞(R)2, with values in Q+. Moreover, setting wst(µ) = σ(µ)vst(µ), this steady solution
satisfies

0 < min
µ∈R

σ(κ− η)
1− κ

≤ wst(µ) ≤ max
µ∈R

σ(κ− η)
1− κ

, ∀µ ∈ R.

For θ sufficiently small this solution is unique, provided that κ(µ), σ(µ) and η(µ) are continuous bounded func-
tions which assume their extreme values.

Proof. As a preparation, for each fixed µ ∈ R, we introduce the function

ψµ(w) =
w

κ(µ)
ση + w

σ + w
·

It plays a natural role in the dynamics ((1.1)–(1.2)) because the point P3 = (v∗, l∗) defines the unique point
w∗(µ) = σ(µ)v∗(µ) > 0 satisfying

ψµ(w∗(µ)) = w∗(µ). (2.1)
A simple calculation leads to

ψ′µ(w) =
1

κ(µ)
w2 + 2σw + σ2η

(σ + w)2
> 0, ψ′′µ(w) =

2σ2

κ(µ)
1− η

(σ + w)3
> 0.

Further,

ψ′µ(0) =
η

κ
< 1, ψ′µ(∞) =

1
κ
> 1. (2.2)
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Setting w(µ) = σ(µ)v(µ), the steady solutions (v(µ), l(µ)) of ((1.3)–(1.4)) with values in Q+ satisfy

θK[w](µ) + (1− θ)w(µ) = ψµ(w(µ)), l(µ) =
1

Σ−1(β(µ))
(η(µ) + v(µ)). (2.3)

Consider a steady solution (v(µ), l(µ)) with values in Q+, and a maximum point w(µ̄) = maxw(µ) (if it is not
reached a maximizing sequence will do the job), then thanks to (1.5) we have

ψµ̄(w(µ̄)) ≤ w(µ̄), hence w(µ̄) ≤ w∗(µ̄). (2.4)

This proves the a priori bound w(µ) ≤ maxw∗(µ′). A similar argument on the minimum gives the a priori
lower bound announced in the theorem.

We now present an increasing approximation scheme in order to prove the existence of a steady solution
of ((1.3)–(1.4)), assuming values in Q+. For that we define an approximation scheme by

w1(µ) = inf
µ′∈R

w∗(µ′),

θK[wk](µ) + (1− θ)wk(µ) = ψµ(wk+1(µ)),

with w∗(µ) as above. In order to prove that this is an increasing sequence, we argue again by monotonicity.
Since w1(µ) ≤ w∗(µ) and since ψµ is increasing and convex, then ψµ(w1(µ)) ≤ w1(µ). On the other hand
ψµ(w2(µ)) = w1(µ), therefore we have

w2(µ) ≥ w1(µ).
We can then continue and iterate the argument, from which we deduce

ψµ(w3(µ)) = θK[w2](µ) + (1− θ)w2(µ)

≥ θK[w1](µ) + (1− θ)w1(µ)

= ψµ(w2(µ)),

and thus w3(µ) ≥ w2(µ). By iteration we deduce that vk is an increasing sequence.

We can also provide an upper bound on the sequence wk as follows. We notice that, thanks to the uniform
monotonicity of ψµ, there is a convex function ψ such that

ψ(w) ≤ ψµ(w) ∀v ≥ 0, ψ(0) = 0, 0 < ψ′(0) < 1, and ψ′(w) > 1 for w large.

This function admits a unique fixed point w̄ and we know that w̄ ≥ w∗(µ) for all µ. We claim that

wk(µ) ≤ w̄.

Indeed, this is true for k = 1, and by iteration, when the result holds for k − 1 we have

ψ(wk(µ)) ≤ ψµ(wk(µ)) = θK[wk−1](µ) + (1− θ)wk−1(µ) ≤ w̄.

From this, we deduce that wk(µ) ≤ w̄ and the claim is proved. Hence, {wk(µ)}k∈N is a monotone uniformly
bounded sequence of functions, which implies the existence of the pointwise limit wst(µ) which satisfies the
equation and the announced a priori bounds.

We now prove uniqueness for θ small enough. We first notice that for θ sufficiently small, we have by uniform
continuity of ψµ(·) that w − w∗ is uniformly small and thus

ψ′µ(w) > 1, uniformly in µ ∈ R. (2.5)
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We denote φµ,θ(w) = ψµ(w)− (1− θ)w, we have φ′µ,θ(w) > θ, for wθ(µ) ≤ w ≤ maxw∗(µ′), uniformly in µ ∈ R,
where wθ(µ) is defined by φµ,θ(wθ(µ)) = 0. Hence, for any two steady solutions (v̄(µ), l(µ)), (ṽ(µ), l̃(µ)), with
values in Q+, and w̃ = σṽ, we have

[∫ 1

0

φ′µ,θ(sw̄(µ) + (1− s)w̃(µ)) ds
]

(w̄(µ)− w̃(µ)) − θK ∗ (w̄ − w̃) = 0,

which, from (2.5), implies w̄(µ) = w̃(µ). In sum, there is at most one steady solution (vst(µ), lst(µ)) with values
in Q+. This concludes proof of the stated theorem. �

3. Study of the dynamics in a simple case

In this section we proceed to the qualitative study of the dynamics of the system ((1.1)–(1.2)) (without
mutation) and our main goal is to obtain sufficient conditions involving the coefficients σ(µ), α(µ), β(µ), η(µ)
and the parameters in the definition of Σ, namely γ, s∗ below, which ensure that the singularity P3(µ), obtained
in Section 1, is a global attractor for the whole region Q+, with respect to the flow given by ((1.1)–(1.2)). Since
in all this section we are only concerned with the system ((1.1)–(1.2)), throughout the remaining of the section
we ommit completely the dependence on µ of the coefficients in this system.

For simplicity, we concentrate our analysis on the prototypical case where Σ is given by

Σ(s) =

{
γs, s ≤ s∗,
γs∗, s ≥ s∗.

(3.1)

Once we obtain the referred conditions for the prototype model with Σ given by (3.1), conditions which give
the same result for a more general Σ are easy to guess. For instance, we may assume only that Σ is increasing
for 0 ≤ s ≤ s∗, and Σ(s) = Σ∞ for s ≥ s∗.

Theorem 3.1. Let σ, α, β, η, γ, s∗ satisfy the conditions
(C1) η γβ <

σ
α <

1
s∗
< γ

β ;

(C2) Σ∞ > β + σ.
There exists δ > 0 such that, if

(C3) σ−β
α < δ,

then, the singularity P3 in (1.8) is a global attractor for the whole region Q+, with respect to the flow given
by ((1.1)–(1.2)), with (3.1). More precisely, given any solution of ((1.1)–(1.2)) and (3.1), (v(t), l(t)), with
(v(0), l(0)) ∈ Q+, then (v(t), l(t)) is defined for all t ∈ (−∞,∞), and we have (v(t), l(t)) → P3 as t→ +∞.

Remark 3.1. Observe that, using (3.1) and the last inequality of (C1), Σ−1(β) = β
γ , and thus the conditions C1

imply (1.9).

Proof. Let f = (f1, f2) be the vector field defined in Q+ whose components are given by the right-hand sides
of (1.1) and (1.2), respectively. Define the lines

Λ1 : l =
σ

α
(v + 1), Λ2 : l =

γ

β
(η + v), Λ∗ : l =

1
s∗

(v + η).

The line Λ1, over which f1 ≡ 0, cuts the l-axis at (0, σα ) which, due to (C1), lies above (0, η γβ ), the point at
which Λ2, over which f2 ≡ 0, cuts the same axis. Also, Λ1 and Λ2 intersect at P3, which is coherent with the
fact that the inclination of Λ1, σ

α is smaller than that of Λ2, γ
β , by (C1). We also notice that the transition

line Λ∗, below which f2(v, l) = (Σ∞ − β)l > 0, intersects Λ1 in Q+ at a point (v∗1, l∗1), but does not meet Λ2
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P2

Figure 2. Vector field f and separation in regions from the lines Λ.

in Q+, again due to (C1). These elements are shown in Figure 2. We have that f1 > 0 below Λ1, f1 < 0
above Λ1, f2 > 0 below Λ2 and f2 < 0 above Λ2. Taking the latter into account, we claim that condition (C2)
implies that the field f , along the line Λ∗, is always pointing toward the upper region determined by Λ∗ in Q+.
We only need to check that for

v < v∗1 :=
σs∗ − αη

α− σs∗
,

since for v > v∗1 we have f1 < 0 and f2 > 0, along Λ∗. Now, over Λ∗, for v < v∗1, we have

f2
f1

=
(Σ∞ − β)(η + v)(1 + v)

(σs∗ − α)v2 + (σs∗ − αη)v

>
Σ∞ − β

σs∗ − αη
by (C1) and (C2)

>
1
s∗

by (C2).

We now consider the trapezium T , bounded by the lines Λ∗,

Λ4 : v = v∗1, Λ5 : l = l42 :=
γ

β
(η + v∗1),

and the l-axis, v = 0. From the above discussion we deduce that such a trapezium is invariant, that is, along
its boundary f is always pointing inwards, when it is not tangent. Moreover, since in T we have

div f =
∂f1
∂v

+
∂f2
∂l

= σ − αl

(1 + v)2
− β − γ

η + v

l2
,

condition (C3) implies
div f < 0, in T , (3.2)

for δ > 0 sufficiently small. Now, (3.2) precludes the existence of periodic orbits in Q+. Indeed, any such orbit
would have to surround P3, since P3 is the only singularity in Q+, as a consequence of Poincaré-Bendixson
theorem (cf. [12] for instance). But, since T is (positively) invariant, such orbit would have to lay entirely
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within T , and this is impossible by (3.2), which tells that the flow generated by f strictly decreases volumes
in T . Hence, we conclude

There is no periodic orbit of ((1.1)–(1.2)) in Q+. (3.3)
To complete the analysis we still need to prove the following two assertions:

Any solution (v(t), l(t)) is defined for all t ∈ (−∞,+∞). (3.4)

and
All orbits enter the trapezium T . (3.5)

The proof of (3.4) relies on standard sublinear estimates as it is usual in Cauchy-Lipschitz theory. We denote
τ = −t, and observe that, by (1.2), we have

dl
dt
≤ (Σ∞ − β)l(t),

dl
dτ

≤ β l(τ),

which by Gronwall’s lemma gives

l(t) ≤ l(0)e(Σ∞−β)t, l(τ) ≤ l(0)eβτ .

On the other hand, we have
dv
dt

≤ σv(t),
dv
dτ

≤ αl(0)eβτv(τ),

and again by Gronwall’s lemma we obtain

v(t) ≤ eσt, v(τ) ≤ v(0)e
αl(0)

β (eβτ−1),

which concludes the proof of (3.4).
We are now going to prove (3.5) in order to conclude our analysis. To achieve this goal we make use of

a direct analysis of trajectories; more systematic, but also longer to explain in our context, methods using
compactifications are possible (see, e.g., [8]). We compute first

d
dt

(
l

v

)
=
l

v

(
Σ

(
η + v

l

)
− β − σ +

l

1 + v

)
. (3.6)

When the initial state belongs to the lower region determined by Λ∗, and as long as the trajectories belong to
that region, we have

d
dt

(
l

v

)
≥ l

v
(Σ∞ − β − σ) .

By (C2), this implies that in finite time the trajectory has to cross Λ∗. Then, it has also entered the region
above Λ1 which means that dv

dt < 0 and this leads the trajectories to enter the region above Λ2 from which
obviously it has to enter the trapezium T and we reach our conclusion. When the initial state belongs to the
upper region determined by Λ∗, then the end of the above argument concludes. In all cases we obtain (3.5) and
the proof of Theorem 3.1 is complete. �

4. Dynamics for the model with mutations

Now we consider the dynamics for the general model ((1.3)–(1.4)) accounting for mutations in case of small
mutation effects. We use a method of perturbation of the previous section without mutation. The idea is to
use all the information concerning the model ((1.1)–(1.2)), in order to get qualitative information about the
dynamics governed by the system ((1.3)–(1.4)). First, to emphasize the dependence on θ we denote the steady
solution of ((1.3)–(1.4)) by (vθst(µ), lθst(µ)) and set P3(µ) = (v∗(µ), l∗(µ)), where v∗(µ) coincides with that given
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by (2.1). We need regularity for this section and in order to make the analysis simpler, we assume that σ is
independent of µ, while α, β, η are smooth functions of µ. Also, for compactness, we assume that the latter are
periodic with period 1 in µ, and finally we assume that K is a (periodic) convolution kernel i.e. K := K(µ−µ′).

The purpose of this section is the proof of the following theorem.

Theorem 4.1. Given initial data (v(0, µ), l(0, µ)) = (v0(µ), l0(µ)) smooth periodic with period 1 and assuming
values in Q+, there exists θ0 ∈ (0, 1), such that if 0 < θ < θ0, then the corresponding solutions of ((1.3)–(1.4)–
(3.1)), (vθ(t, µ), lθ(t, µ)), satisfy

(vθ(t, µ), lθ(t, µ)) → (vθst(µ), lθst(µ)), as t→∞. (4.1)

Proof. From the discussion in Section 2 we have that min v∗(µ′) ≤ vθst(µ) ≤ max v∗(µ′). Also, from (2.3), we
see that {(vθst, lθst) : θ ∈ [0, 1]} is compact in Cper(R), the Banach space of the continuous periodic functions
(with period 1). Moreover, from (2.3) we also see that any converging subsequence of (vθst, l

θ
st), as θ → 0, must

converge to (v∗(µ), l∗(µ)), hence we get

(vθst, l
θ
st) → (v∗(µ), l∗(µ)), as θ → 0, uniformly for µ ∈ R. (4.2)

Now, we may choose r > 0 sufficiently small such that the ball B ⊂ Q+ with radius r centered at (v∗(µ), l∗(µ))
verifies that the field fµ is nontangent and entering into B everywhere along S = ∂B, uniformly for µ ∈ R, where
fµ = (fµ1 , f

µ
2 ) is the vector field whose components are given by the right-hand members of (1.1) and (1.2),

respectively. This is true since it is true for the linear part of fµ at (v∗(µ), l∗(µ)). Also, because of (4.2), we
may take θ0 such that

(vθst(µ), lθst(µ)) ∈ B, ∀µ ∈ R, if 0 ≤ θ < θ0. (4.3)

Define

Sµ,t = Φµ−t(S), t > 0,

where Φµ−t is the flow generated by fµ backward to the time −t. Denote by Bµ,t the open set bounded by Sµ,t.
Let tµ be such that

(v0(µ), l0(µ)) ∈ Sµ,tµ . (4.4)

We assume, without loss of generality, that tµ > δ > 0. Clearly, there exists a compact K ⊂ Q+ such that

Bµ,tµ ⊂ K, ∀µ ∈ R. (4.5)

For each fixed µ, we consider the orbit of ((1.1)–(1.2)) starting from (v0(µ), l0(µ)) at t = 0. Let Oµ denote the
piece of this orbit corresponding to the interval (0, t∗ + 2), where

t∗ = sup
µ∈R

tµ.

Also, let Oθµ be the trajectory described in the (v, l)-plane by (vθ(t, µ), lθ(t, µ)), for t ∈ (0, t∗ + 2). We will
prove (4.1) by showing first that

∃θ0, s.t., for θ ∈ [0, θ0), Oθµ is transversal to all Sµ,t,
for 0 ≤ t ≤ tµ − δ, uniformly for µ ∈ R.

(4.6)

First of all, we need to show the existence of a smooth periodic (in µ) solution (vθ(t, µ), lθ(t, µ)) of ((1.3)–(1.4)),
(3.1), with initial data (v0(µ), l0(µ)), defined for all t ∈ [0,∞), if θ is sufficiently small. For the local existence
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we may use the standard approximation method based on Banach’s fixed point theorem. Namely, we define

ṽ(t) = v0 +
∫ t

0

{
σ((1 − θ)v + θK ∗ v)− αlv

1 + v

}
ds, (4.7)

l̃(t) = l0 +
∫ t

0

(
Σ

(
η + v

l

)
− β

)
l ds, (4.8)

and prove that the operator (v, l) 7→ (ṽ, l̃) is a contraction in the Banach space Cper(R× [0, ρ)) (endowed with
the sup norm), of the continuous functions in R × [0, ρ) periodic in µ, for ρ > 0 sufficiently small. This is a
routine verification. Now, we claim that, for θ sufficiently small,

(vθ(t, µ), lθ(t, µ)) ∈ B̄µ,tµ ∀µ ∈ R, t ∈ [0, ρ). (4.9)

Indeed, if (4.9) is not true, there exists t0 ∈ [0, ρ) such that

t0 = inf {t ∈ [0, ρ) : ∃µ ∈ R, (vθ(t, µ), lθ(t, µ)) /∈ B̄µ,tµ}.

Hence, for all µ ∈ R we have (vθ(t0, µ), lθ(t0, µ)) ∈ B̄µ,tµ , and there exists µ0 ∈ [0, 1] such that

(vθ(t0, µ0), lθ(t0, µ0)) ∈ Sµ0,tµ0
and fµ0,θ(t0) is pointing outwards B̄µ0,tµ0

,

where fµ0,θ(t0) denotes the vector whose components are given by the right-hand sides of (1.3) and (1.4),
respectively, evaluated for (v, l) = (vθ(t, ·), lθ(t, ·)), µ = µ0, t = t0. But, because of (4.5), for θ < θ0, with θ0
independent of µ0, we must have that fµ0,θ(t0) is pointing inwards B̄µ0,tµ0

, as long as (vθ(t0, µ), lθ(t0, µ)) ∈ B̄µ,tµ ,
for all µ ∈ R, which gives a contradiction and proves (4.9).

In view of (4.9), we see that (vθ(t, µ), lθ(t, µ)) may be extended to be defined for all t ∈ [0,∞). We now
resume the proof of (4.6). An easy application of Gronwall’s lemma, departing from (4.7), (4.8), for a general θ
and θ = 0, implies

‖vθ(t)− v0(t)‖∞ + ‖lθ(t)− l0(t)‖∞ ≤ CθeCt, 0 ≤ t ≤ t∗ + 2, (4.10)

for a certain constant C > 0. We then deduce from ((1.1)–(1.2)) and ((1.3)–(1.4)) that

sup
µ∈R

|fµ(t)− fµ,θ(t)| ≤ CθeCt, 0 ≤ t ≤ t∗ + 2, (4.11)

for another constant C > 0. Inequalities (4.10) and (4.11) imply that Oµ and Oθµ are arbitrarily close in C1,
uniformly for µ ∈ R, if θ is small enough. Hence, we can find θ0 ∈ (0, 1] such that (4.6) holds.

We now conclude the proof of (4.1). From (4.6) we deduce that

(vθ(t, µ), lθ(t, µ)) ∈ B, ∀µ ∈ R, for any t∗ + 1 < t < t∗ + 2.

Now, arguing as above, we obtain similarly that (vθ(t∗ + 1, µ), lθ(t∗ + 1, µ)) ∈ B̄, for all µ ∈ R, implies that

(vθ(t, µ), lθ(t, µ)) ∈ B̄, for all t > t∗ + 1, µ ∈ R, (4.12)

where we use the fact that, for θ sufficiently small, fµ0,θ(t) is pointing inwards B if (vθ(t, µ0), lθ(t, µ0)) ∈ S and
(vθ(t, µ), lθ(t, µ)) ∈ B̄, for all µ ∈ R.

Let Tt, T θt , Ut, U
θ
t denote the semigroups generated, respectively, by the linear part (in the Taylor expansion)

of the right-hand side of ((1.1)–(1.2)) at (v∗, l∗), by the linear part of the right-hand side of ((1.3)–(1.4)) at
(vθst, lθst), by the right-hand side of ((1.1)–(1.2)) and by the right-hand side of ((1.3)–(1.4)). The open set
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B = Cper(R;B) remains invariant under these semigroups for t ∈ [0,∞). Set z = (v, l), zθst = (vθst, l
θ
st). The

proof of (4.1) will be concluded as soon as we show that

∃c ∈ (0, 1), s.t. ∀τ ∈ [1/2, 1],
‖Uθτ [z]− zst‖∞ < c‖Uθ1/2[z]− zst‖∞, ∀z ∈ B. (4.13)

Indeed, (4.13) implies

‖Uθτ+(k−1)/2[z]− zst‖∞ < ck‖Uθ1/2[z]− zst‖∞, ∀k ∈ N, τ ∈ [1/2, 1],

and this, together with (4.12), clearly implies (4.1). Now, let A(z) and Aθ(z) be the linear parts of the right-hand
sides of ((1.1)–(1.2)) and ((1.3)–(1.4)) at z, respectively. We have

Aθ(zθst) = A(zθst) + θI1 + θK∗,

where I1 is the projection I1(v, l) = v. Thus,

‖Aθ(zθst)−A(z∗)‖ ≤ O(θ),

as linear operators in Cper(R), where O(θ) → 0 as θ → 0, which then implies

‖T θτ − Tτ‖ ≤ O(θ), (4.14)

uniformly for τ ∈ [1/2, 1], also as linear operators in Cper(R), where again O(θ) → 0 as θ → 0. But, we know
that z∗ is an attractor of Uτ and, hence, there exists another constant c ∈ (0, 1) such that

‖Tτ‖ < c, as linear operator in Cper(R), uniformly for τ ∈ [1/2, 1].

From (4.14), we then obtain that, for certain θ0 ∈ (0, 1), there exists c ∈ (0, 1) such that, if θ < θ0,

‖T θτ ‖ < c, as linear operator in Cper(R), uniformly for τ ∈ [1/2, 1]. (4.15)

It is also clear that, for some constant C > 0, independent of θ, we have

sup
t∈[0,1]

‖T θt ‖ ≤ C.

Now, setting w(t) = Uθt [z]− zθst, we have

dw
dt

= Aθ(zθst)w +R(z, zθst),

where ‖R(z, zθst)‖∞ ≤ C‖z−zθst‖2∞, for some C > 0, independent of θ. From Duhamel’s principle, it then follows

w(t) = T θt [w(1/2)] +
∫ t

1/2

T θt−s[R(Uθs [z], zθst)] ds, for t ∈ [1/2, 1],

and so
max

t∈[1/2,1]
‖w(t)‖∞ ≤ c‖w(1/2)‖∞ + Cr max

t∈[1/2,1]
‖w(t)‖∞,

which, if r is small enough, gives
max

t∈[1/2,1]
‖w(t)‖∞ ≤ c‖w(1/2)‖∞,

for some c ∈ (0, 1), as asserted. This concludes the proof. �
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5. The route to catastrophe

In this section we discuss the possible reasons that could lead the system ((1.3)–(1.4)) to blow-up as observed
in some cases of HIV for instance. The result in Theorem 3.1 shows that this can only happen because
of mutations since the single virus system has a globally attractive critical point P3. On the other hand,
Theorem 4.1 seems to indicate that mutations by themselves are not enough to destabilize the system which
converges to the steady state built in Theorem 2.1, but a complete answer to this question is of interest and is
left open here. We give two possible scenarios for unstability. The first one is the blow up of the steady states
built in Section 2 for some values of µ, and these values are attained by mutations. The second one is a change
of regime in the dynamics due to the lack of smoothness of the coefficients.

In the first possible scenario, we keep assumptions ((1.5)–(1.7)) and release assumption (1.9) in such a way
that the attractive point P3(µ) is not uniformly bounded. Namely, we rather assume

κ(µ) < 1 ∀µ ∈ R, κ(µ) → 1 as µ→∞. (5.1)

This condition seems to be too weak to ensure blow-up by itself, and we also assume two additional structures
in the data (see the construction in Section 2)

∂

∂µ
ψµ(v) ≤ 0,

∂

∂v
ψµ(v) ≥ 1− θ, (5.2)

K(µ, µ′) = 0 for µ ≤ µ′,
∂K

∂µ
(µ, µ′) ≥ 0. (5.3)

We also recall from Section 2 that the steady state is given by

ψµ(vst) = (1− θ)vst + θK[vst], (5.4)

and that (5.1) is equivalent to

v∗(µ) <∞ ∀µ ∈ R, v∗(µ) →∞ as µ→∞. (5.5)

We are going to show that, with this conditions, the steady state which exists by a simple variant of the argument
in Section 3, is unbounded.

As a first property, we notice that conditions (5.2), (5.3) imply

∂vst(µ)
∂µ

≥ 0. (5.6)

Indeed, after differentiating (5.4), we deduce

d
dµ

(
ψµ(vst(µ))

)
=
∂ψµ(vst)

∂v

∂vst(µ)
∂µ

+
∂ψµ
∂µ

(vst) = (1− θ)
∂vst(µ)
∂µ

+ θ
∂K

∂µ
[vst].

Hence (
∂ψµ(vst)

∂v
− 1 + θ

)
∂vst(µ)
∂µ

= −∂ψµ
∂µ

(vst) + θ
∂K

∂µ
[vst] ≥ 0,

because of (5.2) and (5.3). Since ∂ψµ(v)
∂v ≥ 1 − θ, we conclude (5.6). Then, recalling (1.5), we use the first

relation in (5.3) and (5.6) to deduce that

ψµ(vst) = (1− θ)vst + θK[vst] ≥ vst.
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Figure 3. Model with mutations.
.

The latter implies that
vst(µ) ≥ v∗(µ) →∞ as µ→∞. (5.7)

This statement proves blow-up of steady states under the effect of mutations.
As a second possible scenario, we have investigated the dynamical behavior based on numerical simulations.

From various tests, we have obtained blow-up under more general conditions than above, which are compatible
with uniformly bounded steady states. In other word, the smallness condition in Theorem 4.1 seems necessary.
Here, we illustrate the transition from a regime where mutations occur smoothly and keep virus at a low load,
to a regime where mutations induce an oscillatory regime by increasing suddenly the corresponding κ(µ). We
have chosen the following values of the various adimensionalized parameters, with 40 discrete values of µ, we
have initially v0(µ) = 0 except the first four for which v0(µ) = 0.5, the leukocytes load is initially chosen at
the corresponding steady state ignoring the mutations (P2). Next, the parameters of the leukocytes dynamics
are β = 0.8, η = 0.2, Σ(u) = 4u

4+u , so that Σ(1) = β. The virus dynamics parameters are σ = 0.2 and
κ(µ) = 0.25(1 + (µ− 0.5)+

2). The mutation rate is taken to θ = 10−4 and we have chosen a kernel K which is
rather in the form derived in (1.11) since we choose, at the discrete level K[v](µ) = v(µ− 1) in order to create
new virus load gradually. The total loads are presented in Figure 3. A possible interpretation is that, after the
initial infection where only few mutants are present, the system reaches an equilibrium state where the total
loads increase slowly due to appearance of new mutants. After some time, a significant amount of virus with a
higher value of the parameter κ creates an important virus load. This last stage is however partially unrealistic
since it does not correspond to a leukocytes load break down which is usually observed.

6. Conclusion

We have presented a simple model for immune response which takes into account virus mutations. This
system admits a steady state which is unique for small mutation rates. Existence of a solution has been proved,
for large times they converge toward the steady state for small perturbations. Several possible scenarios are
possible for explaining departure from equilibrium, either by the parameters of the problem which can induce
the blow-up of the steady state or by the dynamics itself.
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