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1 Introduction

1.1 The model and its basic properties

We are interested in the dynamics of a population of individuals with a
quantitative trait. The reproduction rate of each individual is determined by
its trait and the environment, leading therefore to selection.

The environment itself is influenced by the population and the corre-
sponding feedback can make the possible asymptotic behaviour quite com-
plex. However we limit ourselves to a class of competitive interactions that
will ensure the convergence to a unique limit.
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We denote by f(t, x) the density of individuals with trait x. The space
of traits X can be fairly general, even though for simplicity we will take a
subset of Rd. We assume that f satisfies the following equation:{

∂tf(t, x) =
(
a(x)−

∫
b(x, y)f(t, y) dy

)
f(t, x), for t ≥ 0, x ∈ X,

f(0, x) = f 0(x) > 0 for x ∈ X.
(1.1)

The term a(x)−
∫

b(x, y)f(t, y) dy is the reproduction rate and it takes into
account the effect that the population itself has on the environment through
the integral kernel. Competition usually means taking b nonnegative (but we
will need stronger and more precise assumptions below). A general discussion
on this model as well as an existence proof can be found in [7]. Our goal is
mainly to precise the analysis of the asymptotic behaviour that was initiated
in this article.

Equation (1.1) corresponds to models frequently used, see for instance
(among many) [3], [11], [15], [22]. It can be derived from stochastic models
of finite populations (see [6] or [12]). Note that the environment is assumed to
react instantaneously to the population, and in many cases it would be more
realistic to also write down an evolution equation on some environmental
variables (see an example in [1]). This would unfortunately not always fit
with the framework developed here.

Other changes (not necessarily compatible with our analysis) include spa-
tial effects (see for instance [14], [24]), random environments ([23] for exam-
ple), and of course non competitive interactions should lead to quite different
asymptotics (see [13] for a study of mutualism).

We will often denote

b[f ](x) =

∫
X

b(x, y) f(y) dy

and (with a slight abuse of notation) if f is a Radon measure, we will write
f(x) dx instead of the correct df(x).

Existence of regular (Lipschitz for instance) or measure valued solutions
to (1.1) is not difficult, provided that the coefficients have enough regularity.
We assume that

a ∈ W 1,∞(X), b ∈ W 1,∞(X). (1.2)

Under assumption (1.2), there exists a unique f ∈ W 1,∞([0, T ], W 1,∞(X))
(or, depending on the smoothness of f 0, W 1,∞([0, T ], M1(X))), solution to
(1.1) on any time interval [0, T ].

We are of course interested in the long time behaviour of this solution.
The first point is to make sure that the total population

∫
X

f(t, x) dx remains
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bounded from below and above. This is ensured (see [7]) by the following
hypothesis:

O := {x ∈ X; a(x) > 0} 6= ∅, inf
x,y∈X

b(x, y) > 0. (1.3)

This assumption can be somewhat relaxed (in particular if X is not compact,
for example X = R).

Of course in a general framework (and even with a non vanishing popu-
lation) there is no particular reason to expect that the solution has a limit.
However we only consider competitive interaction between individuals: The
individual with trait y only has a negative effect on the one with trait x
because of the positivity assumption on b in (1.3).

It is widely believed that competition will induce a convergence to the
“optimal” repartition of traits. Following ideas already well developed in
adaptive dynamics (see [8] for instance), we introduce the notion of Evo-
lutionary Stable Distribution, which is a global version of the ESS used in
Adaptive Dynamics (see [7]):

Definition 1 The measure f̄ ∈ M1(R) is called an Evolutionary Stable Dis-
tribution (ESD) for the equation (1.1) if:{

∀x ∈ supp f̄ , 0 = a(x)−
∫

b(x, y)f̄(y) dy,
∀x ∈ X, 0 ≥ a(x)−

∫
b(x, y)f̄(y) dy.

(1.4)

It seems that the ESD is generically a sum of Dirac masses

f̄ =
n∑

i=1

αiδxi
, (1.5)

which can be interpreted as a mode of speciation: The population which was
initially dispersed along all the traits, now concentrates along a few of them
(“species”). Nevertheless the ESD may sometimes be a continuous function,
as in one of the examples shown later in this article.

The existence of an ESD is not always easy (see [21]), and it can require
more assumptions on X than those we have made (closeness for instance).
In order to remain fairly general, we therefore simply assume that one has
at least one ESD:

∃f̄ ∈ M1(X), f̄ ≥ 0, f̄ satisfying (1.4). (1.6)

The ESD is however not necessarily unique (see [20]), thus making conver-
gence for any initial data doubtful.
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There have already been many studies of existence and stability of the
steady-states for this kind of models, we refer for example to [4], [9], [17],
etc. The novelty of our result is that we give a general additional condition
on b which ensures the convergence toward the ESS.

Let us also mention that this kind of results may be seen as a first step
toward a rigorous mathematical study of selection/mutation models. In par-
ticular, when there is a time scale separation between the two phenomena,
the approach followed in [10] leads to a model like

∂tfε =
1

ε
(a− b[fε]) fε + Kε[fε], (1.7)

with Kε a mutation kernel and ε, equal to the ratio of the time scales, tending
to 0.

At each time, one then expects fε to be at equilibrium (or ESD) w.r.t.
the fast dynamics (which exactly corresponds to the long time asymptotics
of (1.1)). This fast dynamics equilibrium would be taken among all traits
present at that time (for which fε is not too small). Therefore the ESD
should evolve in time as new traits are added, thanks to the mutations.

In the case of one dominant trait, one would expect to essentially recover
the canonical equation of adaptive dynamics (see [5] for another approach).
But our approach has the additional advantage of not requiring that only
one trait be present; It is then possible to see branching occur for instance.

The analysis in [10] was essentially formal (see [2] for a rigorous result
with additional assumptions and [19] for a related derivation). A better
understanding of the selection mechanism appears necessary to go further.

The set X is typically a subset of Rd but not necessarily a regular one.
Considering (1.1) alone, it would be natural to take a ball for X or any other
nice domain. However many applications demand more singular sets. For
instance the derivation from (1.7) would typically lead to X being the set of
points where some function is larger than a given value.

Instead of a regularity assumption, each point is assumed to have a non
vanishing density with respect to the Lebesgue measure:

inf
x∈X

inf
0<r<1

r−d

∫
X

I|x−y|≤r dy > 0. (1.8)

Of course the Lebesgue measure is used only for convenience and could be
replaced by any other σ-finite Radon measure as long as (1.8) is satisfied for
some positive d: Restrictions of Hausdorff measures for example.

With some effort, the theory presented here could even be generalized to
a complete metric set X endowed with a measure satisfying adequate regu-
larity properties, and (1.8) with any function dominated by the exponential
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replacing rd. Note finally that some closeness or compactness assumption on
X is typically required in order to get the existence of a stable equilibrium
to (1.1), see [21].

1.2 The results

We introduce a stronger version of the competition assumption, namely

∀g ∈ M1(X) \ {0},
∫ ∫

b(x, y)g(x)g(y) dx dy > 0. (1.9)

Note that (1.9) is automatically satisfied for g ≥ 0 because of Assumption
(1.3). As there is no sign condition on g in (1.9), it is indeed stronger than
(1.3).

One can check using classical methods that b defines then a scalar product
over M1(X):

Proposition 1 Assume that b ∈ L∞(X × X) satisfies (1.9). Then we can
define a scalar product over M1(X) and the corresponding norm by

〈g, h〉b =
1

2

∫ ∫
b(x, y) (g(x)h(y) + h(x)g(y)) dx dy, (1.10)

‖g‖b =

(∫ ∫
b(x, y)g(x)g(y) dx dy

) 1
2

. (1.11)

Remark 0.1 The topology induced by this norm is weaker than the usual
topology on measures. For example, in the case when X := R, b(x, y) :=
e−|x−y|2, if ‖fn‖b → 0, then ∫

φ(x)fn(x) dx → 0

for all φ ∈ L2(R) such that ξ ∈ R 7→ eξ2F(φ)(ξ) ∈ L2(R).

The strong competition assumption (1.9) is directly connected to the sta-
bility of the ESD (and the CSS condition of adaptive dynamics). It does not
seem to be related however to a condition on the spectrum of a linearization
of the equation near the equilibrium f̄ . Under assumption (1.9), f̄ is unique:

Theorem 1 Assume (1.2), (1.3), (1.9). Then there exists at most one f̄ ∈
M1(X) satisfying Def. (1.4).
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Remark 1.1 As seen in the proof in subsection 2.1, assumption (1.9) may
be replaced by a slighty different version

a(x)− b[f̄ ](x) < 0 ∀x 6∈ supp f̄ , (1.12)

and∫
X2

b(x, y) g(x) g(y) dx dy > 0 ∀g ∈ M1(X) \ {0} with supp g ⊂ supp f̄ ,∫
X2

b(x, y) g(x) g(y) dx dy ≥ 0 ∀g ∈ M1(X).

(1.13)

It is however usually more complicated to check this alternative assumption,
since it requires the computation of f̄ .

Eq. (1.1) now has a Lyapunov functional

F (t) =

∫
X

[
f̄(x) log

(
f̄(x)

f(t, x)

)
+ f(t, x)− f̄(x)

]
dx, (1.14)

and thanks to that we can show the convergence of f(t, ·) towards f̄ :

Theorem 2 Assume (1.2), (1.3), (1.6) and (1.9). Then if f 0 ∈ M1(X) is
such that F (0) < ∞ (with F defined by (1.14)), f(t, ·) converges to f̄ as
t →∞ in the sense that:

‖f(t, ·)− f̄(·)‖b → 0, (1.15)

‖f(t, ·)‖L1(|a(x)−b[f̄ ](x)| dx) → 0. (1.16)

Remark 2.1 If b satisfies (1.12) and (1.13) instead of (1.9) in Thm 2, ‖ ·‖b

does not define a norme anymore, but the estimates (1.15) and (1.16) still
hold.

Theorem 2 is not satisfactory in many situations. Indeed if we take f 0

bounded from below and above, then F (0) is bounded if and only if∫
X

f̄ log f̄ < ∞.

This requires f̄ ∈ L log L and in particular f̄ ∈ L1. Therefore we cannot
use Thm 2 when f̄ is only a measure, for instance a sum of Dirac masses.
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Unfortunately, it is believed to be the most “common” form of f̄ (remember
that one expects speciation).

Obtaining convergence in this singular situation is more complicated and
we are able to do it only when some additional symmetry is available on b,
namely when

∃M, N ∈ L∞(X), M, N > 0, inf
x

M(x)

M(x) + N(x)
> 0,

∀x, y ∈ X, b(x, y)M(x) = b(y, x)N(y).

(1.17)

If M, N 6= 1, then the natural bilinear form associated to b is not any more
given by (1.10), and one replaces assumption (1.9) by∫

X2

b(x, y) g(x) g(y) M(x) dx dy > 0 ∀g ∈ M1(X), g 6= 0. (1.18)

Finally we need to assume that f 0 does not vanish on supp f̄ (this was in-
cluded in the assumption F (0) < ∞ in Thm. 2). We suppose therefore
that

lim inf
r→0

inf
ωr

f 0 > 0, where ωr = {x ∈ X, d(x, supp f̄) < r}. (1.19)

This sometimes has to be relaxed, if for instance suppf̄ is not compact (the
previous assumption is then incompatible with f 0 ∈ L1). One therefore
introduces the weaker assumption that there exist r0 > 0 and C > 0 such
that

sup
r≥r0

∫
X

f̄ log
1

f 0
r (x)

dx < C, where f 0
r (x) = rd

∫
X

f 0(y) e−r|x−y| dy. (1.20)

We may now state our main result:

Theorem 3 Assume (1.8), (1.2), (1.3), (1.6), (1.17) and (1.18). Consider
any f 0 ∈ L1(X) ∩ L∞(supp f̄) with (1.19) or (1.20). The corresponding
solution f(t, ·) to (1.1) converges to f̄ as t →∞ in the sense that:

‖f(t, ·)− f̄(·)‖bM = O

(
log t

t

)
, (1.21)

‖f(t, ·)‖L1[|a(x)−b[f̄ ](x)|(M(x)+N(x)) dx] = O

(
log t

t

)
. (1.22)
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Remark 3.1 If b satisfies (1.12), and (1.13) with b̃ := bM instead of (1.18)
in Thm 3, ‖ · ‖b̃ does not define a norm anymore, but the estimates (1.21)
and (1.22) still hold.

Remark 3.2 If f̄ is singular (a sum of Dirac masses for example) then the
rates of convergence given in (1.21), (1.22) are very close to being optimal.
Indeed the sum of the two expressions estimated in Thm 3 is exactly the
dissipation rate of the modified functional∫ [

−f̄(x) log(f(t, x)) + f(t, x)− f̄(x)
]

M(x) dx.

When f̄ is singular and f(t, ·) → f̄ , then this functional has to converge
to −∞ and therefore its dissipation rate cannot be integrable in time. As a
consequence, one cannot have

‖f − f̄‖2
bM + ‖f‖L1(|a−b[f̄ ]|(M+N) dx) = O(t−α),

with any α > 1. In particular exponential convergence cannot hold: the
natural idea of linearizing the equation around the equilibrium in order to
study convergence is most certainly very difficult to implement.

Remark 3.3 Assumption (1.19) and (1.8) could both be replaced by

inf
supp f̄

M̃f0(x) > 0, (1.23)

where M̃f0 is a sort of maximal function of f 0 (“minimal” in fact) computed
at x

M̃f0(x) = inf
r→0

1

rd

∫
y∈X, |y−x|<r

f 0(y) dy.

This is however not really an improvement, since it is not possible to have
(1.23) for a bounded f 0 unless X verifies (1.8) at least on supp f̄ .

Note also that (1.19) is trivially satisfied provided that infsupp f̄f
0 > 0

and that f 0 is uniformly continuous on supp f̄ .

An important consequence of those convergence results is the stability of
ESD with respect to perturbations of the coefficients a and b:

Corollary 3.1 Assume that X satisfies (1.8), a1, b1 and a2, b2 satisfy (1.2),
(1.3), (1.6). We denote by f̄1 the ESD associated to a1, b1 and by f̄2 an ESD
associated to a2, b2.

8



• If f̄1 ∈ LlogL ∩ L1(X) and (1.9) holds for b1, then∥∥f̄1(·)− f̄2(·)
∥∥

b1
≤ X (‖a1 − a2‖∞ + |b1 − b2‖∞) . (1.24)

• If b1 satisfies (1.17), (1.18) and∫
X

f̄1(x) log |x| dx < ∞,

then ∥∥f̄1(·)− f̄2(·)
∥∥

b1M
≤ X (‖a1 − a2‖∞ + |b1 − b2‖∞) . (1.25)

1.3 Examples of application

We first introduce a well-known example of a continuous ESD, in which a, b
are Gaussian functions. Numerical illustrations of this example can be found
in [7].

Example 3.1 Consider the case of Gaussian coefficients a and b:

X := R, a(x) :=
1√

2π(γ1 + γ2)
e

−x2

2(γ1+γ2)2 ,

b(x, y) := B(x− y) =
1√

2πγ1

e
−(x−y)2

2γ2
1 ,

(1.26)

where γ1, γ2 > 0. Then for any initial condition f 0 ∈ L1(e
−x2

2γ2
2 dx), f 0 > 0,

the solution f(t, ·) to (1.1) will converge for the norm ‖ · ‖b when t →∞ to
the ESD:

f̄(x) :=
1√

2πγ2

e
−x2

2γ2
2 . (1.27)

Moreover, if ã, b̃ satisfying (1.2), (1.3) are close enough to a, b in L∞(R),
then any ESD f̃ associated to ã, b̃ will be close to f̄ in the sense that:

‖f̃ − f̄‖b ≤ O
(
‖ã− a‖∞ + |b̃− b‖∞

)
. (1.28)

Finally, if b̃ satisfies (1.9), this ESD is unique and global attractor for the
norm ‖f‖b̃.
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The coefficients a and b defined by (1.26) have no real biological justifi-
cation (see [1]), but they have been widely used in theoretical biology (see
[22]). The stability of f̄ , and in particular the stability of f̄ with respect to
perturbations of the coefficients a, b has been discussed for instance in [11],
[17], [7]. In [17], it is shown that for arbitrary small perturbations of a and
b, only discrete ESD can exist. There is no contradiction with our result,
since f̄ is only stable in a very weak topology, with respect to perturbations
of the coefficients. This nevertheless means that the continuous ESD f̄ given
by (1.27) may indeed be observed (though approximated by Dirac masses).
Proof of Example 3.1. As FB > 0 (where F denotes the Fourier trans-

form), one can consider K := F−1
(√

FB
)
. Then, for any g ∈ M1(R), g 6= 0,∫

R2

b(x, y) g(x) g(y) dx dy =

∫
R

g(x) B ∗x g(x) dx

=

∫
R

g(x) K ∗x K ∗x g(x) dx

=

∫
R

(K ∗x g(x))2 dx

> 0,

that is b satisfies the assumption (1.9), and Thm 1 and Thm 2 apply, wich
shows the first part of the example. Cor. 3.1 implies (1.28) (for the existence
of such an ESD, see [21]). If b̃ satisfies (1.9), one can apply Thm 1 to show
that there exists at most one ESD f̃ , and apply Thm 3 to obtain that f̃ is a
global attractor, which completes the proof.

The next example assumes that the individuals interact through the con-
sumption of a finite number n of ressources:

Example 3.2 Consider the case where a ∈ W 1,∞(X), and

b(x, y) :=
n∑

i=1

ηi(x)ηi(y)K(y), (1.29)

where η1, . . . , ηn, K ∈ W 1,∞(X), and K > 0. It can be used to model a
population that has access to n different types of ressources, the efficiency at
which an individual of trait x eats the ressource i is then ηi(x)−1.

Let f̄ =
∑n

i=1 ρ̄iδx̄i
be an ESD. If:

a(x)−
∫

X

b(x, y)f̄(y) dy = a(x)−
n∑

i=1

b(x, x̄i)ρ̄i < 0, ∀x 6= x̄1, . . . , x̄n,

(1.30)

(ηi(x̄j))i,j=1,...,n is non-singular, (1.31)
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then for any initial data f 0 > 0 satisfying (1.19), f will converge to f̄ .

Proof of Example 3.2 We show that conditions (1.12), (1.13) hold with
b̃(x, y) := K(x)b(x, y). If g ∈ M1(X),

∫
X2

b̃(x, y)g(x)g(y) dx dy =
n∑

i=1

(∫
X

ηi(x)K(x)g(x) dx

)2

≥ 0. (1.32)

if g ∈ M1(X), g 6= 0, and suppg ⊂ suppf̄ , then g(x) =
∑n

i=1 riδx̄i
, and:∫

X2

b̃(x, y)g(x)g(y) dx dy =
n∑

i=1

(
n∑

j=1

rjηi(x̄j)K(x̄j)

)2

=
∥∥∥(ηi(x̄j))i,j=1,...,n (K(x̄i)ri)i=1,...,n

∥∥∥2

2

> 0, (1.33)

since (ηi(x̄j))i,j=1,...,n is invertible (1.31) and K > 0.
Since (1.32), (1.33) and (1.30) are satisfied, conditions (1.12) (1.13) hold,

and Thm 1 apply. Since K(x)b(x, y) = b(y, x)K(y), (1.17) is satisfied with
M(x) := K(x) and thus Rem 1.2 apply, wich proves the assertion of the
example. Notice that b cannot satisfy (1.18) as by taking g orthogonal to
η1K, . . . , ηnK in L2(X), (1.9) does not hold.

Remark 3.4 More complicated interactions are commonly considered like a
chemostat

d

dt
Ik = −Sk + δkIk + γk

∫
X

µk(x) f(t, x) dx.

Those do not fit in the simple framework developed here and for this reason
we stick to (1.29).

2 Proofs of the results

2.1 Proof of Theorem 1

We argue by contradiction and therefore assume that one has two measures
f̄1 and f̄2 satisfying the ESD definition (1.4). Note that since a − b[f̄i] ≤ 0
for all i and f̄i ≥ 0, one has∫

X

(a− b[f̄1]) f̄2 dx +

∫
X

(a− b[f̄2]) f̄1 dx ≤ 0.
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On the other hand, since a− b[f̄i] = 0 on the support of f̄i,∫
X

(a− b[f̄i]) f̄i dx = 0.

One can also observe that∫
X

(a− b[f̄1]) f̄2 dx +

∫
X

(a− b[f̄2]) f̄1 dx =

∫
X

b[f̄2 − f̄1] f̄2 dx

+

∫
X

b[f̄1 − f̄2] f̄1 dx

=

∫
X2

(f̄2(x)− f̄1(x)) b(x, y) (f̄2(y)− f̄1(y)) dx dy.

Thanks to assumption (1.9), this last integral is nonnegative and therefore
vanishes (it also has to be nonpositive). This implies f̄1 = f̄2 (still thanks to
(1.9)).

2.2 Proof of Theorem 2

Step 1: We show that F is decreasing.
We define the functional F by (1.14) and also consider the regularized version

Fn(t) =

∫
X

[
f̄n(x) log

(
f̄n(x)

f(t, x)

)
+
(
f(t, x)− f̄n(x)

)]
dx,

with f̄n a regularization of f̄ (through convolution for instance). As F (0) <
∞, Fn(0) is uniformly bounded. Moreover

d

dt
Fn(t) = −

∫
X2

b(x, y)
(
f(t, x)− f̄n(x)

) (
f(t, y)− f̄n(y)

)
dx dy

+

∫
X

(
a(x)− b[f̄ ]

)
f(t, x) dx + Rn,

with

Rn =

∫
X

b[f̄ − f̄n] f dx−
∫

X

(a− b[f̄n]) f̄n dx.

The quantity Rn converges toward 0 as n → +∞ uniformly w.r. to t ∈ R+,
since f̄n → f̄ , and since the definition (1.4) implies that∫

X

(a− b[f̄ ]) f̄ dx = 0.
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Thanks to condition (1.9) on b, dFn/dt ≤ Rn, and so Fn(t) is uniformly
bounded in n for a given t > 0. Therefore F (t) < ∞ for all time, and in
addition

d

dt
F (t) = −

∫
X2

b(x, y)
(
f(t, x)− f̄(x)

) (
f(t, y)− f̄(y)

)
dx dy

+

∫
X

(
a(x)− b[f̄ ]

)
f(t, x) dx := −D(f, f̄) ≤ 0.

It means that t 7→ F (t) is strictly decreasing as long as f(t, ·) 6= f̄ , and
bounded from below by 0. It follows that F converges to a limit denoted by
F̄ .

Step 2: We show that d
dt

F (t) → 0.
We first observe that d

dt
F (t) is Lipschitz continuous:∣∣∣∣ ddt

d

dt
F (t)

∣∣∣∣ ≤ 2 ‖b‖∞

∥∥∥∥ d

dt
(f − f̄)

∥∥∥∥
M1

‖f − f̄‖M1

+
(
‖a‖∞ + ‖b‖∞

∥∥f̄∥∥
M1

) ∥∥∥∥ d

dt
f

∥∥∥∥
M1

≤ CF < ∞,

since
∥∥ d

dt
f
∥∥

M1 ≤ (‖a‖∞ + ‖b‖∞ ‖f‖M1) ‖f‖M1 and f ∈ L∞(R, M1) (see [7]).

Let ε > 0. Since F (t) → F̄ , there exists T > 0 such that F (T ) ≤ F̄ + ε,
that is: ∫ ∞

T

d

dt
F ≥ −ε. (2.1)

But since d
dt

F is Lipschitz, for any t ≥ T and τ ≥ t,

d

dt
F (τ) <

d

dt
F (t) + CF (τ − t),

and then: ∫ ∞

T

d

dt
F ≤

∫ t+ 1
2CF

| d
dt

F (t)|

t

d

dt
F ≤ −1

4CF

(
d

dt
F (t)

)2

.

Combining this with (2.1), we obtain:

∀t ≥ T,

∣∣∣∣ ddt
F (t)

∣∣∣∣ ≤ 2
√

CF ε,

and thus d
dt

F (t) → 0. Finally, D(f(t, ·), f̄) → 0 implies that ‖f(t, ·)−f̄‖b → 0
and that ‖f(t, ·)‖L1(|a(x)−b[f̄ ](x)| dx) → 0.
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2.3 Proof of Theorem 3

In the general case, when f̄ ∈ M1 but f̄ is not necessarly a function, the
functional (1.14) is not finite. Nevertheless, it is possible to define instead

F̃ (t) :=

∫
X

[
f̄(x) log

(
1

f(t, x)

)
+
(
f(t, x)− f̄(x)

)]
M(x) dx. (2.2)

A regularization argument like the one used in the previous subsection shows
that F̃ is finite at all times and strictly decreasing as long as f 6= f̄ . Unfor-
tunately, this functional is not bounded from below anymore and this is not
enough to conclude.

We show in a first step that in fact, the new functional F̃ does not decrease
too fast. In a second step, we prove that the dissipation rate D = −dF̃

dt
can

be controlled from above by a decreasing function G (defined in (2.7)). We
then combine the two previous estimates.

Step 1: Lower bound on F̃ .
As a and b are Lipschitz-continuous, so is a − b[f ] w.r.t. x, and since f :=
f(t, ·) is bounded in L1(X), there exists a constant C independant of t ∈ R+

such that

∀x, y ∈ X, a(y)− b[f ](y) ≥ a(x)− b[f ](x)− C|x− y|.

Now let us start by giving an upper bound on f(t, x)∫
X

f(t, y) dy =

∫
X

f 0(y)e
R t
0(a(y)−

R
b(y,z)f(s,z) dz) ds dy

≥
∫

X

f 0(y)

f 0(x)

(
f 0(x)e

R t
0(a(x)−

R
b(x,z)f(s,z) dz) ds

)
e−Ct|x−y| dy

≥ f(t, x)

f 0(x)

∫
X

f 0(y)e−Ct|x−y| dy. (2.3)

As t → +∞, one finds thanks to the lower bound on f 0 (1.19):

inf
x∈supp f̄

∫
X

f 0(y)e−Ct|x−y| dy ≥ C inf
x∈ω1/t

f 0(x)

∫
X

I|y−x|≤1/t dy

≥ C inf
x∈ω1/t

∫
X

I|y−x|≤1/t dy.

Using finally assumption (1.8) on the density of points of X,

inf
x∈supp(f̄)

∫
X

f 0(y)e−Ct|x−y| dy ≥ C t−d. (2.4)

14



If f 0 satisfies (1.19), then, combining (2.3) and (2.4), one gets:

f(t, x) ≤ C td, ∀ x ∈ supp f̄ . (2.5)

This directly controls F̃ from below:

F̃ (t) =

∫
X

[
f̄(x) log

(
1

f(t, x)

)
+
(
f(t, x)− f̄(x)

)]
M(x) dx

≥ −C −
∫

f̄(x) log (f(t, x)) M(x) dx

≥ −C − C

∫
f̄(x) log

(
td
)
M(x) dx

≥ −C − C log(t), (2.6)

where C is still a constant (wich can be expressed in terms of the total mass∫
X

f(t, ·) dx).
If, instead of (1.19), one takes (1.20), the estimate is almost the same.

First, for any x ∈ suppf̄ ,∫
X

f 0(y)e−Ct|x−y| dy = C−d t−df 0
Ct(x),

with f 0
r defined as in (1.20). This implies that

f(t, x) ≤ C
td

f 0
Ct(x)

, ∀ x ∈ supp f̄ ,

and finally

F̃ (t) ≥ −C +

∫
X

f̄ log
f 0

Ct(x)

td
≥ −C − C log t,

because of (1.20).

Step 2: Control on the dissipation term.
We compute the time derivative of F̃ :

d

dt
F̃ (t) =

∫
X

(
−f̄(x)

f(t, x)
∂tf(t, x) + ∂tf(t, x)

)
M(x) dx

=

∫
X

−f̄(x)

(
a(x)−

∫
X

b(x, y)f(t, y) dy

)
M(x) dx

+

∫
X

f(t, x)

(
a(x)−

∫
X

b(x, y)f(t, y) dy

)
M(x) dx.
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Using the definition of the ESD (1.4), and in particular the fact that a− b[f̄ ]
vanishes on the support of f̄ ,

d

dt
F̃ (t) =−

∫
X

f̄(x)
(
b[f̄ ]− b[f ]

)
M(x) dx +

∫
X

f(t, x)
(
b[f̄ ]− b[f ]

)
M(x) dx

+

∫
X

f(t, x)
(
a(x)− b[f̄ ]

)
M(x) dx

=−
∫

X2

b(x, y)
(
f̄(x)− f(t, x)

) (
f̄(y)− f(t, y)

)
M(x) dy dx

+

∫
X

f(t, x)
(
a(x)− b[f̄ ]

)
M(x) dx.

Since F̃ is not bounded from below, it is not enough to show that F̃ is
decreasing: we need to estimate d

dt
F̃ from above. We then define a new

functional G:

G(t) : = −
∫

X2

b(x, y)
(
f̄(x)− f(t, x)

) (
f̄(y)− f(t, y)

)
M(x) dy dx

+

∫
X

f(t, x)
(
a(x)− b[f̄ ]

)
(M(x) + N(x)) dx. (2.7)

Notice that thanks to Assumption (1.18) and the bounds on M and N (1.17),
G controls d

dt
F̃ (t) from above:

d

dt
F̃ (t) ≤ inf

x∈R

[
M(x)

M(x) + N(x)

]
G(t)

≤ C G(t). (2.8)

The additional structure provided by (1.17) yields the last property that we
need, namely that G is non decreasing

d

dt
G(t) = −

∫
X2

b(x, y)(f(t, x)− f̄(x)) (a(y)− b[f ](y)) f(t, y)M(x) dx dy

−
∫

X2

b(x, y) (a(x)− b[f ](x)) f(t, x)
(
f(t, y)− f̄(y))

)
M(x) dx dy

+

∫
X

(
a(x)− b[f̄ ](x)

)
(a(x)− b[f ](x)) f(t, x)(M(x) + N(x)) dx

= −
∫

X2

b(x, y)(f(t, y)− f̄(y)) (a(x)− b[f ](x)) f(t, x)(M(x) + N(x)) dx dy

+

∫
X

(
a(x)− b[f̄ ](x)

)
(a(x)− b[f ](x)) f(t, x)(M(x) + N(x)) dx.
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Hence

d

dt
G(t) =

∫
X

(a(x)− b[f ](x))2 f(t, x)(M(x) + N(x)) dx ≥ 0.

Step 3: Conclusion of the proof.
In this last part, we will combine the estimates obtained in the first and
second step to conclude the proof. Thanks to (2.6),

C
log t + 1

t
≥ − F̃ (t)− F̃ (0)

t

= −1

t

∫ t

0

d

dt
F̃ (s) ds

≥ − max
s∈[0,t]

d

dt
F̃ (s).

Then, using (2.8),

C
log t + 1

t
≥ −C max

s∈[0,t]
G(s)

≥ −C G(t),

as G is non decreasing. This estimate implies the convergence of f(t, ·) to
f̄ w.r.t. the norm ‖ · ‖bM , and estimates (1.21), (1.22), thus concluding the
proof of the theorem.

2.4 Proof of Corollary 3.1

We prove the corollary in the case when b1 satisfies (1.17) and (1.18). The
case when b1 satisfies (1.9) and f̄1 ∈ L log L ∩ L1(X) is similar.

Let us consider f the solution of (1.1) for a1, b1, corresponding to the
following initial datum: f 0 = 1 on some large ball B(0, R), and for |x| > R,
f 0(x) = |x|−d+1/Rd+1.

Therefore f 0 ∈ L1(X) ∩ L∞(X), and f 0
r defined in (1.20) satisfies

f 0
r (x) ≥ rd

e

∫
{y;|x−y|≤ 1

r
}
f 0(y) dy ≥ C|x|−d+1.

Then, f 0 satisfies (1.20) since∫
X

f̄1 log |x| < ∞.
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Hence all the assumptions of Thm. 3 are satisfied and we know that f(t, ·)
converges to f̄1 in the sense

‖f(t, ·)− f̄1‖b1M → 0.

Denote now f̄R
2 = f̄2 I|x|≤R/2 and note that∫
X

|f̄2 − f̄R
2 | = ε(R) −→ 0, as R → +∞.

We modify the functional F of the proof of Thm 2 as follows:

F̌ (t) =

∫
X

[
f̄R

2 (x) log

(
1

f(t, x)

)
+
(
f(t, x)− f̄2(x)

)]
M(x) dx.

Using a regularization as in 2.2, we compute the time derivative of F̌ :

d

dt
F̌ (t) =

∫
X

(a1(x)− b1[f ](t, x))
(
f(t, x)− f̄R

2 (x)
)

M(x) dx

=

∫
X

(a2(x)− b2[t, f ](x))
(
f(t, x)− f̄2(x)

)
M(x) dx

+O
[
ε(R) + (‖a1 − a2‖∞ + ‖b1 − b2‖∞‖f‖M1)

(
‖f‖M1 + ‖f̄2‖M1

) ]
= −

∫
X2

b2(x, y)
(
f(t, x)− f̄2(x)

) (
f(t, y)− f̄2(y)

)
M(x) dx dy

+

∫ (
a2(x)− b2[f̄2](x)

)
f(t, x) M(x) dx

+O (ε(R) + ‖a1 − a2‖∞ + ‖b1 − b2‖∞) .

We thus conclude

d

dt
F̌ (t) ≤ −

∫
X2

b2(x, y)
(
f(t, x)− f̄2(x)

) (
f(t, y)− f̄2(y)

)
)M(x) dx dy

+O (ε(R) + ‖a1 − a2‖∞ + ‖b1 − b2‖∞) . (2.9)

Define I(t) :=
∫

X2 b2(x, y)
(
f(t, x)− f̄2(x)

) (
f(t, y)− f̄2(y)

)
M(x) dx dy. We

estimate it as follows:

I(t) =

∫
X2

b1(x, y)
(
f(t, x)− f̄2(x)

) (
f(t, y)− f̄2(y)

)
M(x) dx dy

+

∫
X2

(b2(x, y)− b1(x, y))
(
f(t, x)− f̄2(x)

) (
f(t, y)− f̄2(y)

)
M(x) dx dy

=

∫
X2

b1(x, y)
(
f(t, x)− f̄2(x)

) (
f(t, y)− f̄2(y)

)
M(x) dx dy

+ O (‖b1 − b2‖∞) .
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Proceeding further,

I(t) =

∫
X2

b1(x, y)
(
f(t, x)− f̄1(x)

) (
f(t, y)− f̄1(y)

)
M(x) dx dy

+

∫
X2

b1(x, y)
(
f̄1(x)− f̄2(x)

) (
f̄1(y)− f̄2(y)

)
M(x) dx dy

+

∫
X2

b1(x, y)
(
f(t, x)− f̄1(x)

) (
f̄1(y)− f̄2(y)

)
M(x) dx dy

+

∫
X2

b1(x, y)
(
f̄1(x)− f̄2(x)

) (
f(t, y)− f̄1(y)

)
M(x) dx dy

+ O (‖b1 − b2‖∞) .

Using the Cauchy-Schwarz inequality associated to the scalar product 〈·, ·〉b1M

defined in Prop 1, we get

I(t) =‖f(t, ·)− f̄1‖2
b1M + ‖f̄1 − f̄2‖2

b1M + 2‖f̄1 − f̄2‖b1M‖f(t, ·)− f̄1‖b1M

+ O (‖b1 − b2‖∞) .

As f is the solution of (1.1) for a1, b1, Thm 3 applies, that is ‖f(t, ·) −
f̄1‖b1M → 0. Then,

I(t) = ‖f̄1 − f̄2‖2
b1M + O (‖b1 − b2‖∞) + ot→∞(1).

Using this estimate in (2.9), we get:

d

dt
F̌ (t) ≤ −‖f̄1 − f̄2‖2

b1M + O (ε(R) + ‖a1 − a2‖∞ + ‖b1 − b2‖∞) + ot→∞(1),

so that

F̌ (t) ≤C − t
(
‖f̄1 − f̄2‖2

b1M + O (ε(R) + ‖a1 − a2‖∞ + ‖b1 − b2‖∞)
)

+ ot→∞(t).
(2.10)

To complete the proof, we notice that the estimates done in step 1 of the
proof of Thm 3 can be reproduced, and since infB(0,R) f 0(x) > 0, we get, for
any x ∈ suppf̄R

2 ⊂ B(0, R),

f(t, x) ≤ C td.

Then, still similarly to the begining of step 1 of the proof of Thm 3, one
obtains the following lower bound on F̌ , similar to (2.6):

F̌ (t) ≥ −CR −
∫

f̄R
2 (x) log (f(t, x)) M(x) dx

≥ −CR − CR

∫
f̄R

2 (x) log
(
td
)
M(x) dx

≥ −CR − CR log(t). (2.11)
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Combining the two inequalities (2.10) and (2.11), we get:

‖f̄1 − f̄R
2 ‖2

b1M + O (‖a1 − a2‖∞ + ‖b1 − b2‖∞) = ot→+∞(1) + O(ε(R)),

which provides the result by letting t → +∞ first and then R → +∞:

‖f̄1 − f̄2‖2
b1M ≤ O (‖a1 − a2‖∞ + ‖b1 − b2‖∞) .
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