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Abstract. We study the limit of systems of interacting particles,
when the number of particle becomes very large. The support of
the interaction vanishes as the number of particles goes to infinity,
so that the natural limit is just free transport, but no limitation is
assumed about the strength of the interaction. We obtain explicit
estimates for the number of particles effectively interacting and
describe the way they do it.

1. Introduction

We study the dynamics of many interacting particles in the limit of
an infinite number of particles. The force acting on each particle is
a sum of pair-wise interaction with the other particles. The kind of
dynamics that is expected at the limit depends on the scaling of the
force term with respect to the number of particles N . Here we consider
very short range interaction in the sense that the force between two
particles vanishes if their distance is larger than R with, in dimension 3

N R2 << 1.

In this scaling the formal limit is simply free transport : each particle
moves with its initial velocity. Indeed a formal computation easily
shows that on average a particle should never undergo a collision : i.e.
the number of particles coming at a distance less than R to another is
negligible in front of N , in a time interval of order 1.

This is a simplified problem for the more interesting case N R2 =
const where the obtention of collisional models (of Boltzmann type)
is conjectured. The first rigourous step in that direction was obtained
by Lanford in a celebrated work [12] (see also [13]). This result never-
theless suffers from two important restrictions : First the particles are
hard spheres (they interact with the potential Φ(x) = +∞ if |x| ≤ R
and Φ = 0 if |x| > R). And second the limit is only valid for a time
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small with respect to the average time it takes for one particle to have
a collision (or the mean free path after rescaling).

This second restriction was improved by Cercignani, Illner and Pul-
virenti in [5] (see also [10]) ; The time interval of validity was still finite
and of order the mean free path though. Both results deal with hard
spheres although extensions to repulsive potentials are mentioned (see
[13]) but unpublished (as far as we know).

Those results are easily extended to our scaling. The limitation
on the time interval is no more a real issue as the mean free path
tends to infinity. However the proofs would still require hard spheres
interaction (or at least a repulsive potential). Note that in the case of
an arbitrary potential, the velocity bounds needed to substantiate the
intuition behind the formal scaling argument are not easy to prove; in
addition, the very concept of collision needs a careful definition.

We start with Prop.2.4 which justifies the free transport limit, still
only for repulsive potentials. The interest is mainly in the simplicity
of the proof as the result is not really new (although strictly speaking
never stated before for a potential with so little regularity).

The main result is Theorem 2.5. It unfortunately deals with an even
shorter range R << N−3/5 but it assumes virtually nothing on the
potential (it does not need to be repulsive and its scale could be as
large as one wants) and therefore it is not at all included in previous
contributions. Moreover we not only prove the free transport limit but
also describe all possible collision sequences between particles and the
result is consequently much more precise. The core of the proof is
to ensure that the build up of correlations between particles does not
destroy the validity of simple scaling arguments. Theorem 2.5 leaves
open the question of non trivial limit in the range N−1/2 << R < N−3/5

(for which we have no particular clue to offer). The particles velocities
could then become unbounded and the limit would not necessarily be
free transport (as the probability of interacting with another particle
would increase accordingly).

Finally and for the sake of completeness, let us mention that the
limit dynamic is also an important and fertile field of study in the
case of long range potentials (and obviously with a weaker scaling).
Vlasov-like kinetic equations are then expected. The first rigorous re-
sults were obtained by Braun and Hepp [4], Neunzert and Wick [14]
and Dobrushin [6], and concern very regular interaction potentials. We
also refer to Spohn [17] where the Wasserstein distance is used to ob-
tain the convergence. Two references related to numerical simulations
with particles’ methods are for instance Victory and Allen [18] and
Wollman [19]. All these works require a regular interaction kernel (at
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least continuous and usually even lipschitz). Recently, Hauray and
Jabin [9] proved the convergence of a particle approximation to the
Vlasov equation for a class of weakly singular potentials. However,
the physical potentials of interest are typically the much more singular
Coulombian and gravitational interactions, for which no convergence
results to the Vlasov equation are known. This difficulty to deal with
the short range singularity of potentials in the Vlasov limit was also
an incentive for the study of this paper: what happens for a general
singular potential in a short range scaling.

2. Setting and statement of the results

We study the perturbation of the free transport of N point parti-
cles by a very short range (but strong) interaction potential. Denote
respectively by Xi(t) ∈ R3 and by Vi(t) ∈ R3 the position and velocity
at time t of the particle number i. The X’s and V ’s are governed by
the following equations of motion :

(2.1)

Ẋi = Vi

V̇i =
1

SN

∑
j 6=i

Kε(Xi −Xj), i = 1 . . . N,

where SN is a scaling factor. SN = N is the usual Vlasov scaling; in the
following, SN will be N or 1. Kε(x) is compactly supported in the ball
of radius εk but singular. It is assumed to be derived from a potential

(2.2) Kε = −∇xΦε, Kε(−x) = −Kε(x)

This is not strictly necessary and could be replaced by a weaker assump-
tion on the compressibility and energy bounds for the corresponding
flow but is generally satisfied by the physical kernels we would wish to
use (with some exceptions).

The parameter ε is directly connected to the number of particles,
being the average distance in the phase space between two particles or

ε = N−1/6.

The initial conditions X0
i and V 0

i are typically random although very
large values should be avoided. For simplicity we will consider initial
values I = (X0

1 , V 0
1 , . . . , X0

N , V 0
N) in the hypercube I ∈ [−1, 1]6N . In

the following, the measure of a set A will always mean the Lebesgue
measure, and be denoted by |A|.
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Our aim is to compare this dynamics to the unperturbed one, which
is simply given by

(2.3)
dX̄i

dt
= Vi

dV̄i

dt
= 0, i = 1 . . . N.

If SN = N , this is therefore a kind of mean field limit (but in a weak
form) for which much is known provided Kε is regular enough. Here
we only assume the minimal regularity necessary to ensure that the
system 2.1 is well defined, that is (see Ambrosio [1] or Hauray for the
particular case considered here [8])

(2.4) Kε ∈ BV (R3) , supp Kε ⊂ B(0, εk)

Note that in addition any other assumption ensuring well posedness of
(2.1) for a given N would be enough.

Let us first give some definitions.

Definition 2.1. Two particles are said to collide iff

(2.5) ∃t s.t. |Xi(t)−Xj(t)| ≤ εk .

Let us note that we have no information on the duration of a collision;
unless otherwise stated, the “time of a collision” is to be understood in
the following as the beginning time of the collision, that is the smallest
time t such that |Xi(t)−Xj(t)| ≤ εk.

Definition 2.2. We denote by i RT j the relation “i and j collide before
time T”.

Definition 2.3. A sequence of collisions is an orbit of the relation RT .

An easy formal computation tells us that the average number of
particles having a collision should be of order N2 ε2k. This number is
large (if k < 6) but nevertheless small with respect to N if k > 3. If
this can be rigourously justified, we would therefore obtain, at the limit
N → ∞, the dynamics (2.3) for almost all particles. As all particles
are identical, proving this is equivalent to controlling the set of initial
conditions for which a chosen particle (the first one for example) has a
collision, or

Proposition 2.4. Take SN = N . Assume that Φε ≥ 0 and |Φε| ≤
C/|x|. For any 6 > k > 3 (such that N ε2k << 1), fix a time T , N
large enough and consider (2.1) until time T . Then the set of initial
data I for which the first particle has at least one collision is of measure
less than C N ε2k.
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Remark.
The two big restrictions are the conditions that the potential be repul-
sive and that SN = N . At first glance and formally, it would seem that
they should not be necessary. Contrary to the case of Theorem 2.5
below, here 3-particles collision (or more) can and will typically occur.
They are however needed to control the velocities of the particles (in
the cases of 3 or more particles collisions). And notice that the for-
mal computation predicting that only N2 ε2k particles will undergo a
collision, only holds if the velocities of the particles remain of order 1.

This proposition is enough to obtain the limit but it does not describe
at all what happens to the particles which have collisions (except that
they do not interact with too many other particles) or in the case
of attractive (or non repulsive) potentials. If k is large enough, it
is possible to be more specific in the sense that two particles may
collide only once and a sequence of collisions is exactly that: collisions
happening one after the other without overlapping. To be that specific
it is unfortunately necessary to exclude the possibility of 3-particles
collision. This is automatic for hard spheres, but is requires a more
stringent condition if general potentials are included, namely k > 18/5.

More precisely

Theorem 2.5. Take SN = 1 and any k > 3 (such that N ε2k << 1).
Fix a time T , N large enough and consider (2.1) until time T . Then,
there exists a large set O ⊂ [−1, 1]6N with

|[−1, 1]6N \O| ≤ CT N3 ε5k,

such that for all I ∈ O, we have the following
(i) All collisions involve only two particles; that is:

∀i, j, l, ∀t < T , |Xi(t)−Xj(t)| > εk or |Xi(t)−Xl(t)| > εk .

This allows us to define the number of collisions in a given sequence.
(ii) Two particles belonging to the same sequence at a certain time
t < T do not collide again before time T .
(iii) Define On as the subset of O containing the initial data for which
there are at least one sequence with exactly n collisions in the dynamics.
Then

|On| ≤ CT,n Nn+1 ε2kn.

Remarks.
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(1) Point (ii) may be formulated more precisely: consider a collision
sequence, and two indices i and j in this sequence undergoing
an actual collision, that is i RT j. Consider now the relation
RT,ij, defined as the relation RT excluding i RT j, and define
Ai and Aj the orbits of i and j under RT,ij. Then Ai ∩Aj = ∅.
This amounts to say that particles correlated in some way by
belonging to the same collision sequence do not collide again.

(2) The theorem is interesting only for k such that N3 ε5k ≤ 1 and
n large enough such that we have Nn+1 ε2kn < 1. Note that
for k > 3, there is always a n such that the above quantity
vanishes to 0 with N (remember that Nε6 = 1). The first
condition however implies that k ≥ 18/5.

Finally let us stress that those two results leave open all the range of
cases 3 < k < 18/5 for general potentials. Of course the assumptions
on the potential in Theorem 2.5 are very weak (Kε could even blow
up with N) but we do not know how to proceed even with a precise
scaling (SN = N for instance).

3. Proof of Proposition 2.4

We first need some control on the maximal number of interacting
particles.

Denote by B0 the set of initial data such that any two particles i and
j satisfy initially that

|Xi(0)−Xj(0)| >
1

N
.

Clearly, as there is no dynamics yet

(3.1) |[−1, 1]6N \B0| ≤
1

N
.

We define a K-collision between two particles i and j if there exists
t such that |Xi(t)−Xj(t)| ≤ Kεk.

Denote now by BK
n the subset of B0 of initial conditions such that

there is no sequence of K-collisions involving n + 1 particles or more
before time T and by OK

n = B0 \BK
n . We will first prove that

(3.2) |OK
n | ≤ Cn,KNn+1 ε2kn.

We start with a control on the velocity

Lemma 3.1. For K ≥ 1, I ∈ BK
n , any i = 1 . . . N and any t ∈ [0, T ],

then we have that
|Vi(t)| ≤ 1 + C n.
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Proof : As I ∈ BK
n with K ≥ 1, the particle i interacts with at most

n other particles j1 . . . jn. Denote j0 = i. As Φε ≤ 0, we hence obtain
by energy conservation that

n∑
k=0

|Vjk
(t)|2 ≤

n∑
k=0

|Vjk
(0)|2 +

1

N

∑
0≤k 6=m≤n

Φε(Xjk
(0)−Xjm(0)).

Recalling that I ∈ B0, we know that |Xjk
(0)−Xjm(0)| > 1/N and as

|Φε| ≤ C/|x|, we deduce that

n∑
k=0

|Vjk
(t)|2 ≤ 1 + n + C n2,

hence the result.
Let us now prove by induction the estimate on |OK

n |. The initial step
and the n → n + 1 step are very similar so we do only the second one.
Assume therefore that

|OK
n | ≤ Cn,KNn+1 ε2kn,

and consider a initial data I ∈ OK
n+1. Necessarily there exists j1 . . . jn+1

and a time t0 < T such that before t0 there was no sequence of K-
collisions involving more than n+1 particles and at t0 at least another
particle, denoted by i, starts a K-collision with one of the jk.

Notice that there could be more than one particle having a collision
at t0, in which case we just choose anyone of them. Moreover the
particle i may have had collisions with another set of particles before
t0 but with none of the jk.

Divide the time interval [0, T ] into M ≤ C (1+n) T ε−k small inter-
vals [tα, tα+1] of size less than εk/2(1 + C n).

Through Lemma 3.1, we know that until time t0, the velocity of every
particle is less than 1+C n. Therefore choosing tα = max{tβ | tβ < t0},
we know that at tα, Xi(tα) is at a distance less than (1+K)εk from one
of the j1 . . . jn+1. For the same reason, as j1 . . . jn+1 form a sequence
of K-collisions before t0, they also form a sequence of K + 1-collisions
before tα.

Consequently denote by OK
n (i, j1, . . . , jn+1, α) the set of initial data

I ∈ B0 such that j1 . . . jn+1 form a sequence of K + 1-collisions before
tα, i has no K-collision with any of the jk before tα and for some
k = 1 . . . n + 1, |Xi(tα)−Xjk

(tα)| ≤ (K + 1)εk.
Controlling the measure of this set is easy because there is no in-

teraction between particles j1 . . . jn+1 and the other particles. Choose
first Xj1(0), Vj1(0) . . .Xjn+1(0), Vjn+1(0). The trajectory of the jk

particles is then determined. The measure of the set of initial values
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Xk(0), Vk(0), k 6= j1 . . . jn+1 is then less than the measure of the set of
initial condition such that at a given time Xi is in a given ball of radius
(K + 1) εk. By Galilean invariance, this is less than

C (K + 1)3ε3k.

Finally the measure of the set of Xj1(0), Vj1(0) . . .Xjn+1(0), Vjn+1(0)
such that they form a sequence of K + 1-collisions before tα is simply

Cn,K+1 ε2nk.

Indeed from the induction assumption for the previous step n (but with
K + 1 instead of K), the measure of the set of initial data such that
n + 1 particles form a sequence of K + 1-collisions is less than

Cn,K+1 Nn+1 ε2nk.

As this set is invariant under permutations on the indices of the parti-
cles (and as the measure of the set for which two sequences of collisions
occur is trivially much lower), we obtain the claimed bound.

Finally

|OK
n (i, j1, . . . , jn+1, α)| ≤ C Cn,K+1 (K + 1)3ε(2n+3)k.

As

OK
n+1 ⊂

N⋃
i,j1,...,jn=1

M⋃
α=1

OK
n (i, j1, . . . , jn+1, α),

we obtain that

|OK
n+1| ≤ Nn+2 M C Cn,K+1 (K + 1)3 ε2(n+1)k+1 ≤ Cn+1,K Nn+2 ε2(n+1)k,

with
Cn+1,K = C Cn,K+1 (K + 1)3 (1 + n) T.

This proves (3.2).

With (3.2), it is quite straightforward to show Prop. 2.4. Indeed
choose n large enough such that

Nn+1 ε2kn ≤ N ε2k.

It is enough to take n(k/3 − 1) ≥ k/3 so that n does not depend on
N . Denote by D1 the set of initial data such that the first particle has
a collision before time T . Denote D̃1 = D1 ∩ B1

n. Controlling D̃1 is
enough as

|[−1, 1]2N \B1
n| ≤ |[−1, 1]2N \B0|+ |B0 ∩O1

n| ≤
1

N
+ Cn,T Nn+1 ε2kn

≤ CT N ε2k,

as k < 6 and n is from now on fixed.
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For any I ∈ D̃1, there exists t0 such that the first particle has no
collision until t0 and a collision occurs with another particle i 6= 1
(possibly more than 1) at t0. As I ∈ B1

n, all velocities are bounded
by 1 + C n. Consequently if we again divide [0, T ] into M intervals
[tα, tα+1] with M ≤ C (1+n) Tε−k, and if we choose tα = max{tβ < t0}
then |X1(tα)−Xi(tα)| ≤ 2εk.

Denote by D̃1(i, α) the subset of B1
n such that the first particle has

no collision before tα and |X1(tα)−Xi(tα)| ≤ 2εk. We have that

D̃1 ⊂
N⋃

i=1

M⋃
α=1

D̃1(i, α).

As until tα the trajectory of the first particle is a line, it is obvious that

|D̃1(i, α)| ≤ C ε3k,

so that

|D̃1| ≤ C N M ε3k = C N ε2k,

which finishes the proof of Proposition 2.4.

4. Proof of Theorem 2.5

The theorem is proved in two steps. First assuming point (i) and
(ii) are known, we prove (iii). We end up with the proof for points (i)
and (ii).

4.1. Proof of point (iii) knowing (i) and (ii) . In this subsection
we assume we have a set O such that for any I ∈ O, (i) and (ii) of
Theorem 2.5 are true.

Proposition 4.1. Let I ∈ O and A be a sequence with n collisions.
Then card(A) = n + 1.

Proof : We argue by induction. For n = 1, card(A) = 2, since one
collision involves two, and only two, particles.
We suppose now that the property is true for all m < n. Let i and j
be the two particles involved in the last collision of the sequence A. As
above, we define Ai and Aj the collision sequences of i and j when the
collision between i and j is excluded. Then, using Point (ii) of Theorem
2.5, Ai ∩Aj = ∅, so that card(A) = card(Ai) + card(Aj). Now, Ai and
Aj are sequences with respectively m and n− 1−m collisions. Using
the induction hypothesis, we get

card(A) = m + 1 + (n− 1−m + 1) = n + 1 .

The proof is completed.
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Let us now study On the subset of O such that for I in On the
dynamics has at least one sequence with exactly n collisions. Then

Proposition 4.2. Let n + 1 particles follow the equations of motion:

(4.1)

{
Ẋi = Vi

V̇i = 1
N

∑n+1
j=1, j 6=i Kε(Xi −Xj)

}
We denote by ωn the measure in R6(n+1) of the initial conditions such
that the n + 1 particles belong to the same sequence. Then |On| ≤
Cn+1

N |ωn|.

Proof : The argument is very simple. Consider the n + 1 particles
composing the sequence with n collisions in On. There are Cn+1

N possi-
ble choices of indices for those particles but once they are chosen they
follow exactly (4.1). Indeed as they belong to a sequence with exactly
n collisions, they do not come within εk of any other particle.

Their initial positions and velocities therefore belong to ωn hence the
result.

We may now concentrate on the evaluation of |ωn|. The heuristics
behind the next proposition is the following: two particles collide at a
given time if they are inside a volume of order ε3k; otherwise stated,
the measure of initial conditions leading to collision at a given time is
of order ε3k, since measure is preserved by the flow. Now, the measure
of initial conditions leading to collision at any time is of order ε2k. The
following proposition states that all collisions in a sequence of n brings
one such factor ε2k.

Proposition 4.3. Under the same hypothesis as for Prop. 4.2,

(4.2) |ωn| ≤ an,T ε2nk .

Point (iii) of Theorem 2.5 immediately follows from this proposition
and the previous one.

Three lemmas are necessary for the proof of Prop. 4.3

Lemma 4.4. Take I ∈ O. Let i be a particle belonging to a sequence
of n collisions. Then whenever i is not colliding with another particle,
|Vi| ≤

√
n + 1.

Proof : Energy conservation during a collision between i and j implies
that

|V ′
i |2 + |V ′

j |2 = |Vi|2 + |Vj|2 ,
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where the primes refer to quantities after collision. This equality is
valid when the collision is over. Initially, |Vi|2 ≤ 1 for all i. Thus after
one collision, |Vi|2 ≤ 2 for all i, which proves the property for n = 1.

We assume that the property is true for all m < n and argue by
induction.

Consider now any collision in the sequence, involving particles i
and j; we call mi and mj the number of particles involved in the
collision sequences of i and j before the considered collision. Then
mi + mj ≤ n− 1. After the collision

|V ′
i |2 ≤ |Vi|2 + |Vj|2

≤ mi + 1 + mj + 1

≤ n + 1 ,

using the induction hypothesis.

Lemma 4.5. Take I ∈ O. Let i be a particle belonging to a sequence of
m collisions. Then during a time interval [T1, T2], i travels a distance
smaller than

√
m + 1(T2 − T1) + mεk.

Proof : When i is not colliding, its velocity is bounded by
√

m + 1,
thanks to Lemma 4.4.

When i is colliding with another particle j, it’s not possible to bound
its velocity, but its position Xi can be controlled by tracking G, the
center of mass of particles i and j: the velocity of the center of mass VG

is bounded by
√

m + 1, and during the collision, |Xi(t)−XG(t)| ≤ εk/2.
Thus for a collision lasting τ , particle i travels at most a distance
τ
√

m + 1 + εk. Finally, adding the effects of at most m collisions,
particle i between T1 and T2 travels at most

√
m + 1(T2−T1)+mεk.

Lemma 4.6. Let Ω be a bounded region in R6. Consider the dynamics
of n + 1 particles given by (4.1). We denote by pi,Ω

n,T the measure in

R6(n+1) of the initial conditions such that the n + 1 particles belong to
the same sequence, and at time T , (Xi(T ), Vi(T )) ∈ Ω. Then pi,Ω

n,T ≤
|ωn| |Ω| .

Proof : This is an easy consequence of the galilean invariance of the
dynamics. In other words if Xj, Vj, j = 1 . . . n + 1, satisfy (4.1) and
belong to the same sequence then for any x, v ∈ R3, Xj +x+ vt, Vj + v
satisfy again (4.1) and belong to the same sequence.

Proof of Prop. 4.3: We divide the time interval [0, T ] in M small
intervals of size ∆t = εk/(2

√
n + 1), and consider the times tl =
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lεk/(2
√

n + 1), with l an integer. Then

M = [2T
√

n + 1 ε−k] + 1 ≤ 3T
√

n + 1 ε−k ,

for ε small enough. Then if particles i and j collide, there exists l such
that

|Xi(tl)−Xj(tl)| ≤ (n + 2)εk

This is a direct consequence of lemma 4.5.
We call Iij,l the set of initial conditions such that: n collisions happen;

l is the smallest integer such that |Xi(tl)−Xj(tl)| ≤ (n+2)εk; the last
collision occurs between particles i and j. “Last” means here that at
time tl, all collisions of the sequence, except perhaps the i−j one, have
started and may be completed.

We now argue by induction.
• Case n = 1:
There are only two particles involved, 1 and 2, so that

ωn ⊂ ∪lI12,l ,

Now, owing to the conservation of the measure by the flow, we may
evaluate the measure of I12,l by evaluating the measure of its image by
the flow at any time. We choose the time tl. At this time X1, V1 and
V2 are undetermined, and X2 belongs to the ball centered in X1, with
radius 3εk. Thus |I12,l| = 36πε3k. From here, we write

|ωn| ≤
M∑
l=1

36πε3k ≤ 108T
√

3ε2k .

This proves the n = 1 case.
• We now assume that the property is true for all m < n.

Then we have

|ωn| ≤
∑
i,j,l

|Iij,l| .

We evaluate the measure of Iij,l by examining the situation at t = tl,
using again measure conservation. We call Ai = {i, i1, . . . , im} and
Aj = {j, j1, . . . , jn−1−m} the collision sequences to which i and j re-
spectively belong before the i− j collision. Ai and Aj are two disjoints

sets thanks to point (ii) of Theorem 2.5. We call I
(i)
m the set of ini-

tial conditions on {i, i1, . . . , im} such that the collision sequence Ai

happens; at time tl, particle i is at a certain position Xi(tl) = X0.

We call I
(j),X0

n−1−m the set of initial conditions on {j, j1, . . . , jn−1−m} such
that the collisions of sequence Aj happens and particle j is at tl in
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the ball centered in X0, of radius (n + 2)εk; using Lemma 4.6 with
Ω = B(X0, 2ε

k)× R3, we know that

|I(j),X0

n−1−m| ≤ |ωn−1−m|
4(n + 2)3π

3
ε3k

We then evaluate the measure of Iij,l by

|Iij,l| ≤
n−1∑
m=0

Cm
n−1|I(i)

m | |I(j),X0

n−1−m|

≤ C

n−1∑
m=0

Cm
n−1 |ωm| |ωn−1−m|ε3k

≤ C
n−1∑
m=0

Cm
n−1aman−1−mε3k+2k(n−1) .

The last inequality uses the induction assumption. Finally, we have

|ωn| ≤
n∑

i,j=1

M∑
l=1

n−1∑
m=0

Cm
n−1aman−1−mε3k+2k(n−1)

≤ cT
√

n + 1ε−kn2

n−1∑
m=0

Cm
n−1aman−1−mε3k+2k(n−1)

≤ anε
2kn ,

with

(4.3) an = cT
√

n + 1n2

n−1∑
m=0

Cm
n−1aman−1−m .

Notice that the expression for an is far from optimal and that better
bounds could be obtained, this is however enough to complete the
proof.

4.2. Proof of points (i) and (ii) of Theorem 2.5. Let us first note
that both (i) and (ii) are true for T = 0 : (ii) obviously there cannot
be recollisions as there is no dynamic ; (i) as the set of initial data
for which at least three particles are in the same ball of radius εk has
measure less than C N3 ε6k.

Therefore for any I ∈ O with |[−1, 1]2N \ O| ≤ CN3 ε6k, points (i)
and (ii) hold at time 0.

Now fix T > 0, and denote by B the set of initial conditions I such
that either (i) or (ii) are not true until time T . We will show that

|B| ≤ CT N3 ε5k.
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For any I ∈ B, there exists t0 > 0 such that (i) and (ii) are true until t0
and one of them (or both) false at t0 (t0 depends on I). This is because
both are true at time 0 and because the dynamics is continuous in time.

Notice that all results of subsection 4.1 are true until t0. As k > 3,
there exists n independent of N such that asymptotically in N

Nn+1ε2kn ≤ N3 ε5k.

Therefore, it is enough to consider B̃ = B \On as |On| ≤ CT N3 ε5k and
for any I ∈ B̃ there are at most n − 1 collisions in the dynamics for
any sequence of collisions.

In fact we can be a bit more precise and notice that Theorem 2.5
is useless and trivial when N3 ε5k is not less than 1. Recalling that
ε = N−1/6 this implies that it is enough to consider k ≥ 18/5. Conse-
quently, n = 5 and there are at most 4 collisions (in any sequence) in
the dynamics we consider.

We have to study both cases where (i) (respectively (ii)) is contra-
dicted at time t0. Denote by B̃1 ⊂ B̃ the set of initial conditions I ∈ B̃
such that there exist t0 ≤ T and three particles i, j, k with Xi(t0),
Xj(t0) and Xk(t0) in the same ball of size 2 εk. Clearly B̃1 contains all

initial conditions of B̃ contradicting (i) but is a bit larger (which will
be useful for (ii)).

Accordingly denote by B̃2 the set of initial conditions I ∈ B̃ \ B̃1 for
which there exists t0, and i and j such that for some t < t0, i Rt j and
i and j collide at t0 with t0 the beginning of the collision; which means
that |Xi(t0)−Xj(t0)| = εk and |Xi(t)−Xj(t)| > εk for any t < t0 but

close enough from t0. B̃2 contains all initial conditions contradicting
(ii) before (i) and of course B̃ = B̃1 ∪ B̃2.

4.2.1. Case of B̃1: (i) is contradicted first. Denote by B̃1(t1) the set
of initial conditions I such that I ∈ B̃1 and at t1 we have three par-
ticles located in the same ball of size 3εk. As there are C3

N possi-
bilities of choosing those three particles, the measure of the set of
X1(t1), V1(t1), . . . XN(t1), VN(t1) such that three particles are located
in the same ball of size 3εk at t1 is less than

C N3 ε6k.

Therefore, since the dynamics preserves volume in the whole phase
space, the set B̃1(t1) has measure less than C N3 ε6k.

We divide the time interval [0, T ] into M intervals [Tα, Tα+1], α =
0 . . . M , of size εk (n + 1)−1/2. If three particles are located in a ball of
radius εk at t0, lemma 4.5 ensures that they are still within a ball of
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radius 6εk at some well chosen time Tα. We have also used that there
at most 4 collisions in any sequence before t0. So

B̃1 =
M⋃

α=1

B̃1(Tα),

and as M is less than T ε−k
√

n + 1, we finally obtained that

(4.4) |B̃1| ≤
M∑

α=1

|B̃1(Tα)| ≤ C M N3 ε6k ≤ CT N3 ε5k,

which is the desired estimate on B̃1.

4.2.2. Case of B̃2: (ii) is contradicted first. Let us first perform the
same subdivision of the time interval [0, T ] in M intervals [Tα, Tα+1]
of size εk (n + 1)−1/2 as in the previous paragraph. As the same bound
on the velocities applies, we may again assume that t0 is one of the Tα

in the following sense :

Lemma 4.7. There exist i, j, α such that i RTα j, and εk < |Xi(Tα)−
Xj(Tα)| ≤ 2εk.

Proof. We use the definition of B̃2 and take α such that Tα =
supβ{Tβ < t0}. Neither i nor j may have any collision with another
particle between Tα and t0. Indeed, suppose the last collision of i
between Tα and t0 is with particle k, and ends at t1. Between t1 and t0,
the velocities of i and j are bounded by

√
n + 1 thanks to lemma 4.4.

Thus, at t1 i, j and k would be in a ball of size 2εk and the initial
condition would belong to B̃1 and thus not B̃2. Note now that since
the trajectories of i and j are lines between two collisions, they cannot
cross more than once. This implies that i and j do not collide between
Tα and t0. Thus, applying the velocity bound of lemma 4.4, we have
εk < |Xi(Tα)−Xj(Tα)| ≤ 2εk and i RTα j (remember that i Rt0 j).

Lemma 4.8. For any β ≥ 1 and any two points xi and xf in [−1 −
2T, 1 + 2T ]3, denote by S(xi, xf , β) the set of initial conditions X1(0),
X2(0), V1(0), V2(0) in [−1− 2T, 1 + 2T ]6 × [−2, 2]6 such that
(i) X1(0) ∈ B(xi, 2ε

k),
(ii) the two particles 1 and 2 have a collision between time 0 and Tβ

(and no collision with any other particles), and
(iii) X1(Tβ) ∈ B(xf , 2ε

k) or X2(Tβ) ∈ B(xf , 2ε
k).

Then

|S(xi, xf , β)| ≤ C
ε6k

β2
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Note that as the particles have no collision with other particles, the
dynamics really involves only them, which is why S contains only the
initial conditions for those two particles.

Proof. The dynamics to consider is simply

Ẋ1(t) = X1(t), Ẋ2(t) = V2(t),

V̇1(t) =
1

N
Kε(X1 −X2), V̇2 =

1

N
Kε(X2 −X1),

Let us consider Sj(xi, xf , β) for j = 1, 2 the subset of S(xi, xf , β) for
which Xj(Tβ) ∈ B(xf , 2ε

k) (i.e. (iii) is true for Xj). The set S is the
union of S1 and S2 and it is obviously enough to prove the estimate for
those subsets.

Now denote by S̃j(xi, xf , β) the set of initial conditions X1(0), X2(0),
V1(0), V2(0) in [−1−2T, 1+2T ]6× [−3, 3]6 such that again conditions
(i) − (iii) of 4.8 are satisfied with Xj(Tβ) ∈ B(xf , 2ε

k). The only

difference between S̃j and Sj is that S̃j allows for a larger support in
velocity initially.

For any fixed xf and V with |V | ≤ 1, we have that

Sj(xi, xf , β) + (0, 0, V, V ) ⊂ S̃j(xi, xf + V Tβ).

This is indeed only galilean invariance : if we add V to the velocities
of each particle initially, then they follow the same dynamics with the
same V added to their velocities and V t added to their position. Hence
the final position Xj(Tβ) is simply shifted by V Tβ.

As a consequence for any xf and any y ∈ B(xf , Tβ), we have that

|S̃j(xi, y, β)| ≥ |Sj(xi, xf , β)|.

Take L points yn in the ball B(xf , Tβ) such that the distance between
any two of them is at least 4εk. Then clearly

S̃j(xi, y
n, β) ∩ S̃j(xi, y

p, β) = ∅, if n 6= p,

as the final position Xj(Tβ) cannot be in both B(yn, 2εk) and B(yp, 2εk).
Obviously there are at most L = C β3 such points yn (remember that
Tβ is of the order of β εk).

On the other hand U =
⋃L

n=1 S̃j(xi, y
n, β) contains only those initial

data such that X1(0) ∈ B(xi, 2ε
k) and 1 and 2 have a collision between

time 0 and Tβ. Therefore its measure is at most C β ε6k. Consequently

L× |Sj(xi, xf , β)| ≤
L∑

n=1

|S̃j(xi, y
n, β)| =

∣∣∣∣∣
L⋃

n=1

S̃j(xi, y
n, β)

∣∣∣∣∣ ≤ C β ε6k.
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Figure 1. An example of collision sequence when par-
ticle i has no collision between Tβ and Tα; the collision
sequence of particles j and q may be more complicated
than what is sketched here, in the limit of four or less
collisions before Tα.

So finally, we obtain that

|Sj(xi, xf , β)| ≤ C
ε6k β

L
= C

ε6k

β2
.

As i and j belong to the same sequence before Tα, there exist two
particles p and q (one or both of which could be i or j) colliding at
some time t1 < Tα (t1 being here the final time of the collision) and
such that p and i belong to the same sequence between t1 and Tα and
so do respectively q and j.

One of these sequences of collisions contains at least one collision: If
not i and j would have one collision at t1, another one at t0 and none
in between, which was already excluded.

On the other hand, one also has at most one collision. Indeed there
are at most four collisions before Tα and one already occured at t1 so
there are only three remaining. This is too few to have at least two
other collisions for each sequence.

Define Tβ as the smallest of the Tγ bigger than t1. p and q have at
most 3 collisions between t1 and Tβ, and the

√
n + 1 velocity bound

applies between the collision, so that

|Xp(Tβ)−Xq(Tβ)| ≤ 6εk,

and we may replace t1 by Tβ.
Now assume that the sequence with p and i between tβ and Tα is the

one with the less collisions (and hence 0 or 1). Let us consider both
cases
• No collision for i in [Tβ, Tα]. That means that i = p. Accordingly

we know that j 6= q. Let us denote by B̃1
2 the set of initial data such

that this occurs and estimate its measure. Fig. 1 gives an example of
collision sequence corresponding to this case.

In order to do so, we bound the set of positions and velocities at time
Tβ and use Liouville’s theorem to deduce a bound on B̃1

2 . Therefore
denote by C1(β) the set of corresponding positions and velocities st
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Figure 2. An example of collision sequence when par-
ticle i has one collision between Tβ and Tα; the collision
sequence of particles j and q may be more complicated
than what is sketched here, in the limit of four or less
collisions before Tα.

time Tβ Xn(Tβ), Vn(Tβ), 1 ≤ n ≤ N . We have that

|B̃1
2 | ≤

∑
β

|C1(β)|.

First choose Xn(Tβ), Vn(Tβ) for any n 6= i such that j and q belong
to the same sequence of collisions between Tβ and Tα (of any number of
collisions); Denote by C(j, q, i, β, α) the corresponding set. The posi-
tions and velocities of all particles except i are known between Tβ and
Tα, as i does not interact with any of them within this time interval.

Once this is done, we must choose Xi(Tβ) in the ball B(Xq(Tβ), εk)
and as its trajectory is a line, Vi(Tβ) must lie in the ball centered at
(Xj(Tα) −Xi(Tβ))/(Tα − Tβ), and of radius εk/(Tα − Tβ)). Therefore
the set of corresponding Xi(Tβ) and Vi(Tβ) is of measure less than
C ε3k (α− β)−3. Moreover

|C1(β)| ≤
∑
i,j,q

∑
α

∫
C(j,q,i,β,α)

∫
Xi∈B(Xq ,εk)

∫
(Tα−Tβ) Vi∈B((Xj(Tα)−Xi),εk)

dVidXidX1dV1 . . . dXNdVN

≤ C
∑
i,j,q

∑
α

ε6k (Tα − Tβ)−3 |C(j, q, i, β, α)|.

The last step is to evaluate the measure of C(j, q, i, β, α). As there
is at least one collision between Tβ and Tα, say between particles k
and l, there exists γ ∈ [β, α] such that k and l are in the same ball
of size 2εk. Evaluating the measure of C(j, q, i, β, α) by its image by
the flow at time Tγ, and summing over all possible γ, we obtain that
|C(j, q, i, β, α)| ≤ C ε3k(α− β). Finally, we conclude:

|C1(β)| ≤ C N3 ε6k,

and

|B̃1
2 | ≤

∑
β

|C1(β)| ≤ C N3 ε5k,

which is the desired estimate.
• One collision for i in [Tβ, Tα]. That means that p = i or p = l.

Fig. 2 gives an example of collision sequence corresponding to this case.
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We follow the same steps as in the previous lemma, and denote by
B̃2

2 the corresponding set of initial conditions and C2(β) the set of
Xn(Tβ), Vn(Tβ).

As before we first choose Xn(Tβ), Vn(Tβ) for n 6= i, l in the set
C(j, q, i, l, β, α), which is such that j and q belong to the same sequence
of collisions between Tβ and Tα. This set is almost exactly C(j, q, i, β, α)
except that particle l is not included.

Then it remains to choose Xi(Tβ), Vi(Tβ), Xl(Tβ) and Vl(Tβ) such
that i and l have a collision between Tβ and Tα, Xi(Tα) belongs to
B(Xj(Tα, 2 εk) and Xi(Tβ) or Xl(Tβ) belong to B(Xq(Tβ), 2 εk). This
is the set S(Xq(β), Xj(α), α − β) of Lemma 4.8, with the roles of xi

and xf exchanged. As the dynamics is reversible, Lemma 4.8 applies.
So

|C2(β)| ≤
∑
i,j,q

∑
α

∫
C(j,q,i,l,β,α)

∫
S(Xq ,Xj(β),α−β)

dVidXi dVldXldX1dV1 . . . dXNdVN

≤ C
∑
i,j,q,l

∑
α

ε6k (α− β)−2 |C(j, q, i, lβ, α)|,

according to Lemma 4.8. The estimate for |C(j, q, i, l, β, α)| being the
same as before, one obtains

|B̃2
2 | ≤ C

∑
α>β

∑
i,j,q,l

ε9k (α− β)−1 ≤ C N4ε8k | ln ε|,

which is asymptotically less than N3ε5k as Nε3k | ln ε| converges to 0
(N = ε−6 and k > 3). Finally this does imply that

|B̃2| ≤ |B̃1
2 |+ |B̃2

2 | ≤ C N3 ε5k.
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