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1 Introduction

We are concerned with nonlinear mutation/selection-competition models aiming to describe at
a mesoscopic level a population structured with respect to a quantitative trait. We are able to
observe a process of speciation for those models. Or more precisely from many sub-populations
with different traits, a few traits (typically a finite number of them) will be selected while the
others will go extinct.

The individuals interact between themselves as their reproduction rate may for instance de-
pend on the total population, or through competition with individuals having a close enough
trait. An individual’s offsprings share the same trait with possible mutation. More precisely, we
represent a population by its density f := f(¢,y) > 0 of individuals (fully) characterized by a
trait y € Y (here, Y will always be an open interval of R, for example we may choose Y =]0, 1],
R* or R) at time ¢ > 0. We assume that the evolution of the density is given by the following
selection-mutation integro-differential equation

Jj
S = sl1 4 mlf, (1)

where s[f] stands for the selection rate (or selective pressure) and m[f] the mutation source
term.

Typical examples of selection rate we have in mind, and that we shall consider in the sequel



of the paper, are of logistic type :

S[1() = aly) - /Y by, o) (&) dy'- (1.2)

If m[f] = 0 (that is, no mutations are present in the dynamics of the individuals), eq. (1.1)
becomes then

St = (a0 = [ o) 10100 s10.0), (1)

In particular, the case b = 1 corresponds to individuals which are in competition with each
other, this competition not depending on the value of the trait y.

For the mutation, we shall consider integral operators like

mlf(y) = /Y (. ) F) dy.

Although (1.1) is our starting point, it can be derived from a dynamic where a finite number of
individuals may randomly die or produce an offspring with a rate depending on the competition
(or cooperation) between themselves. Taking the limit of an infinite number of individuals with
the correct time scale, one recovers (1.1). We refer the interested reader to the paper [4].

We are interested in the limit for large times of (1.1). Without mutations (that is, when
m[f] = 0), the limit will logically be an evolutionarily stable strategy or ESS of the selection
process s[f]. Evolutionarily stable strategies have been extensively studied for a finite number
of traits (typically one resident and one invading traits) but also in some cases like ours for an
infinite number of them (see [2] for instance). In the situation that we study, the stable strategy
does not generally have only one dominant trait but several coexist (as in [9]).

Let us also point out another interesting limit of (1.1), namely the limit for ¢ — 0 of the
solutions f; to

of: 1

ot gs[fs] f6+m[f6] (14)

In this last equation the time scales of the selection and mutation are separated or in other
words the mutations are rare. If the stable strategy had always only one dominant trait this
procedure should lead to the canonical equation of adaptive dynamic as it was obtained in [3]
(we refer for reader to [5] or [8] for more on the rich subject of adaptive dynamic). If several
traits may coexist, then the situation is more complicated as it was proved in [7]. Note in
addition that the technique developed in this last paper cannot be applied for (1.4) with the
forms of s[f] that we have in mind, making this program somewhat ambitious.

2 A general existence result

In order to formalize the biologically coherent idea that s[f] < 0 when the population is large
(like in the logistic model), we make the following



Assumption 1 :

[+ s[f] is continuous in L'(Y); (2.1)

[ S fwdy < (B - B2y,
Here and in the sequel, p = p(t) is defined by p(t) = [, f(t,y) dy.
In order to obtain uniqueness (and stability with respect to initial data), we introduce the

Assumption 2 : [~ s[f] is bounded and Lipschitz continuous from L}(Y) to L°°(Y), i.-e.
there exists K > 0 such that

Vige L'Y),  |Is[flllzerry < K (4 flloyy)s
L1 = slglllzeovy < KNI = gllpiy)-
We now present the

Theorem 2.1 :

1. We suppose that assumption 1 holds, that f+— m[f] is linear and continuous in L'(Y),
and that m[f] > 0. Then, for any nonnegalive f;, € L'(Y), there exisls a nonnegalive f €
C([0,+o0[; LYY)) which solves (1.1) together with f(0,-) = fin. Furthermore,

By + |[[m][| s
L (Y)’p(o))

vVt >0, p(t) < max ( B,

2. If moreover assumption 2 holds, then

vee 0, 1], (IF(t) = gt oy < €TI0, ) = g(0, )]
for any two solutions f,g of (1.1) in C([0,+oo[; L}(Y)). Here,
pr =& (14 sup (176l + sup [l gy ) + il
t€[0,71] tef0,71]

In particular, if f(0,-) = ¢(0,-), then f(t,-) = g(¢,-) for all t > 0, so that uniqueness holds.

3. Finally, if we assume that (still under assumption 2)

o fi, #0 a.e. and ( g #0 a.e = m[g] > 0 a.e. ),

or
e fi, >0 a.e.,

then f(t,-) > 0 a.e. for anyt > 0.



Proof : Let us first prove the basic a priori estimates, under assumption 1 only. We begin by
noting that any (smooth) solution to eq. (1.1) is nonnegative, thanks to the minimum principle.
Then, integrating (1.1) with respect to Y, we see that any (smooth) solution satisfies

dp < (Br — Bz p) p+ |[|mll|Lyy) P

so that

p(t) < max(p(0), B),
with

B By + |||m|||L1(Y).

B;
Existence can then be proven thanks to the inductive scheme
{ Jo(t,y) = fin(y), (2.2)
atfn-l—l = S[fn] fn-l—l + m[fn]v fn-l—l(O) = finv

which respects the a priori estimates above (minimum principle for f,, and maximum principle
for p,).

We now suppose that assumptions 1 and 2 are satisfied. We compute, for ¢ € [0, 7],

17 = gl = [ 61111 = slalg) sgn(s = g) dy-+ [ (7] = mlal) sgnt - g) dy

< [ s =gldv+ [ 15t slallgdy+ [ 1mls) = mis]l ay
< sy 1S = gllryy + s = slglllLevy llglloyy + Hmll iy 1 = 9lloyyy
<[5 (14 sup 1y + sup o) + il | 15 - sl
t€[0,T] te[0,1]
We conclude thanks to Gronwall’s lemma.

We finally turn to the question of the strict positivity of f(¢,-). We suppose first that f;,, > 0
a.e. We observe that

O f(t,y) s[f1(t,y) f(t,y)
=K (L+ [t ) lyy) f(Ey)

—K (14 max(p(0), B)) f(t,y),

(AVARAVAR Y]

so that
Ft,y) > £(0,y) e & (max(e(0).B))t

and consequently f(¢,-) > 0 a.e.
. 2]
Assuming now that f =0, and that (¢ =0 = m[g] > 0 a.e.), we observe that a—{(O, ) >
m[f(0,-)] > 0 a.e., so that f(¢,-) > 0 for ¢ > 0 small enough. We can therefore use the proof of
the previous case, starting from this time ¢ instead of starting from time 0.



3 A general result on the large time asymptotic

We now restrict ourselves to a class of selection/competition models without mutations given
by formula (1.3), and, more precisely, satisfying the

Assumption 3 : We take for Y a bounded open interval of R. We assume then that the
selection rate s, given by formula (1.2), is such that « € Wh*(Y), b € C(Y x Y,R%), and
b r
e L™(Y).
a1

Our aim is to investigate the qualitative large time behavior of the solution f to eq. (1.3)
under assumption 3. Making the change of variables ¢’ = t/e, that is equivalent to consider the
family of equations (after having renamed by ¢ the rescaled time ¢)

ths(t,y)z§8[fe(tw)](y)fs(t7y) on ]0,7[xY,  f(0,y) = fin(y). (3.1)
We define .
Relt,y) = [ slfilo,)](0) do

so that f. is given by the formula

fs(tv y) = e%RE(Ly) fzn(y)

Theorem 3.1 let f;, > 0 € LY(Y) and s salisfy assumption 3. Then, there exisls a unique
solution f. to eq. (3.1) for any ¢ > 0. Moreover, there exists f € L*(]0,T[, M'(Y)), R €
W10, T[xY) and a subsequence of (f.) and (R.) (still denoted by (f.) and (R.)), such that

fe—=f L®(wx]0,T[;o(M" Cy)(Y)) and R.— R uniformly in [0,T]xY,

t
where R(t,y) ::/ s[f(o,.)] do.
0
Finally, when f;, > 0 a.e., f and R salisfy

Vie[0,T]  supR(t,y) <0 and Suppf C {(t,y) € [0,T]xY; R(t,y) = 0}
yeY

More precisely, this last property means the following : if one has R(t.,y.) < 0 at some point
(te,yx) € [0, T] X Y, then there exists § > 0 such that

/ (/wwﬂuw@w:o
[0, 7] [ta—5,tu+5] JY

for all smooth function ¢ : R — R such that Supp ¢ C [y« — 6, y« + 6]

Proof of Theorem 3.1. We first observe that thanks to assumption 3, the quantity s/e
satisfies assumptions 1 and 2, with
1

1 .
Bi = —|la]|pe(vy;  Ba= = inf_b(y,y');
€ € yy'ey



|
& = 2 max (lallgmgwy. [Bllmw )
Then, thanks to theorem 2.1, we know that

inf%y,e? b(y, ')

vt € (0,17, 0<p(t) <D :=
lla|[Le(y)

(3.2)

Therefore, up to extraction,
f-— f L®w]0,T[;o(M", Cy)(Y)).

We recall that

R.(t,y) Ia(y)t—/ot/yb(yyy’) fe(o,y') dy' do.

Since .
% =a(y) — /Yb(%y’) f(ty") dy,
and
OR
a //aly, ) fe(0,y') dy' do,
We see that
R.| <Tlla|[r= + DT|[b]| e,
20| < el + Dl
and

OR.
— | < T o+ DT 0.
| < Tl + DTN

Therefore, R, is bounded in W*°(]0, T[xY).
Then, we observe that since f. — f in L (w0, T[;o(M?',C})(Y)), we have for all ¢ € [0, 7]

and y € Y the convergence of fg Jy oy, ¥) fo(o,y') dy do towards fot Jy 0(y,y) f(o,y") dy do.
As a consequence, R.(t,y) converges toward R(t,y) for allt € [0,T] and y € Y.

Thanks to the boundedness in W'*°(]0,T[xY) of R., we obtain that R. converges to R
uniformly on [0,7] x Y.

We now suppose that f;;, > 0 a.e. Then, if R(t.,y.) > 0 at a certain point (¢, y.) € [0,T]x Y,
we see that R.(t,y) > & for some § > 0, as soon as |t —t.| <6, |y —y| < and 0 < £ < 6.
We can estimate

pé‘(t) Z / eRE(Ly)/E fzn(y) dy Z / 65/5 fzn(y) dy —re—s0 100.
Y B(yx,5)

This contradicts the conclusion of estimate (3.2).



We now consider a point (t,,y.) € [0,7] x Y where R(L.,y.) < 0. Then , for some & > 0, we
see that R.(¢t,y) < —d assoon as [t —t.| <6, |y — y«| < dand 0 < e < 5. We consider a smooth
test function x : R — R such that 1g(,, 5/2) < X < 1p(y,,s); Then,

(28 tet+d
/ / ft,y)dydt = hm / y) fo(t,y) dydt
ty—

text8
< fim / (/% . (y) dydt
y*76)

e—0

< 26 lim e~%/¢ / finly) dy=0.
e—0 B(y*,(S)

We see therefore that Supp f C {(t,y) € [0,T] x Y; R(t,y) = 0}.

4 Some particular cases

In a few situations, it is possible to completely identify the limit given by theorem 3.1, and show
the nonlinear global stability of a unique steady state.

We begin with the :

Example 4.1 :

Assume that Y is a bounded interval of R, and that s[f](y fY "Ydy', where a is a
Whee function from'Y to R which has a mazimum reached at a umque pomt y* €Y. Then,
if fin >0 a.e. lies in L1(Y), the measure [ given by theorem 3.1 is

f(tv y) = a(y*) 51/:1/*7

Proof : The quantity R defined by thm. 3.1 satisfies in this example the following identity:

k) =at)t- [ [ sy iyie

But by assumption, a(y.) < a(y) for all y # y., so that (for any ¢ € [0,T]) the unique possible
point y of Y where R(t,y) = 0 is y = y.. According to theorem 3.1, we know that for any
smooth function ¢ such that ¢ = 0 in a neighborhood of y,,

/ /¢ (0,y) dydo = 0. (4.3)

(97595 Z % ( lnia(y) - p6)7

yey

Then, we observe that

so that

vt €[0,T], pe(t) > F := min (p(O),;Ielf?a(y)).

-~



Passing to the limit in this estimate when ¢ — 0 and using identity (4.3), we observe that for

any 6 > 0, t € [0,7] and any smooth function y such that 1g(y, s/2) < X < 1By, 5
/ / x(y) f(oy) dyda:/ / f(o,y) dydo
[0,T]N[t=8,t+38] JY [0,T]N[t—8,t+5]
> EJ.

Using thm. 3.1, we deduce from this estimate that (for any ¢ € [0,77]), R(¢, y.) = 0, so that (for

any t € [0,17]) t
a(y*)tZ/O /Yf(ff,y’) dy'do,

and (using identity (4.3)), for any smooth function ¢ : R — R such that ¢ = 1 in a neighborhood

of yu,
y*t_//qb f(o,y) dy'do.

This can be seen as a weak formulation of the identity f(¢,y) = a(yx) dy=y, -

This situation can be somewhat generalized to cases when a still has a unique maximum
(which, without loss of generality, can be taken at point 0), and its convexity at point 0 is large
compared to the convexity of b at point 0, where b(y,y’) = b(y — 3’) in (1.2). This situation is
well-known in adaptive dynamics : it corresponds to a situation when the competition does not
lead to a branching. We state a precise result :

Example 4.2 Assume thatY =]—1,1] and s[f )= Ji b( (y") dy'. We suppose that
a € CYY; R%) takes its unique mazimum at pomt 0 and such that for some constants A,C > 0,

YyeY, a(y) <C, ld'(y)| > Alyl,

Then, we suppose that b € C'([-2,2]) takes its unique mazimum at point 0, and such that for
some constants D, E > 0,

VyeY, by)>D, |V(y|<Elyl
Finally, we suppose that

2CE < AD. (4.4)

Then, if % > fin > 0 a.e., the measure f given by theorem 3.1 is f(t,y) = %(9)1 do(y).

Proof : In order to show this result, we begin by observing that because of the maximum
principle, ||f(t, )| < 5.

Then, we denote by @ the set {y, 3t €]0,T], (t,y) € Supp f}. Suppose that y. € Q). Then,
we know that (for some ¢ €]0,77]) the function y — R(f,y) admits a maximum at point y,., and
that R(t,y.) = 0.



The assumption that b is C'! ensures that y — R(t,y) is also C, so that 9, R(t, y«) = 0, which
can be rewritten

t
ta'(y.) = /0 /GQ b'(y — 2) f(s,2) dzds.
Then .
el < [ f =) (s, deds

t
<1Vl L~ (@-g) /0 / o |f(s,2)| dzds
z€

C
< = tV|| oo
=] || ||L (R-Q)»

where () — () denotes the set of differences of two elements of ().
Finally, we end up with the following estimate for ¢)

c
lllz=@) < 5 IVll2=(@-0)-

Here, @ — @ is the set of differences of two elements of ). Since @) C [—1, 1], one has for any
x € @ the inequality

C
Alz| <ld'(@)] < 5 IVl oo (-2,

so that o )
< —2F—
|x| — D i

and finally Q C [—%, %]. Then, for any = € Q,

C
Alz| < |d'(z)] < ) ||b/||LOO([_f_C 1BCY,

D" AD

and Q C [-(2££)?, (2£5)?]. By induction, we end up with @ C [—-(2E%)", (2E5)"] for all
n € IN.

Thanks to hypothesis (4.4), we see that ) = {0}, which shows the result. The rest of the
proof is similar to the end of the proof of the first example.

We now turn to a situation in which it is not possible to identify in totality the limit, but it is
at least possible to see that this limit is necessarily a finite sum of Dirac masses (and to bound

the number of possible Dirac masses).

Example 4.3 : We suppose that for some k € IN¥,

L)) = a(y) - /Y by, o) () dyf, (4.5)



where a € C*(Y), y s b(y,y') € CE(Y) for ally' € Y, and

(k) = Y 0%t >0 Y x Y.
a = on on .
: a1k

Then, if fi, > 0 a.e., the measure [ given by theorem 3.1 lakes the shape

k
F(ty) =D pilt) by=yico),

=1

Jor some y;(t) €Y and p;(t) >0 (i=1,..,k).

Rt =at)t= [ [ o) 0.0 it

Then, R is clearly in C*(Y') and

0PR apb
W(tvy) = t—/ / a1 ¥) [loy) dy'do

for all p < k. In particular

Proof : In this case,

Gkb
/ / I (y,y') f(o,y) dy'do >0,

so that (for any time ¢ € [0,7]), the function R(¢,-) has at most &k zeros on Y. Thanks to
theorem 3.1, we can conclude.

5 Linear stability

In many situations, it is not possible to prove the nonlinear global stability of a general steady
state. It is however at least possible to explore the linear stability of some specific steady
solutions of eq. (1.3), with respect to perturbations having a particular shape. This leads to
computations similar to those appearing in adaptive dynamics. We begin with the analysis of
the steady solutions to eq. (1.3) (with @ and b smooth C? functions) which are finite sums of
Dirac masses.

5.1 Stability of sums of Dirac masses

We begin by noticing that a function of the form

N
= Zpi 8y, (y), (5.6)

10



(where p; > 0,..py > 0) is a steady solution of eq. (1.3) if and only if

N
a(y;) :ijb(yi,yj)- i=1,.,N. (5.7)

Starting from a perturbation of the function in (5.6) of the form

N
fly) =¢€ds(y) + sz‘ Sy: (y) (5-8)

with e > 0 and s € Y, s # y1, .., yn, the linear stability analysis (that is, when O(g?) is neglegted)
leads to the “global” condition of linear stability :

s) < Zp]‘ b(s,y;), seY,s# yi, .., Un- (5.9)

Here, the term “global” means that there is stability with respect to a perturbation whose
support is not necessarily localized around the support of the steady state.

Still under the condition that @ and b are C?, this “global” condition entails the “local”
condition :

Zp] 01 y’Hy] Z: 17"747\77 (510)

Zp] 012 (i, y;), i=1,.,N. (5.11)

Those formulas are similar to the equations obtained in adaptive dynamics.

The set of equations (5.7), (5.10) and (5.11) (for arbitrary N € N, b; > 0 and y; € Y) enables
to find the steady locally linearly stable (with respect to perturbations which are Dirac masses)
solutions of eq. (3.1) of the particular shape (5.6).

In next subsection, we present a computation (for N < 3) in a simple and typical case, where
it is possible to obtain explictly all the constants appearing in the steady states.

5.2 An example : local and global linear stability

We study in this subsection the case when

1
L+ (y—2)*
where A > 0 is a parameter (the study can be performed either in R or in a bounded interval

containing [—v/A,v/A], since any solution of eq. (1.3) will decay exponentially fast towards 0 at
any point y where a(y) < 0).

aly) =A-y*  bly,2)= (5.12)

11



Note that ¢ has its maximum at y = 0 and becomes nonpositive when |y| is large enough,
that is, individuals having a trait too far from the optimal trait will disappear even if the
competition is not taken into account. The competition kernel b is at its maximum when y = z,
that is when the traits of two individuals are closest, and it decreases with |y — z|. It remains
however nonnegative whatever the values of y, z. In other words, there is always competition
and never cooperation between the individuals.

Note also that the bigger the parameter A becomes, the higher is the interest for individuals
to have differents traits. In other words, N should grow with A.

In the sequel, we look for the locally and globally linearly stable (with respect to perturbations
which are Dirac masses) steady solutions of eq. (3.1) [with coefficients defined by (5.12)] of the
form (5.6). Since the coefficients are symmetric with respect to 0, we only look for symmetric
steady states.

521 N=1

We start by searching the solutions for N = 1. We see that the set of equations

db
a(@h) =P b(yh y1)7 a/(yl) =P 8—1(3117 y1)7

has the only symmetric solution given by

a(0)

1 ’ 1 b(0,0)

Moreover,
" 0%b
a (y1) - '01—812 (ylvyl) =2 (A - 1)7

so that fi(y) = Ad,—o is locally linearly stable if and only if 0 < A < 1.

Finally, we test the global linear stability by computing

A
a(s) = prb(s,yn) = A —s* — Ty

— (5.

It is clear that ¢(0) = 0 and lim,_ 40, ¥(u) = —oco. Moreover, ¢'(u) = —1 + ﬁ. Therefore,

when 0 < A < 1, ¥(u) < 0 for u > 0. Finally, there is global linear stability of f(y) = A d,—¢ if
and only if 0 < A < 1..

522 N=2

We now look for the symmetric solutions of (5.7), (5.10) when N = 2, and with the data (5.12).
That is, we wish to solve

a(yr) = p1o(y1, 1) + p2 b(y1, y2), a(y2) = p1b(y2, y1) + p2b(y2, ¥2),

12



db db b b
a/(@h) =p a_l(ylv Y1) + p2 a_l(ylv Y2), a/(y2) =p 8_1(y2’ Y1) + p2 8_1(y2’ Y2),

with py = p2 > 0, y1 = —y2 > 0 (and y; # y2). This system can be therefore rewritten as

1 2p1
A—y?=p (14— 1= _ =P
v ’01( +1+4y%’)’ (14+4y})?

We look for z = y?. Then, the previous system turns into the second degree equation
8at+ Tz +1=A.

When 0 < A < 1, this equation has only nonpositive solutions. When A > 1, its only stricly
positive solution is given by

=T+ V1T 32A (5.13)
B 16 ' ’
so that
1 13+164A—-3V17+32A4A
ylzz\/—7+v17—|—32Aa pP1L= + 16 + .

Note that p; > 0 for all A > 0.

By symmetry, it is enough to test the local stability at y; in order to obtain it also at ys.
Therefore, we compute

2 2
a”(?h) -/ gT[;(yla Y1) — p2 ng(yh Ya)
24y? -2
(1+4y%)3)
1-122
144z’

:—2—P1(—2+

=2+ (1+42H* +

v
b
R

Then, this quantity is nonnegative if and only if z (82? + 6z — 1) > 0, i-e. z
Remembering (5.13), this means that A > sz ~ 2.13.

In other words, the steady state

_18+16A-3VITF324 (| 5
2(y) = 16 y=1\/—7+/T7T+824 + y=—L\/—7+ /174324

is locally linearly stable if and only if A € [1, B‘FSJ]

Finally, we test the global stability of this steady state by computing (with u = s?)

1 1
a(s) — p1 b(s, — pa b(s, —A-s*— [ + ]
() P1 ( y1) P2 ( y?) P1 1+(y1—3)2 1_|_(y1+5)2

13



242u+2zx
142u+2z4+224+u?2-2zu

B (u—2)*(u+2— A)
o 142u+2z+ (v —u)?
This means that the global linear stability of f> holds for 1 < A < 2.

=A-u—p

We see that there is a range of A (between 2 and 2.13..) where a “short range” mutation does
not perturb the steady state, while a “long range” one can destroy it. This is related to the fact
that if the transition between A < 1 and A > 1 is a branching, the transition between A < 2
and A > 2 consists instead in the appearance of a new trait (at y = 0) “coming out of nowhere”.

523 N=3

After the use of the symmetries, the system to solve in order to know if a sum of three Dirac
masses (of the form f(y) = p1 dy=y, + p2 0y=0 + p1 dy=—y, ) is a linearly stable steady solution of
eq. (1.3) (that is, (5.7), (5.10)), can be rewritten under the form

A-yi=p(+ )ty

1+4y3 14y7 7
A=2p1 5 + P, (5.14)
— 1
L=20 gy + P2 e

Still writing z = y#, we see that
822+ 3la+14-9A=0.

The only strictly positive solution of this equation is

v —-314+ 513+ 288 A
= T .

We see that > 0 as soon as A > 19—4.
Then (for z > 0),
(A—1-2z)(1+ 4z)?
(162 4+ 10) z ’
so that p; > 0 if and only if A —1— 2z > 0, ie. (24 1) (82 + 5) > 0, which is always true.
Finally,

p1=

2p:
1+2z’

p2=A-
and pz > 0 when A > 2 (i.-e. z > %)
In order to study the global linear stability, we compute (for u = s?)

P2 p1(24 2z + 2u)
A—u-— —
144 14224+2u+224+ 4?2 —2zu
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_ u(z—u)?(82* 431z — 13 — 9u)
- 9(14u) (14 2z 4 2u + 2? + u? — 2zu)

so that this is nonnegative if and only if

8z + 31z — 13— 9u > 0,

i-e. A—3— u > 0. This ensures that there is global stability of the steady state

f3(y) = p (5y:\/§ + 5y:_\/g) + p2 dy=0,

with
_ —314+/513+2884 ~(A—1-22) (1+4a)? _ 4 2p
- 16 T T M6+ 100 0 T T Ty

if and only if 2 < A < 3.
It is easy to verify also that for A > 3, the condition of local linear stability is not fulfiled for
the Dirac mass at point 0.

5.3 Another example: stability of a steady Gaussian solution

One may wonder whether there are stable steady states to eq. (1.3) which are not sums of Dirac
masses. The following example does not answer to this question, but gives at least a situation
in which the unstability of such a steady state seems to develop only after a very long time.

We consider the case of @ and b Gaussian, as follows :

1 _¥? 1 _ 2

a(y) = —6_2(T1+T2)7 b(y) = e T, (515)
\/27TT1

\/ 27T(T1 + TQ)

where T, T5 > 0. This formula for @ is not very satisfactory since it is not negative for |y| large

enough, but this example is nevertheless interesting since it gives rise to the obvious steady state
2

_ _y
f(y) = —===¢ 2% . The study of the linear stability of this solution is much more intricate

vV 2’7TT2

than the study we performed in subsections 5.1 and 5.2. Let us just present a few basic facts.

Let £ g(t = 0) be a small perturbation of f, such that f+eg(t = 0) > 0. Then, eq. (1.3)
becomes 0,9 = —(bxg) f — e (b* g) g. Thus, f is linearly stable if and only if 0 is an attractive
point for the linear integro-differential equation :

Oig=—(bxg)f.

Let us first note that if g has a constant sign, then |g(-,y)| decreases for each y € Y, and so
does [ |g(-,y)|*dy. But, as we shall see, this property disappears if g does not have a constant
sign. For example, taking

g(t = 0) = (sin(26.69 z) — 202 sin(27.5z)) e *7*", (5.16)
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we see that

8,5/ lg(t = 0,y)|*dy = 9.2.107% > 0,
R

and that f+eg(t = 0) > 0 for ¢ > 0 small enough. Then, the L% norm is not a Liapounov fonc-
tional for the problem, which suggests that f might be linearly unstable. Moreover, computations
with other oscillating functions seem to lead most of the time to values of d; [ |g(t =0, y) |2 dy
which are negative, and sometimes, like in (5.16), very small. This suggests that this instability
might take a long time to develop.

We present in next section numerical simulations which show that f seems indeed to attract
rapidly most of the initial data, then remains stable for a very long time, before finally being
destabilized and converge toward a (presumably) infinite sum of Dirac masses.

6 Numerical simulations

6.1 The numerical method

All simulations have been done for eq. (1.3), in the particular case when Y = R and b(y, y') :=
b(y — y'). We assume that f;,, @ and b have a compact support (that is, a is replaced by 0 at
the points where it is nonpositive, or (in the case of the Gaussian) when it is close enough to 0:
this does not lead to difficulties when f;,, takes the value 0 in those zones). After a rescaling,
we can consider that the support of f is included in [i, %] and that the convolution b *g f can
be seen as a convolution of periodic functions. This will allow us to use a spectral method to

compute it.

We first discretize f in the space variable under the form of a finite sequence (f;)i=o..n. The

equation becomes (with a; := N f[L 410 and b; ;== N f[L i1 b):
N’ N N’ N

7 N

af; .

En =\ a; — E b]‘ fj—i-}—N + E b]' f]‘_i , Ye=0...N.
J=0

j=i+1

Then, we use a Runge-Kutta method (RK4) for the time discretization.

As we said, we use a spectral method to compute the convolution, based on the following
formula of Fourier analysis:

——

(b:)i * (fi)i = (bs)i - (fi)s-

Using a FFT algorithm to compute the Fourier transform, we recall that the complexity of
each time step is of order N log(N) instead of N2.
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Figure 1: Simulation for A = 1.5 at times ¢ = 0, t = 10 000, and for ¢ € [0, 1000].

6.2 Simulation for the example of subsection 5.2

In subsection 5.2, we found linearly stable steady solutions of eq. (1.3) with data (5.12) under
the form of sums of Dirac masses. Thanks to the simulations, we observe that there is also most
probably global nonlinear stability: for every initial condition f;;, > 0 that we have tested, the
solution numerically converges to the solution found theoretically when A € [0, 3]

When A € [1,3], the results can be interpreted a “speciation process”. We observe two
different types of such processes : in fig. 1 (corresponding to A € [1,2]), we observe a branching
of the initial datum into two subspecies, while in fig. 2 (corresponding to A € [2,3]), the middle
subspecies appears without any branching.

In fig. 3, we present the theoretical and numerical long-time limit of f (starting from a given
initial condition f;; > 0 in the numerical simulation, but any other (strictly positive) initial
datum that we have tested leads to the same result) for different values of the parameter A.
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line, f : dashed line

6.3 Simulation for the example of subsection 5.3

In subsection 5.3, we discussed the linear stability of a steady solution f of eq. (1.3) with data
(5.15). By computing numerically for very large times the solution of this equation, we observe
that f is not stable. It is however interesting to notice that for various initial conditions, f
seems first to converge rather rapidly to f, and then this steady state is destabilized much later,
and turns into what looks to be an infinite sum of Dirac masses ZieZ «;6; 1, (where h is a certain
number). The shape of the solution of eq. (1.3) with data (5.15) at various times is presented
in fig. 4.
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