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The aim of this paper is to derive and analyse the mathematical properties of a new con-
tinuous size-structured model for red coral (Corallium rubrum, L.) growth. Since histori-
cal Leslie models # are often used to deal with some ecological problems, a new approach
is here proposed and give some promising results. The main advantage of using contin-
uous model is that we hope to describe precisely the mass mortality events, observed
in Mediterranean sea, and its consequences on red coral dynamics. Simulations studies
allow us to qualitatively discuss some questions about red coral populations dynamics.
The development of this method should be useful for the study of the conservation of
red coral populations.
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1. Introduction

The analysis of the consequences of environmental changes on the dynamics of
natural populations takes advantage of modelling studies. For example the devel-
opment of specific models may allow to evaluate the extinction risks of populations
under various hypotheses (see examples in 8). Such approaches may be particularly
useful for the study of long lived marine invertebrates for which populations dy-
namics may take place at large time scales. Moreover the actual climate change

*J-A. Dieudonné Department, University of Nice Sophia-Antipolis
TOceanological Center of Marseille, Mediterranean University
fOceanological Center of Marseille, Mediterranean University



2 P-E. Jabin, V. Lemesle € D.Aurelle

and the increasing human impact raises important questions about the resilience
and the conservation of the associated ecosystems, as in the case of coral reefs
" or of Mediterranean hard-substrate communities 4. Some models have already
been developed for some species in order to describe the growth and structure of
individual colonies of tropical corals '2. These models were based on growth rate,
nutrient transport and the hydrodynamics of the flow with different structure (more
or less compact) for the coral. Other works dealt with some branching model us-
16

ing parameters and variables related to some special modular coral species on

10

the calcification phenomenon ** or with the analysis of tropical coral populations

dynamics ?, 2.

Such models are rare concerning Mediterranean sessile invertebrates such as the
gorgonian red coral (Corallim rubrum, L.). This emblematic and patrimonial species
is heavily exploited and has been affected by mass mortality events in the summers
1999 and 2003 along the coasts of Provence ®. These events are probably linked with
climate change '® and their potential repetitions might hinder the conservation of
populations of this long-lived species with potentially low dispersal abilities °.

The main consequence of this mass mortality was the variable necrosis of some
branches of the colony and their breaking. Moreover the exploitation of red coral for
jewellery leads to the destruction or breaking of the largest colonies. The remaining
population has thus an inferior size which may have a negative impact on population
growth or persistence.

A continuous model of red coral growth is proposed in this paper taking into
account possible mass mortality events and their consequences. The mathematical
tools used for this model are differential systems for the whole red coral population
(i.e. the number of coral branches) n(¢,l) depending on time ¢ and on the size
of branches [. Continuous model is here considered since historically Leslie-Lewis
171 in ecology.
This should enable us to describe more precisely the mass mortality and the impact

matrix transition of population growth have been frequently used

on the red coral population dynamics.

We start by modelling the probability of break-up of one coral branch by esti-
mating the connection between the size of a branch and its diameter. This would
allow to take mass mortalities into account simply by rendering the branches weaker
(with a smaller diameter). This leads us to a precise but rather complicated model
which is simplified by assuming a low probability of break-up.

We then analyze the model that we obtained both mathematically and numeri-
cally.

2. The derivation of the model
2.1. Modelling one coral branch

Let us first consider only one coral branch. It begins with a very short length
corresponding to one individual at time s.
Its length will then increase until the first break-up and its diameter regularly
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increase too ring by ring (more or less one by year !!). The size of this ring typically
depends on the external conditions (an increase in temperature or low food) meaning
that at a particular point of the branch length the diameter will also typically
increase 11 18,

Denote by L(t, s) the length of the branch and §(¢,1, s) the diameter at distance
[ < L(t) from the beginning. We will assume a linear growth of the branch (which

seems reasonnable) such that 3
L(t,s)=o(t—s), fort>s. (2.1)

There is no need to be so specific for the growth rate of the diameter since as we
said before, it may depend on external conditions. Consequently we take

t

o(t,1,s) = do +/ I(r)dr. (2.2)
s+l/o

The integral is taken from s + /o which is the time r such that L(r) = [. The

function of time I represents the external conditions and in the simplest case would

be taken constant with

o(t,l,8) =00+ I(t—s—1/o). (2.3)

Our main assumption concerns the probability of break-up of the branch at the
point at a distance [. This break-up could be due to exploitation, necrosis caused by
bacteria or a temperature increase as we said before. Focus on necrosis phenomenon,
we assume that the flow of water around the branch is a shear flow and hence that
the velocity of the water at a point [ of the branch is proportional to [. If the flow
has a small Reynolds number, it is reasonnable to take a drag force at this point
proportional to the velocity times the diameter.

Of course it would be illusory to try to compute exactly the distribution of
mechanical strain along the coral branch. First of all its mechanical properties are
mainly unknown and then our assumptions on the shape of the branch and the
forces acting on it are such that the result would probably still be far from exact.

Instead let us make a very rough assumption, namely that the strain at one
point [ is proportional to the sum of forces applied on the part of the branch above

l
L(t,s)
/ St 1, 5) 1 dl'.
l

This makes the strain vanish at the end of the branch (I = L) and it is maximal at
the bottom [ = 0 so it is not all together unreasonnable. This should be multiplied
by the corresponding physical constants but as this computation is only heuristic,
we will not mention them.

The resistance of the branch at ! is proportional to d? and we simply assume
that the probability of break-up is proportional to the ratio between the strain and
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the resistance

1 L(t,s) , L
p(t,l,s) = ai(é(t,l,s))Q /l o(t, ', s)l"dl'. (2.4)
After a branch broke at a position [, it will start to grow again, both in length and
in diameter. The new part of the branch will however have an initial diameter of d
and (2.2) is therefore nolonger true along all the branch.

Therefore consider a branch which broke k times: At time s; and position Iy,
then at time so > s; and position l» and so on until time s; and position [;. The
times are of course increasing s; < so < ... < s but in fact we may also assume
that the positions are increasing.

Indeed consider the case of a branch with a first break-up at s; and /; and a
second at so > s1 and Iy < I7. Its length and diameter after sy is exactly the same
as a branch with only one break-up at time s and position [s.

Now taking I; < Iy < ... <l with have for ¢ > s

L(t,8,817l1,...78k,lk):lk+0'(t—8k)7 (25)

and
t

(5k(t,l,s,51,l1,...,sk,lk)=60+/ I(r)dr, forl; <l<lit1, (2.6)
sit+(1-1;) /o
with the convention [y = 0 and lx+1 = L(¢).

Finally and according to the remark, we define d when [y, ... [, is not increasing
as follows. We extract Is(1), ..., 5sigma(k’) Such that this sequence is the longest
increasing sequence that may be extracted from [y ...[;. Then we pose

5k(t7 l? 8,81, lla R Skvlk) = Jk” (tvla 5, 8%(1)» lZ(l)a sy SRR lZ(k)’))' (27)

2.2. A first model with many branches

The first difficulty is to describe statistically a very large number of branches. Let
us remark that these branches can describe more than only one colony. Here, the
total number of branches considered in a parcel is modelled. Then let us denote
by n(t,1,s,81,01,...,8k, k) the density of colonies with total length [ at time ¢,
being new at time s < ¢t and having had k break-up at times s; < ... < s and at
corresponding positions Iy, ..., .

Let us now write down the equations satisfied by the ny, starting by the one for
no(t,1, s)

O¢no + cdmg = —(d + So(t,1)) no(t, s,1), (2.8)

where d is the death rate of a colony (assumed to be constant and independent of
the length or age of the colony to be simple) and Sy(¢,1) is the break-up probability
of a branch of size [ with no previous break-up namely

So(t,1) = a/lp(t, Ust—1/r)dl, (2.9)
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with p given by (2.4) and ¢ by (2.2). In this case the age of the colony is simply of
course [/7. Note that if I does not depend on time, then S is also independent of
time.

The equation for ni with k > 1 is of course more complicated

L k(L U dl
0 (5k(t, l/, S,81,.-. ,lk))2
S Soa (817 5,51, L)1 dI
(Ok—1(t, Uiy 8,81,y li—1))?
The term —dny is the mortality, the next term counts how many branches of ny
breaks (and therefore go to another population). The third term in the right hand
side takes into account the branches of ng_; (having had k — 1 break-up) which
splits once more after their last break-up position. The §; are given by formulas
(2.6) and (2.7).
These equations have to be supplemented by conditions on the border | = 0,
which are for &k > 1

Ony +oong = —dng — ang
(2.10)

/

o0
+Oé/ nk*l(t7l/a83817~”71k71)
l

n(t,0,...) =0, (2.11)

as no new part of the colony may already have had a break-up. For ng the condition
is

oo

no(t,0,s) =6(t — s) Z/ / Bng(t, 1,8 51,00, .oy Sk, L)
k=0 0<s’'<s1<...<sp<t o< <...<lp<l

dly ...dlydlds' ds, .. .dsy.
(2.12)

This represents all the new branches appearing in a parcel, with a birth rate B
which could depend on all the parameters of the colonies. Notice that the Dirac
mass §(t — s) simply ensures that a new branch born at time ¢ is indeed registered
as such.

2.3. A simplified model

The set of equations (2.8),(2.10) is quite complicated and in addition there is an in-
finite number of them. This would make studying or numerically compute solutions
to this system quite challenging.

Instead we propose to derive a simplified model by assuming that the initial
diameter §p is much smaller than the average diameter some time later.

Consider the case of constant environmental conditions and let us precise the
range of values of the parameters for which this is correct. Take one branch with
no break-up yet (or the part of the branch which did not split yet), with length L
at time ¢; It was created at time ¢t — L/o and so

8(t,1) = 6o + g(L— D).
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The probability of break-up at [ is then

«@ L I o
p:(5o+I(L71)/J)2/l (8o + (L =)' dl'.

Assume that

1 L
0y << — (2.13)
o
and consider only those [ such that L — 1 >> (0dp)/I, we obtain that
L
ao
~— L-1"l'dl = L/2 2.14
P T [ (B0 = SR L) (214)
The total probability of break-up of the branch (or the last part of it) is
3ao
P~ — L%
81
and so the typical length of the branch before break-up is
1
L~y —.
ao

Inserting this into (2.13), one finally finds the condition
6 < —. (2.15)

Now, notice that the probability of break-up given by (2.14) is increasing in I,
until { is close enough to L (L — [ of the order of 6dy/I). So a branch will typically
rather break-up at the end.

Moreover consider a branch which already had a previous break-up and which
has a second one. The typical time lapse between the two is of the same order than
the time it took for the first break-up to occur. Hence the typical diameter of the
first (or oldest) part of the branch is twice the one of the youngest part, making it
even more likely that break-up will occur on the youngest part.

Therefore in the sequel we also assume that break-up always occur on the
youngest part of the branch. This enables us to replace dj, in the equation (2.10) on
ny by §(t,1, L) given by

t
5(t,1,L) = 6 +/ I(s)ds. (2.16)
(L=1)/o

Define the total population n(t,l, s) by

n(t,1,s) = / / k(t, 18,81, .. k) dsy ... dspdly ... dlg.
ll, lk 0 81,38k =S8

This functlon now satisfies the relatively simple equation
l// l)l// dll/dll
(5(t,1,1))2

on(t,l,s) + comn = —dn — / fl'

l// l l// dl//
t l/ fl (_ dl.
* ”‘/I nlt: RO

(2.17)
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If the birth rate B depends only on the size of the colony, the boundary condition
becomes

n(t,0,s) = 6(t — s) /Ot /OOO B(l)n(t,l,s")dlds’. (2.18)

In the case where the environmental conditions are constant, (2.17) is even fully
explicit and one does not need to take the difference between new part and old part
of the colony (the age of the colony) into account, defining

t
ﬁ(t,l):/ n(t, 1, 5)ds,
0
we have that

LI (G0 + I(L—1") /o) " dl!
on(t,l) + o0n = —dn—an | 2L
(6, 1) + oo n—an ; G0t I =1)/0)?

oo_ , fll/((SO-l—](l/—l//)/O')l//dl// ,
+a/l a(t, 1) T T /o)? d'.

(2.19)

3. Mathematical study

We are led to study the following type of model, where K(I,1’) is the probability of
a branch of size I’ to break in a branch of size | <1’ and S(I) the break-up rate

On+0omn =—(d+ SI))n(t1)+ fl+°° K(,INSA"n(t,1")dl’
n(t,0) = [7b(l)n(t,1)dl (3.1)
n(0,1) = No(1)
where b(l) is the recruitment rate for a colony of size [ and d > 0 a constant
environmental death rate. Since K (I,1) is a probability density, we have:

—+oo
K(1,1")dl =1,
0

and since the probability of a branch of size I’ to give a longer branch [ is null:

/ K(,I")dl = 1.
0
We need some technical bounds on the various coefficients, namely we assume

b, K, S are C' functions
Vo, 3C, s.t. b(l) < Ce’l, lim inf b(7) > 0, (3.2)

30, kst. S(I) < C L+, K1) <C(1+1)*

These assumptions are quite reasonnable as they are satisfied by about every coef-
ficients we would like to consider.

Note that if the environmental conditions depend on time, both S and K should
depend also on the time variable. As we mainly study the permanent regime of (3.1),
we keep things simple and forgot for the moment about the extra dependency.
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3.1. Permanent regime

To study the system (3.1), we first look for special solutions corresponding to popu-
lations with a constant shape and a constant rate of increase (or decrease) in time.
They are of the form

n(t,1) = e"'n.(l).

The function n (1) satisfyies the corresponding stationary equation:

Oy = —(d+ S0 +)ny + | K@LU)SE)n, )l (3.3)
>l

together with the normalized condition
o0
ny(0) =1= / b(l)n~ (1) di normalized condition. (3.4)
0

The normalized condition should determine the value of the parameter v (Malthus
parameter). In fact one has

Proposition 3.1. Assume (3.2). There exists a unique o and a unique n, > 0
such that (1 + b(l)) n., € L*(RY), for any I, S(I) K(I',1)n, (1) € L*(R") and n.,
is a solution to (3.3) and satisfies (3.4).

The mathematical analysis of this problem is very similar to the one developped
in 13 for linear models of populations structured by age. Here the size plays the
role of the so-called maturation velocity. There are of course some minor differences
(our kernel K is not symmetric in I and I’ for example) but not enough to justify
doing again and thoroughly the analysis. We therefore only sketch the several steps
and refer the reader to '3 for details.

Classical methods ® give a condition for the existence of bounded solution 0 < Ty
to (3.3) (with sufficient decay at infinity in order to define f,,_, K(I,1) S(I")n, (I') dl',
which we will precise later). Namely we require v > —o( where oy is such that for
all [

d+5() <1 ~- | K, Z)dl’) >0 >0

<i

In our case as fol K(U',1)dl’ = 1, which is the conservation of the number of colonies,
integrating (3.3) of the whole R, we find

(d+7) /Ooonv(l)dl =1.

Hence o¢ = d, and we have an estimate on the L' norm of n.. Now define

BO) = [ im0 .

There exists a unique 7 such B(y) =1 and thus (3.4) is satisfied.
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Notice first that B is decreasing in terms of 7. In fact n, itself is decreasing in
7; Indeed if y; > 2, then denoting v = n.,, —n,,

u=—(d+S{I)+v)u+ K()SWu(l)dl + (y1 — 72) Ny s
>l
and as (71 — 72) n4, is non positive and «(0) = 0, by the maximum principle one
has u < 0.
It is even possible to be more precise. Define v = e("1—72)! N, , then

o =—(d+ S0 +m)v+ | K@I)SE) e 0Dy arr
>l

<—(d+SO)+y)o+ [ K@GUSE)ol)dl.
U'>1

By the maximum principle on n., — u, we hence get for v, > 2
iy (1) < e, (1),

As b is dominated by an exponential and n., € L' for every +, this implies that
B(~y) is finite for -y large enough. It also shows that

B(y) — 0, as~y— oo.
Note that this exponential decay is also enough to define

/ TR SW) ()l
1

It only remains to prove that B(y) — oo as v — —d. Of course

e 1
ny(l)dl = —— — 400, as~vy— —d.
| oma= = .

On the other hand n., also satisfies

l
ny(l) = e~ DW= (1 +/ PN .
0 /> 1"

) min(l,1") . .
= e~ DWW (1 +/ (/ P+ K(l”,l')dl”) S(z’)nw(l’)dz’> .
0 0

(3.5)

K(I", Z’)S(Z’)nﬂl’)dl’dl”)

with D(l) such that 9;D(l) = d + S(I). Hence

n, (1) > e PO (1 + / l S n4 (1) dl’) .
0

Now fix L large enough such that b(l) > ¢ > 0 for all [ > L. As v — —d either
fOLn7 — 0o or [, ny, — oo.

In the second case as B(7y) > ¢ [, ny(l) dl, we deduce immediately that B(vy) —
0.
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In the first case we see that for any [ > L

n, (1) > e PO (1 + 5(0) /L n, (1) dl’) ,
0

and so ny(l) — +oo for any [ > L as v — —d which is enough to show that
B(7) = [;7b(I)ny (1) — +o00 as b is bounded from below on [ > L.

Concluding B is decreasing and maps | —d, +oo[ onto |0, +oo[. Therefore there
is a unique 7o such that B(vy) = 1.

Note that formula (3.5) may be used to obtain n., through a fixed point argu-
ment, the operator

) min(Z,l") . .
Tn = e~ DW= / ( / D)1 K(l",l’)dl"> S(U')ns (1),
0 0
satisfying

/m@z 4+ SU) Tn(l)dl < /w S()n(l) di.
0 0

3.2. Ezxistence of solution for the time-dependent system (3.1)

Obtaining solutions to (3.1) only requires enough decay in ! on the initial data in
order to define [ K(,1')S(I')n(l") dl’ and the birth term. Therefore we assume that

/ $(1) (1) di < oo, (3.6)
0
with ¢ non decreasing, continuous and satisfying

?Ell; — 00 100, @ —l—o0o T0O0. (37)

$>0, ¢ <Co, b(1)

We then have

Proposition 3.2. Existence : Assume (3.2), (3.6) and (3.7). There exists a unique
n € L*([0,T], L*(Ry)) for any T with

/0 Toyn(lyd e L0, T)),

n(t = 0,1) = n°(l) and n is a solution in the sense of distributions to (3.1).

This is an easy consequence (stability through approximation) of the two a priori
estimates

l ) [
Lty di = —d / n(t,1) dl + / b(l) n(t, 1) dI,

0
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together with
/¢ n(t,1)dl = —d/ o()n(t,1) dl + ¢(0 )/ b(l) n(t, 1) di
/ & (1) n(t, 1) dl+/0 n(t,1) S(1) /Ol(¢(z') — U)K, 1) dl dl
<d /0 s()n(t, 1) dl + / &/ (1) ndl + 6(0) /0 b(1) n(t, 1) dl.

As ¢ is asymptotically larger than b, these two estimates provides a bound for any
finite time for f ndl and f ¢ndl. This is enough to handle every term in (3.1).

3.3. Convergence of the time-dependent solution toward the
permanent regime

We follow again '3 to prove that n(t,1) converges towards Be?n.,,. For simplicity
we assume that 79 = 0 (this can be ensured by rescaling every solution in time by
€70t thus changing d in the equation).

First define an auxiliary function H(I) that solves the dual problem to (3.3):

Proposition 3.3. Assume (3. 2) There exists a positive H € C*(Ry.) solution to

OH _ (44 S(1) o) i K (1")dl’ — b(1)

al 3.8
0) =1, [~ H() nyy )dl<oo. (3:8)

Proof. There is of course a unique solution H to

0H
ol

with H(0) = 1. But a priori nothing garantees that H stays non negative for

= (d+S(1)H — 5(1 /Kl’ YH(@)dl — (1),

example.
For any ~, note that

H(L)n, (L) =n+(0 /H n (1)dl — /b n (1

+ /O H) /L K(1,1)S()n, (U)dUdl.

Taking v = 79 = 0, one first gets the positivity of H by
H(L)n., (L) > 0.
On the other hand, for v > 0, letting L — oo, one finds

/ " i@y at = o MO dl
0

gl

Now 9,n. is a solution to

Ddyny = —(d+S1) +7)dyny + [ KLI)SE)0yny (1)dl — 1,

>l
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and hence for any v > —d, [ b(1)d,n- (1) dl is uniformly bounded. Consequently the
limit of [ H(I)n(l)dl as v — 0 is finite and

/ H(l)n,, (1) dl < co. -

Now we may state

Theorem 3.1. Assume that b(l) for almost alll. Assume that (3.2) holds and (3.6),
(3.7) are satisfied for the initial data n® with H(1)/®(l) — 0 as | — oo. Assume
finally that for a constant C, n°(l) < Cn.,(1). Let n(t,1) the solution to (3.1) given
by Proposition 3.2. Let 5 > 0 be such that

/oo H()n°(1)dl = ﬁ/m H(l)n., (1) dl.
0 0

Then as t — oo, n(t,1) — B, (1) converges to 0 in L}, .(Ry).

loc

Proof. Let us denote

u(t, ) = n(t, 1) — B, ().

Then of course by linearity of the system, u is a solution to (3.1). Now multiplying
by a regularization of sign(u) and passing to the limit, we get

Orlul + Ohlul < —(d+ S(1)) |u| + /loo SUYK Q) Ju(t, )| dl'.

lu(t,0)] < /000 b(l) |u| dl — min (/000 b(l) uy dl, /000 b(l) u— dl) ,

with uy and w_ the positive and negative parts of u. Multiplying by H(l) and
integrating one gets

%/H(Z) lu(t, 1) di g/ (alH_(d+S(l))H+S(l) /Ol HIOK(, 1) dl’) u(t, )| di

+H(0) [u(t, 0)].
As H satisfies (3.8), we get

%/H(l) lu(t,1)| dl < —min (/OOO b(l) uy dz,/ooo b(l) u_ dl> .

This shows that [ H |u|dl has a limit and that as ¢ — oo, either u or u_ converges
toward 0 pointwise (thanks to b > 0 a.e.).
Moreover the same computation also shows that

%/H(l)u(t,l) dl = 0.

Notice also that the control on the decay of n and H(I)n, is good enough to make
all the previous steps rigourous.
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By the choice of 3, we deduce that

/H(l)u(t,l) dl = 0.

Finally as n® < n,, then by the maximum principle n(t,1) < Cn., and therefore
H(l)|u(t,1)| is uniformly integrable in time. The limit of [ H(I)|u|dl is equal to
|lim [ H(l)udl|. Therefore

/Oo H) |u(t,1)] dl — 0,
0

which also implies the convergence of u toward 0. O

4. Numerical simulations
4.1. The stationary solution

Theorem 3.1 says that the behaviour of the solution is governed by the station-
ary one. The behaviour of this last one in terms of the break-up rate S(I) (which
is typically modified by the environmental conditions), is however not so easy to
investigate theoritically. So instead we performed some numerical simulations.

p—

Population

Size Size

Fig. 1. Stationary solution of model 3.1. The break-up rate S(I) =1 and S(I) = 1/10.

We proposed to study the different cases taking the break-up rate S(I) = [
and S(I) = 1/10. The very classical Euler scheme is used in oder to perform the
simulations but since the integral term of equation (3.1) does not begin in zero we
have to integrate this equation in reverse time. For the other parameters values, we
take K(I,1") = 1/" and d = 0.1 which seems reasonnable compare with the avaliable
data 9. Since a lot of numerical simulations were performed with different initials
conditions and since the same result is obtained, we can assume that probably the
stationary solution is globally asymptotically stable.

Fig 1 shows the evolution of the stationary solution of equation (3.1). One can
see that the more the break-up rate is important (i.e. S(I) =) the more the death
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of the big size colony is important. The population is then mainly constituted of
small size colonies (less than size 4 with S(I) =1 or size 10 with S(I) =1/10). This

confirms the biological observation made in ©.

4.2. FEvolution of the complete solution

Some simulations of the complete model are then proposed in order to evaluate
qualitatively the demographic consequences of protection rules. To perform these
simulations, the classical Euler discretization in time and in size is used.
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Fig. 2. Time evolution of all the size class. Break-up rate S(I) = [ and S(I) = [/10.

Fig 2 shows the evolution of the initial model without no new hypotheses. This
confirm the simulation of the stationary solution since we obtain the same limit
values for both simulations for a given size. Then Fig 3 illustrates the possible
protection of the colony. At time 5, we take a break-up rate S(I) equal to zero in
order to simulate population without mortality due to necrosis or exploitation. One
can see that the behavior of the solution is also governed by the stationary one. In
this particular case this stationary solution can be explicitely (and easily) computed.
One can compute this solution and find that it is proportionnal to exp(—dl) which
can be also verified in Fig 3. More biologically speaking, Fig 3 shows the maintenance
of the highest colonies after some times depending on the break-up rate. The more
the break-up rate is important the more the recuperation of the large colonies is long.
This qualitative result seems to confirm the possible conservation of the population
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but it confirms also the very long time to obtain this preservation considering the
biological values of the growth rate 6.
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Fig. 3. Time evolution of different size class. Protection at time 7' = 5. Break-up rate S(I) = [ and
S()=1/10

In Fig 4 we take S(I) = 0 for t =5 tot = 15 and S(I) = (or S(I) = 1/10)
otherwise. This represents the protection of the colony during ten years. Once again,
the behavior of the solution is governed by the stationary one. A discontinuity in
the break-up rate S(I) is enabled to destabilize the behavior of the solution. This
means that the model is very robust to perturbations and it confirms in the probably
global convergence of the system. More biologically speaking, this qualitative result
could describe the exploitation phenomenon. Indeed during the period of protection
the big size colonies reappear then a period of exploitation remove all this new big
size colonies and only the small size remain alive. This result can also describe a
mass mortality event due to the temperature increase after ten years without any
changes and one can see that the big size colonies are all affected. So this enlightens
the necessity of managing this species on long time scales.
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Fig. 4. Time evolution of different size class. Protection at time T' = 5 and Mortality event at time
T = 15. Break-up rate S(I) =l and S(I) =1/10
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