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1 Introduction

In this Chapter, we present some mathematical problems related to the dy-
namics of particles interacting through a fluid. We are interested in the dilute
cases. We mean the cases where a transport Partial Differential Equations in
the phase space can be expected for the particles density. In order to derive
these transport equations explicitely, some assumptions on the fluid dynam-
ics are necessary. They limit the validity of the model but still represents
many possible applications. Namely we assume that the fluid dynamics can
be reduced to two simple situations. The first situation is the simple case of a
potential flow (perfect incompressible and irrotational flow). This is relevant
to describe for instance the motion of bubbles in water (see G.K. Batchelor
[2]) and focuses mainly on the added mass effect which means that to acce-
larate bubbles requires to accelerate some part of the water too. The second
situation is the more standard case of particles in a Stokes flow, for which
the domains of application are suspensions or sedimendation.
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The case of a potential flow around the particles, leads to a difficulty in
establishing the equation for the particle density. A mathematical formalism
was developed by G. Russo and P. Smereka [26] which we will present here,
in the improved version of H. Herrero, B. Lucquin and B. Perthame [19].
We will recall here how one can derive, from the interacting system of par-
ticles, a Vlasov type of equation for the particle density in the phase space
g(t, x, p), here t ≥ 0 is the time, x ∈ IR3 represents the space position and
p ∈ IR3 represents the total impulsion of particles (dual of the velocity in the
Lagrangian - Hamiltonian duality). This equation is

∂
∂t

g + gradpH · gradxg − gradxH · gradpg = 0, (1.1)

H(t, x, p) = 1
2
|p + Φ(t, x)|2, (1.2)

Φ(t, x) = λ B ∗ (P + ρΦ)(t, .).

Here B = B(x) is a given 3 × 3 matrix, λ is the kinetic parameter (relating
the radius of the particles to the densities of the particles and of the fluid)
and the macroscopic density and implusion ρ, P are defined by

ρ(t, x) =
∫

IR3 g(t, x, p)dp, (1.3)

P(t, x) =
∫

IR3 p g(t, x, p)dp. (1.4)

The difficulty to establish this equation, comes from the Lagrangian aspect

of the natural dynamics for the particles. It turns out that the Hamiltonian
variables are better adapted to mathematical manipulations and to mechan-
ical interpretation (notice that the Hamiltonian variable is just the total
impulsion of particles). But the derivation of the mean field equation (1.1)-
(1.3) for the particles density is easier in Lagrangian variables. Then, one
issue is to understand how to define, in the kinetic P.D.E., the Lagrangian
and Hamiltonian variables (and to understand also change of variables).

The second situation consists in considering a Stokes flow around the par-
ticles. It leads to quite different mathematical issues. In order to establish
equations for the particle density one can follow the same derivation as be-
fore. From the full dynamics of particles - N body interaction - a first (and
restrictive) assumption is to make a dipole approximation for the fluid equa-
tion. This reduces the dynamics to two-body interactions and thus allows
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to settle the kinetic equation for the particle density f(t, x, v), here v is the
velocity of the particle. One obtains a Vlasov type equation.

∂
∂t

f + v · gradxf + λdivv((κg + µA ?x j − v)f) = 0, (1.5)

j(t, x) =
∫

IR3 v f(t, x, v)dv. (1.6)

The matrix A(x) is now related to the Stokes Equation, as well as B, in
the potential case, is related to the Laplace Equation. Also, g denotes the
gravity vector, λ the kinetic parameter and µ = 3

4
Na, with N the number

of particles, a their radius. Even though there is no mathematical difficulty
in establishing this system, several mathematical questions arise concerning,
for instance, various asymptotic behaviors (large time behavior cf [21], λ
vanishing...etc) They arise because the friction term plays a major role in
the particles dynamics for a Stokes flow. A particularly interesting situation
is the limit λ → ∞. It gives an example of a macroscopic limit which is not
obtained by the collisional process, but by a strong force term. In the case
at hand, it is proved in P.E. Jabin [22] that the macroscopic limit gives rise
to the equation

∂
∂t

ρ + div(ρ u) = 0, (1.7)

µA ?x (ρu) − u = g. (1.8)

The topic of these notes represent particular examples of a very active
field of fluid mechanics where kinetic physics plays a fundamental role. Usu-
ally it is used in the derivation of models for particular situations, but also of
effective equations for the motion. In no way we can give a complete account
of the literature in this domain and we prefer to refer to some general works.
Concerning bubbly-potential flows, the paper by Y. Yurkovetsky and J.F.
Brady [32] contains numerous recent references as well as considerations on
statistical physics aspects of the model and the effect of collisisons. For this
effect, see also G. Russo and P. Smereka [27], J.F. Bourgat et al [6]. The
derivation of pde models and the use of kinetic description is a rather recent
subject, confer H.F. Bulthuis, A. Prosperetti and A.S. Sangani [7], A.S. San-
gani and A.K. Didwana [28], P. Smereka [30] and the references therein. On
the other hand, the dynamics of particles in a Stokes flow have lead to very
numerous works. Let us quote some of them : G.K. Batchelor and C.S. Wen
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[8], F. Feuillebois [12], E.J. Hinch [16], R. Herczynski and I. Pienkowska [20]
and the book by J. Happel and H. Brenner [17]. Other regimes have also
been studied and lead to mathematical models which have been analyzed for
instance by K. Hamdache [18] for the case of a more general incompressible
flow (and small particles), by D. Benedetto, E. Caglioti and M. Pulvirenti
[3] for granular flow. Complex numerical simulations have been performed
by B. Maury and R. Glowinski [25], R. Glowinski, T.W. Pan and J. Périaux
[15], for high concentrations of particles (see also the references therein).

The outline of this Chapter is as follows. The next two sections are
devoted to the case of a potential flow ; in section 2 we derive the model
dynamical system and section 3 is devoted to the mean field equation. In the
fourth section, we derive the dynamical system for the case of Stokes flow.
The macroscopic limit is explained in Section 5. Some numerical tests for
the potential flow case are presented in the Appendix.

The sections are largely independant of each other. Except some nota-
tions which are refered to in the text, they can be read independently.

2 Dynamics of Balls in a Potential Flow

In this Section, we consider the dynamics of N balls of radius a, interacting
through a potential fluid. The motion of each ball modifies the global flow
and thus produces a force on the other balls. Even though we consider the
very simplified situation of the dipole approximation of a potential flow, the
result is a complex dynamics. Here, we describe (under the assumption of
diluted particles), the limiting behavior, as N → ∞ and a vanishes, of the
particles density. As we will see in Section II, as long as collisions between
particles are neglected and a specific relation holds between a and N , this
leads to the equation (1.1)-(1.3) for the distribution of particles in the phase
space (time, space and total impulsion).

Our notations are as follows. We consider N particles which centers are
denoted Xi(t), they move with velocities Vi(t). Here, t denotes the time and
1 ≤ i ≤ N . These particles are balls of radius a, centered at Xi(t), they are
denoted Bi(t). The inward normal on the sphere ∂Bi(t) will be denoted by
ni(x). We also denote by ρf the fluid density and by ρp the particle density,
their mass is thus mp = 4

3
πa3ρp, another remarquable quantity which arises
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later is the virtual mass of the fluid mv = 2
3
πa3ρf . As we will see, there is

a fundamental number which decides of the validity of a dilute regime, it is
given by

λ = 6πNa3 ρf

ρf + 2ρp
(2.1)

This ratio has to be kept constant in the limit N → ∞. Finally, we use cal-
graphic letters for the 3N dimensional vectors (or matrices acting on these
vectors). For instance XN = (X1, . . . , XN).

2.1 the full dynamics

The fluid around the particles is assumed to be given by the potential equa-
tions. In other words, the fluid velocity v(t, x) is obtained as

v(t, x) = ∇φ(t, x), (2.2)

where the potential φ is just given by

{

∆φ(t, x) = 0 in IR3 −
⋃N

i=1 Bi(t),
∂φ
∂ni

= Vi(t) · ni on ∂Bi(t).
(2.3)

We implicity consider that the fluid is at rest at infinity, i.e. v vanishes at
infinity. From this potential φ, we can compute the pressure thanks to the
Bernouilli relation

p(t, x) = −ρf (
∂φ

∂t
+

|∇φ|2

2
) . (2.4)

This makes v(t, x) a solution of the incompressible Euler Equations. The
dynamics of the particles is therefore defined by the fundamental principle
of dynamics,

{

Ẋi(t) = Vi(t) ,

mpV̇i(t) = Fi(t) =
∫

∂Bi(t)
p(t, x)nidS .

(2.5)

Let us point out that the force Fi depends upon all the positions Xi(t) and
velocities Vi(t) of the particles, and also of their derivatives. Especially Fi

depends upon d
dt

Vi(t). This shows that this dynamics is rather complex and
is not explicitely solvable by the Cauchy-Lipschitz Theorem. But it has a
Lagrangian structure which gives a way to study it. Indeed, we have
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Theorem 2.1 There is a N×N symmetric positive definite matrix Aij(XN),
such that the system (2.5) admits the Lagrangian

LN =
1

2

N
∑

i,j=1

V t
i AijVj. (2.6)

In other word it can be written

{

d
dt

Xi(t) = Vi(t),
d
dt

∂LN (t)
∂Vi

= ∂LN (t)
∂Xi

.
(2.7)

The 3N × 3N matrix Aij is usually called the added mass matrix. One of
the difficulties is that each term Aij depends on the full vector XN .

Remark 2.2 (i) We have set

LN(t) = LN(X1(t), . . . , XN(t); V1(t), . . . , VN(t)) . (2.8)

(ii) The dynamics is not well defined. Indeed, φ is only defined as long as the
distance between two particles is larger that 2a. When they touch, a collision
process should be defined. To avoid these physical considerations we will in
fact extend the definition of Aij such that it vanishes when two particles are
too close (distance less than a say).

Proof of Theorem 2.1. See [30], [26], [19]. We would like however to
mention an intermediary step. We define the Kelvin impulsion by

Ii(t) = ρf

∫

∂Bi(t)
φ(t, x)nidS. (2.9)

And the total impulsion is then defined as

Pi(t) = mpVi(t) + Ii(t) . (2.10)

Then, one computes

İi(t) = ρf

∫

∂Bi(t)
[
∂

∂t
φ(t, x) + Ẋi(t) · ∇φ]nidS. (2.11)
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Therefore, combining this equality with (2.4), (2.5), the force field is given
by

Fi(t) = −İi(t) − ρf

∫

∂Bi(t)
∇φ[∇φ − Vi(t)]nidS.

This gives the formula

∂LN

∂Vi
= mpVi + ρf

∫

∂Bi(t)
φ(t, x)nidx . (2.12)

And one can easily check that this expression is linear in (Vi)1≤i≤N ,

∂LN

∂Vi
=

N
∑

j=1

Aij(XN)Vj,

from which the expression (2.6) follows.

2.2 the method of reflections

The solution φ to the potential equation (2.3) is very difficult to use because
it depends in a complex way on the positions of the particles. However, a
general and simple formal method allows to build the solution as the sum of
a series expansion, and therefore to find approximations. This is the method
of reflections, also called the method of images. It is based on a systematic
reduction to a single ball which allows to represent the potential as

φ(t, x) =
∞
∑

n=1

N
∑

i=1

φ
(n)
i (t, x) . (2.13)

The construction of φ
(n)
i (t, x) is by recursion. We first set







∆φ
(1)
i (t, x) = 0 in IR3 − Bi(t) ,

∂φ
(1)
i

∂ni
= Vi(t) · ni on ∂Bi(t) .

Considering φ(1) =
∑N

i=1 φ
(1)
i , we see that we realize the Laplace equation in

(2.3), but we miss the boundary condition. In a second step, we therefore
correct this boundary condition setting by recursion







∆φ
(n)
i (t, x) = 0 in IR3 − Bi(t) ,

∂φ
(n)
i

∂ni
= −

∑

j 6=i
∂φ

(n−1)
j

∂ni
on ∂Bi(t) .
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Adding these equations, we immediately see that the potential (2.13) formally
satisfies the equation (2.3). However it is not sure that the series converges,
and this certainly requires a smallness assumption relating the balls size a,
the distance dij between them, and the number of balls N .

Remark 2.3 (Case of one ball) The solution to the equation on φ
(1)
i is very

simple. It corresponds to the formula for a single ball

φ
(1)
i (x) = −

a3

2
Vi ·

x − Xi

|x − Xi|3
.

It gives
∫

∂Bi

φ
(1)
i nidS = −

2π

3
a3Vi.

And, by a simple expansion, we also find
∫

∂Bi

φ
(1)
j nidS = −

4π

3
a3W̃j + a30((a/dij)

5),

with

W̃j =
a3

2
[

Vj

|Xj − Xi|3
− 3 Vj · (Xj − Xi)

Xj − Xi

|Xj − Xi|5
],

dij = |XI − Xj|.

2.3 the dipole approximation

Since we are in the situation where a is vanishing, and in a dilute regime, the
above construction makes sense. Also, going one step further, it is natural
to truncate the expansion. It is not possible to just consider the dominant
term acting on Bj, i.e. φ

(1)
j because, by d’Alembert paradoxe, it creates no

force on the ball Bj. One step further again, we consider the first ‘image’
∑N

i=1 φ
(2)
i , and also one can still get the same order of truncation in using

appropriate asymptotic expansions in (a/dij). We describe the computations
in this subsection.

From the computation of forces created by a single bubble in the Remark
2.3, we obtain the implusion created by φ(1),

∫

∂Bi(t)
φ(1)(t, x)nidS = −

2π

3
a3Vi −

4π

3
a3Ṽi(t) + a3O((

a

d
)5),
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where
Ṽi = a3

2

∑

j 6=i[
Vj

|Xj−Xi|3
− 3 Vj · (Xj − Xi)

Xj−Xi

|Xj−Xi|5
]

= a3

2

∑

j 6=i Vj · D
2( 1

|Xj−Xi|
),

(we mean D2 1
|x|

evaluated at Xi − Xj). Then, in the series expansion (2.13)

there is another term of order (a/d)3. Namely, the contribution of the term

φ
(2)
i on the ball Bi, has the same order. Indeed, for small values of the ratio

a/dij, we have,
∂

∂ni
φ

(2)
i ≈ Ṽi · ni on ∂Bi(t),

and thus, using again the case of a single bubble,

φ
(2)
i (x) ≈ −

a3

2
Ṽi ·

x − Xi

|x − Xi|3
.

Computing its contribution to the Lagrangian, we finally end up with the
following formula for Kelvin’s impulsion (2.9),

Ii(t) =
2π

3
πa3ρf [Vi(t) + 3Ṽi(t) + O((

a

d
)4)]. (2.14)

Hence the total impulsion (2.10) is given by

Pi(t) = (mp + mv) Vi(t) + 3mvṼi(t) + mvO((
a

d
)4) . (2.15)

Here we have denoted by mv the virtual mass

mv =
2π

3
πa3ρf . (2.16)

Neglecting the remainder terms gives the final expression

Pi =
N
∑

j=1

AijVj, (2.17)

Aii = (mp + mv) Id,
Aij = −3

2
mva

3D2( 1
|Xj(t)−Xi(t)|

) for i 6= j.
(2.18)

Therefore, we obtain, under the dipole approximation, the Lagangian
(2.6) defined by the above symmetric added mass matrix which is now simpler
because it is two-point additive. Unlike the original case, this matrix is
not always invertible. In the next section, we will give some invertibility
properties.
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3 Kinetic theory for the Hamiltonian system

of bubbly flows

For particles moving with the dynamic described in the previous section,
the mean field equation for the density in the phase space can be derived
either in Lagrangian or in Hamiltonian variables. Nevertheless, as explained
in the introduction, the Hamiltonian variables give a nicer structure. In this
Section, we consider a more general dynamic for the particles, with the same
type of Lagrangian structure, we recall it in Subsection 1. In Subsection 2,
we present the Hamiltonian variables, and the kinetic system (1.1)-(1.3) is
derived in Subsection 3.

3.1 the general Lagrangian structure

From the approximation in Section 1, we are led to study the more general
Lagrangian system, for 1 ≤ i ≤ N ,

{

d
dt

Xi(t) = Vi(t),
d
dt

∂LN (t)
∂Vi

= ∂LN (t)
∂Xi

,
(3.1)

LN =
1

2

N
∑

i,j=1

V t
i AijVj. (3.2)

And we recall the notation (2.8) for LN(t). The outcome of the result in
[19] that we recall here, is that it is possible to give the asymptotic limit
as N → ∞ for quadratic Lagrangian in Vi, under a particular two-point
additivity assumption for the added mass matrix AN = (Aij)1≤i,j≤N . Since
the Lagrangian is defined up to a multiplicative constant, it is consistent with
(2.18), to consider 3 × 3 matrices of the form

Aii = Id,
Aij = − λ

N
B(Xj − Xi) for i 6= j.

(3.3)

In the above derivation, the positive parameter λ is given by (2.1), but here
this explicit relation is useless. Also the 3 × 3 matrix B is given by the
particular form

B(x) = D2 1

4π|x|
, (3.4)
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(recall that the distance between particles is never less than 2a). But our
analysis requires smooth matrices B and we will use the assumption

B is even , B and D2(B) are bounded, B(0) = 0. (3.5)

Before proving that for such a Lagrangian system, the limiting behavior
as N → ∞ is given by the Vlasov Equation (1.1)-(1.3), we need to pass to
the Hamiltonian variables (at least to prove existence of solutions to (3.1)
for instance).

3.2 the corresponding Hamiltonian structure

As usual the Hamiltonian structure is defined through the Frenchel dual of
the quadratic Lagrangian (at least for λ small enough). We therefore set

HN (X1, X2, ..., XN ; P1, P2, ..., PN) =
1

2

N
∑

i,j=1

P t
i (A

−1
N )ijPj, (3.6)

- a justification of the invertibility of the matrix AN = (Aij)1≤i,j≤N is given
later. Notice however that the inverse matrix of (Aij)1≤i,j≤N is not two point
additive (its coeficients depend on the full vector XN). As usual the change
of variables from velocoties Vi to impulsions Pi is obtained by the formulae

Pi = ∂LN

∂Vi
,

Vi = ∂HN

∂Pi
,

(3.7)

And the Lagrangian system (3.1) is equivalent to the Hamiltonian system
(see [1] for instance)

Ẋi(t) = ∂HN (t)
∂Pi

,

Ṗi(t) = −∂HN (t)
∂Xi

.
(3.8)

In order to state a precise statement for this equivalence, we need a last
notation : ||B||2 denotes the matrix norm of the 3 × 3 matrix B induced by
the euclidian norm in IR3. Then, we have

Theorem 3.1 (see [19]). We assume that

λ sup
x∈IR3

||B(x)||2 < 1 . (3.9)

Then, the matrix (Aij)1≤i,j≤N defined in (3.3) is invertible, the equations
(3.1) and (3.8) are equivalent, and they are wellposed.
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The existence of global solutions to the systems (3.1) and (3.8) follows from
the Cauchy-Lipschitz Theorem. Indeed, under the assumption (3.5), the
Hamiltonian system is Lipschitzian. Also, under the assumption (3.9), the
invertibilty of the matrix Aij follows from the convergence (in norm) of the
series expansion

(A−1)ij = Id +
λ

N
B(Xj − Xi) + (

λ

N
)2

N
∑

k=1

B(Xk − Xi)B(Xj − Xk) + . . .

3.3 the mean field equation

We are now interested in the particles density in the phase space

gN(t, x, p) =
1

N

N
∑

i=1

δ(x − Xi(t)) ⊗ δ(p − Pi(t)) .

The interest of using this formalism is that it allows to pass to the limit as
N → ∞.

Theorem 3.2 ([19]). With the assumption of Theorem 3.1, the Hamiltonian
system (3.8) is equivalent to the Vlasov system (1.1)-(1.3) on the measure
gN (see the introduction). Also, the equation (1.3) on the vector potential Φ
has a unique solution (being given ρ and P).

Notice that the Hamiltonian H in (1.2) is different from that of Russo
and Smereka [26]. This comes from an additional approximation, after the
dipole approximation, that they needed in their analysis and that we have
removed. Their Hamiltonian is just the first order term in a Taylor expansion
of H in the parameter λ

HRS =
1

2
|p|2 + p · ∇xΦ

0 ,

Φ0(t, x) = λ B ∗ P.

Another advantage, compared to the system of [26], is that our system (1.1)-
(1.3) has a conserved energy (inherited from the Hamiltonian structure)
which has the right form ET = EK + EP (total energy = kinetic energy +
potential energy) :
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Theorem 3.3 ([19]). Additionaly to the assumption of Theorem 3.1, as-
sume that B = D2b for some function b. Then, the vector potential Φ satisfies
Φ = ∇ϕ and is given by the equation

ϕ(t, x) = λ b ∗ div(P + ρ∇ϕ)(t, .).

Then, the conserved energy can be written

ET (t) =
∫

IR6 H(t, x, p) gN dx dp +
1

2λ

∫

IR3 |∇xϕ(t, x)|2dx.

The structure of the equation (1.1)-(1.3) is mathematically interesting
because it is semi-kinetic (the advection velocity Hp depends on the param-
eter p and a macroscopic quantity). Such a structure was also found for the
kinetic formulation of isentropic gas dynamics in P.L. Lions, B. Perthame
and E. Tadmor [23].Other examples can be found also in H. Spohn [31], C.
Cercignani [9]. However, the singularity arising in the Hamiltonian, more pre-
cisely in the coeficient Hx in the equation (1.1), is too strong to hope for an
existence theory. In the Appendix we also show some numerical simulations
which indicate that the short range interaction might be more important
that comparing the collision rate for classical collisions Na2 to our kinetic
parameter λ ≈ Na3.
Poof of Theorem 3.2. We indicate some steps toward the obtention of
the Mean Field Equation for gN . The first step is to write the Lagrangian
dynamic equations (3.1) as

{

d
dt

Xi(t) = Vi(t),
d
dt

Vi = λ∂t[B ? jN (t, .)](Xi(t)),
(3.10)

jN (t, x) =
∫

IR3 vfN(t, x, v)dv =
1

N

N
∑

i=1

δ
(

x − Xi(t)
)

.

And this is because

d
dt

(

Vi(t) − a3τ
∑N

j=1 B(Xi(t) − Xj(t))Vj(t)
)

= − a3τ
2

∑N
k,l=1 Vk(t)

t ∇xi
[ B(Xk(t) − Xl(t)) ] Vl(t).

The second step is to deduce from (3.10) the equation on fN . We have

∂fN

∂t
+ v · ∇xfN + FN · ∇vfN = 0, (3.11)

FN (t, x) = λ( B ∗ ∂tjN (t, .) )(x). (3.12)



4. INTERACTION OF PARTICLES IN A STOKES FLOW 49

The final step is to change variables in this equation. We set, see (3.7),

v = p + ΦN (t, x) = ∇pH(t, x, p),

and we notice that

ΦN (t, x) = λB ? jN .

This simple change of variables in the system (3.11)- (3.12) yields the system
(1.1)-(1.3) for

gN(t, x, p) = fN (t, x, v).

4 Interaction of particles in a Stokes flow

We adopt the same plan as before for describing the motion of spherical par-
ticles in a Stokes flow. We derive the dynamical system under the assumption
that the particles are dilute enough to be described by a dipole approxima-
tion. In this Section, we explain this approximation and, in the next Section,
we derive a class of kinetic equations for the evolution of their density in
the phase space (space and velocity here) and we exhibit the relevant kinetic
parameters. Notice that, here, we restrict ourselves to the simplest situation
of a cloud of particles. Systems with a quasi uniform repartition at infinity
have also been considered from a physical point of view (see [12] and the
references therein).

4.1 notations

We now consider the case of N balls interacting in a Stokes flow. Again,
we use the notations of Section 2 but, here, new quantities are needed. We
denote the kinetic momentum of the particles by jp = Cρpa

5, their angular
velocity Ωi. Also, we denote σ(t, x) the stress tensor of the fluid flow aroung
the particles. It is given for 1 ≤ α, β ≤ 3, by

σαβ = −pδαβ + η(
∂

∂xα
vβ +

∂

∂xβ
vα),
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where v(t, x) denotes the fluid velocity. We finally assume that the fluid is
now described by the Stokes system











η4v = ∇p in IR3 −
⋃N

i=1 Bi(t),
div v = 0 in IR3 −

⋃N
i=1 Bi(t),

v = Vi + Ωi ∧ (x − Xi) on ∂Bi(t).
(4.1)

Also, we assume that the fluid is at rest at infinity v∞ = 0. Then, the
dynamics of the balls is defined by the fundamental principle of dynamics















Ẋi = Vi ,

mpV̇i = Fi = −ρf

∫

∂Bi(t)
(σ · n)dS + (mp − mf)g,

jp Ω̇i = Γi = −ρf

∫

∂Bi(t)
(x − Xi) ∧ (σ · n)dS .

(4.2)

Where we have defined

mf =
4π

3
a3ρf . (4.3)

Notice that, again, the forces depend linearly on (Vi, Ωi)1≤i≤N . But again
the related matrix depends on the particles positions in a very complex way.
Also, we have denoted by g the constant gravity vector.

Remark 4.1 It is useful to notice that, for g = 0, there is a non-increasing
energy. Since we neglected the fluid inertia, it is reduced to the kinetic energy
of the particles

E(t) =
1

2

N
∑

i=1

(

mp|Vi|
2 + jp|Ωi|

2
)

. (4.4)

We can indeed compute

d
dt
E(t) =

∑N
i=1Vi · Fi + Ωi · Γi

= ρf
∑N

i=1

∫

∂Bi(t)
[Vi · (σ · n) + Ωi · ((x − Xi) ∧ (σ · n))] dS

= ρf
∑N

i=1

∫

∂Bi(t)
(Vi + Ωi ∧ (x − Xi)) · (σ · n)dS,

and therefore

d
dt
E(t) = ρf

∑N
i=1

∫

∂Bi(t)
v · (σ · n)dS

= −ρf
∑3

α,β=1

∫

IR3
−∪Bi(t)

(∂αvβ). (−pδαβ + η(∂αvβ + ∂βvα)) dS

= −η
2
ρf
∑3

α,β=1

∫

IR3
−∪Bi(t)

(∂αvβ + ∂βvα)2dS

= −η
2
ρf

∫

IR3
−∪Bi(t)

∣

∣

∣∇v + (∇v)T
∣

∣

∣

2
dS

≤ 0.
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4.2 case of a single bubble and Stokeslets

The exact solution to the Stokes system for a single ball is known. To simplify
the notations, we assume it is centered at X1 = 0, and we set V1 = V, Ω1 = Ω.

In this situation, one readily checks the formulae

v = a
( V

|x|
+

a2 − |x|2

4
∇

V · x

|x|3

)

+
a3

|x|3
Ω ∧ x, (4.5)

p = −
3

4
aηV ·

x

|x|3
, (4.6)

σ = 3
2

a
|x|3

η
(

−V ⊗ x − x ⊗ V + 5a2−3|x|2

|x|4
V · x x ⊗ x

+ a2−|x|2

|x|2
V · x Id

)

− 3 a3

|x|5

(

x ⊗ (Ω ∧ x) + (Ω ∧ x) ⊗ x
)

.
(4.7)

Using these expressions, we can compute the forces applied on the parti-
cle. After simple calculations and using the symmetries, we obtain, for g = 0
to simplify,

F = −6πaηρf V , (4.8)

Γ = −8πa2ηρf Ω . (4.9)

Consequently, the motion of a single ball is reduced to simple friction with
a decoupling of rotation and translation. Notice also that, combining these
expression with the dynamics (4.2), we obtain

V̇ = −
9

2
η
ρf

ρp
a−2 V ,

Ω̇ = −Cη
ρf

ρp

a−2Ω .

Hence, the relaxation time for friction is of the same order for both velocity
and momentum.

Eventually, at long distance (for large x), the main contribution to the
velocity field in (4.5) is given by

ṽ(x) =
3

4
a(

V

|x|
+

V · x

|x|3
x). (4.10)

p̃(x) = −
3

4
aηV ·

x

|x|3
. (4.11)
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This is the exact solution to the Stokes system with a point force at the
origin proportional to V , namely

{

η∆v1
i = ∇p1

i − F0δ(x) in IR3 ,
div v1

i = 0 in IR3 .
(4.12)

This particular solution in (4.10),(4.11) is called a Stokeslet.

4.3 the method of reflections

We can follow the same lines as in the potential case and build the solution
to the N-particles Stokes system along the method of reflections. We expand
the solution as a series expansion which aims to simplify the geometry of the
domain and reduce it to the exterior of single balls.

v(t, x) =
∑∞

n=1

∑N
i=1 v

(n)
i (t, x) ,

p(t, x) =
∑∞

n=1

∑N
i=1 p

(n)
i (t, x) .

(4.13)

Again, we use for the first term the single ball approximation















η∆v
(1)
i = ∇p

(1)
i in IR3 − Bi(t) ,

div v
(1)
i = 0 in IR3 − Bi(t) ,

v
(1)
i = Vi + Ωi ∧ (x − Xi) on ∂Bi(t).

(4.14)

Then, we correct the boundary values thanks to the recursion formulae















η∆v
(n)
i = ∇p

(n)
i in IR3 − Bi(t) ,

div v
(n)
i = 0 in IR3 − Bi(t) ,

v
(n)
i =

∑

j 6=i v
(n−1)
j on ∂Bi(t) .

(4.15)

Summing up these equations, we see that the expressions in (4.13) formally
satisfy the Stokes system (4.1) whenever the series converges, which again
requires certainly an assumption on the distance between particles.

4.4 the dipole approximation

Like in the case of a potential flow, the first terms v
(1)
i cannot be used alone;

from the condition div σ
(1)
i = 0, its contribution to the other balls Bj vanishes
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and the motion is thus reduced to pure independent friction of the N particles
as in the case of a single ball.

Therefore, we are lead to use the second term. This requires to input
v

(1)
i as a boundary condition for v

(2)
i , which we know explicitely from (4.5).

And, again, assuming that the inter-particle distance dij/a is large, we can
approximate the boundary term on ∂Bi(t) in (4.15), as

v
(2)
i =

∑

j 6=i

[ 3a

4|Xj − Xi|
Vj +

3a

4
Vj · (Xj − Xi)

Xj − Xi

|Xj − Xi|
+ O(

a2

|Xj − Xi|2
)
]

.

Neglecting the ‘O’ term in this equality, the velocity is constant on ∂Bi(t).
Hence, we can use again the single ball formulae for the forces. We obtain

1

aηρf

Fi = −6πVi −
9

2
π
∑

j 6=i

a

|Xj − Xi|

[

Vj + Vj · (Xj − Xi)
Xj − Xi

|Xj − Xi|2

]

+
ρp − ρf

ηaρf

4

3
πa3g,

Γi = −8πa2ηρf Ωi .

As a consequence, in this dipole approximation, the rotation motion is still
trivial. It is completely decoupled from the translational motion and reduced
to simple friction. On the other hand, the translational motion undergoes
a non-trivial interaction which is the sum of two-body interactions. It is
therefore natural to neglect the momentum Ω in the sequel and to focus on
this interaction.

The influence on Bi(t) of the other balls results here in the sum of velocity

terms of the form a
|Xj−Xi|

[

Vj + Vj · (Xj − Xi)
Xj−Xi

|Xj−Xi|2

]

. These velocities are

the Stokeslets centered at Xj -see (4.10). This is not surprising since we saw
that in the case of a single particle, the force on the particle is proportional
to the velocity on its boundary and that at long distance the velocity field
created by a ball is a Stokeslet.

Compared to the case of the potential flow, the dipole approximation
is much simpler for Stokes flow. The reason is that, from the condition
divσ

(n)
j = 0, the only influence on a particle Bi(t) comes from the term v

(n)
i

(with same index i) in the expression for the force Fi -see (4.2). This is not
so simple for the case of a potential flow.
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5 Kinetic and macroscopic eq. for particles

in a Stokes flow

We can now derive a kinetic equation for the density of particles submitted to
the dynamics (4.2) and consider related mathematical problems. We explain
this in a more general setting.

5.1 the general interaction model

From the discussion in the previous Section, we now consider a system of N
particles interacting through a dynamic motivated by the dipole approxima-
tion of forces created by a Stokes flow. The general system we consider is
therefore, for 1 ≤ i ≤ N,

{

Ẋi(t) = Vi(t),

V̇i(t) = λ[−Vi(t) + µ 1
N

∑

j 6=i A(Xj − Xi) · Vj + κg].
(5.1)

In the particular case of the Stokes flow we obtain the following values of the
parameters real parameters λ, µ,

λ =
9

2

ηρf

a2 ρp
,

µ =
3

4
a2N,

κ =
1

λ

ρp − ρf

ρf
,

and the 3 × 3 matrix A is given by

A(x) = −
1

|x|
[Id +

x ⊗ x

|x|2
].

This symmetric matrix has remarkable properties deduced from the fact that
it is the fundamental solution of the Stokes equation.

Lemma 5.1 The matrix in (5.1) satisfies

divA = 0 , (5.2)

and it defines a non-positive operator,
∫

IR3 u(x) A ∗ u(x) dx ≤ 0 for u 6= 0. (5.3)



5. KINETIC AND MACROSCOPIC EQ. FOR A STOKES FLOW 55

Proof. The first property follows from an easy calculation. The second one
can be made more precise. Being given a function u(x) ∈ IR3, let us solve
(coordinate by coordinate)

−∆ U = u , in IR3.

Then, we have

∫

IR3 u(x) A∗u(x) dx = −
3
∑

i=1

∫

IR3 |∇Ui|
2dx +

∫

IR3 |∇divU |2 dx ≤ 0. (5.4)

Also, notice that the singularity of the matix A is not too bad, as it is

A(x) ≈
1

|x|d−2
,

(here we have always worked in three dimensions) and thus it is better than
that of the classical Vlasov Poisson system where the singularity is ≈ 1

|x|d−1 .
But the difficulty here is the bad dependency of the interaction term on Vj

which does not appear in the Vlasov case. Also, as in the Vlasov case, it is
an open problem to prove a rigorous global limit as N → ∞, even though
the intuitive result is very simple.

A first step in this direction is to define

fN(t, x, p) =
1

N

N
∑

i=1

δ(x − Xi(t)) ⊗ δ(v − Vi(t)) .

One can readily check the following lemma

Lemma 5.2 The dynamic (5.1) is equivalent to the Vlasov-type equation
(1.5), in the distributional sense, on the probability measure fN whenever
the matrix A is lipschitz continuous and bounded.

Since the matrix A is the fundamental solution to Sokes equation, we are
able to rewrite equation (1.5)











∂
∂t

f + v · gradxf + λ1divv((u − v)f) = 0 ,
∆u(t, x) = ∇p + λ2j ,
j(t, x) =

∫

IR3 vf(t, x, v)dv .
(5.5)
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This system looks very much like a model used by K. Hamdache (see [18])
and other authors which consists in replacing the second equation in the
previous system by

∂tu(t, x) − η∆u = ∇p + λ2(ρu − j) ,
ρ(t, x) =

∫

IR3 f(t, x, v)dv .
(5.6)

Except for the evolution term ∂tu, the main difference with our equation is
the change of sign for λ2j and the non-linear term λ2ρu which is supposed to
represent the full interaction between particles. Although it is more realistic,
this model is also more complicated and in the following we will only deal with
the more simple system (5.5) and usually under the form given by equation
(1.5).

5.2 energy and long time behavior for the kinetic equa-

tion

From the energy property of the N -particles system - see also the calculation
in the Remark 4.1 - we can hope an energy inequality for the kinetic system
(1.5). We define the kinetic energy

EK(t) =
1

2

∫

IR6 |v|
2f(t, x, v) dv dx ,

then, we have indeed,

d
dt
EK(t) = λ(−2EK(t) + 2µ

∫

IR3 j A ∗ j dx ,

≤ −2λEK(t) .

This last inequality is a simple consequence of the property (5.4). As a
consequence, we deduce the dissipation rate of kinetic energy

EK(t) ≤ EK(0)e−2λt.

This property is fundamental in the theory developed in P.E. Jabin to prove
the following result.

Theorem 5.3 [21] With the matrix A given by (5.1) and g = 0, assume that
the initial density f(t = 0) has finite energy and

f(t = 0) ∈ L1 ∩ L∞(IR6).
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Then, the system (1.5) admits a weak solution and it satisfies for a.a. t, as
t → ∞

f(t, x, v) → ρ̃(x)δ(v) , in w − M 1(IR6) ,

for some density ρ̃(x) ∈ L1 ∩ Ld/(d−2)(IR3).

One of the main difficulty in this theorem is the existence of a unique ρ̃
so that the full family converges (and not only subsequences). This relies on
the precise energy dissipation rate. It is also proved in [21] that the total
mass is conserved

∫

IR3 ρ̃(x)dx =
∫

IR6 f(0, x, v) dx dv.

5.3 a macroscopic equation

An interesting question arises from the size of λ when a gravity term is
present. Indeed, the above theory supposes λ, κ and µ finite which is rather
restrictive. On the other hand, since a → 0 as N → ∞ in order to keep
µ finite, it is natural to assume that λ → ∞. It is easy to see that after
an appropriate rescalling of time and velocities, one can consider the limit
λ → ∞ keeping µ and κ fixed.

We therefore consider the equation - in place of (1.5) -

∂
∂t

fλ + v · gradxfλ + λdivv((A ?x j − v + g)fλ) = 0 , (5.7)

jλ(t, x) =
∫

IR3 v fλ(t, x, v)dv . (5.8)

When λ → ∞, the formal limit of the density fλ in (5.8) is

f(t, x, v) = ρ(t, x)δ(v − A ? j − g) .

This gives a coupled system of nonlinear equations for ρ. The first equation
is obtained in integrating the equation (1.5) in v, and we set j = ρu,

{

∂
∂t

ρ + div
(

ρ u(t, x)
)

= 0,

A ∗ (ρ u) − u = g.
(5.9)

A more intuitive way to write this equation on u is deduced from the fact
that A is the fundamental solution to the Stokes Equation.











divu = 0,
∆u = ∇p + ρu,
u(t, x) → g, as |x| → ∞.

(5.10)
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From the free divergence condition, we deduce that the transport equation
for ρ shares the basic Lp norm conservation property with the vorticity for-
mulation of two dimensional Euler Equations for incompressible flows (see for
instance J.Y. Chemin [11], C. Machioro and M. Pulvirenti [24]). A rigorous
derivation of this limit λ → ∞ is given in P.E. Jabin [22].

This kind of ‘macroscopic’ limit of a kinetic equation, without the help
of a collision term is very exceptional compared to the classical relaxation
toward a thermal equilibrium (see [9], [10]). There are other known cases of a
similar phenomena. For instance, let us quote the gyrokinetic limit in plasma
physics (see E. Frénot and E. Sonnendrucker [13]), the quasi-neutral limit of
Vlasov-Poisson Equation (see Y. Brenier and E. Grenier [4], Y. Brenier [5]).

6 Appendix 1. Numerical simulations in the

case of a potential flow and short range ef-

fect

In this Section, we would like to report on some numerical simulations for a
more complete problem of particles moving in a potential flow. This allows
to address the question of short range effects and collisions which was left
open in the sections 3 and 4. Additional results can be found in [6].

To the situation presented in Sections 2 and 3, we add the gravity forces
and the friction term derived in Section 4. This allows more realistic compu-
tations. Also, we found it more convenient to work in the physical variables
(velocity, not impulsion) and thus to consider the dynamic equation (3.10).
This gives the equations of motion

d

dt
Xi(t) = Vi(t), (6.1)

d

dt
Vi(t) = γi(t), (6.2)

where the acceleration is given by four different terms

γi(t) = (γ0 + γ1 + γη + γg)(Xi(t)), with (6.3)

γ0(x) = a3τ
∑

1≤j≤N

Vj(t)
t∇xB(x − Xj(t))Vj(t), (6.4)

γ1(x) = a3τ
∑

1≤j≤N

B(x − Xj(t))γ
0(Xj(t)), (6.5)
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γη(x) = −
12πηa(Vi(t) − vf (x)

4
3
πa3(ρp +

ρf

2
)

, (6.6)

γg(x) =
ρp − ρf

ρp + ρf/2
g. (6.7)

The first two terms represent the added mass force (3.10) with a second order
approximation in the kinetic parameter λ in (2.1), which has the property to
preserv the right energy structure (cf. [19], [6]). We recall the definition of
B in (3.4). The term γη represents the friction due to viscosity and the last
term is the buoyant force (poussée d’Archimède). The fluid velocity is taken
according to the potential gradient, deduced from Section 2,

vf(x) = 2πa3
∑

1≤j≤N

B(x − Xj(t)) [ Vj(t)

−2πa3
∑

1≤k≤N

B(Xj(t) − Xk(t))Vk(t) ]. (6.8)

But a fundamental effect in this motion is that particles have a tendency
to collide much more than expected from the classical rate of collision na2.
This is due to the fact that particles moving with parallel velocities (this is
frequent due to gravity) have a tendency to attract each other. Therefore
it is fundamental to introduce collision rules. These have been taken as the
usual hard-sphere collisions; postcollisional velocities are given by

V ′
i = Vi − [(Vi − Vj) · n] n

V ′
j = Vj + [(Vi − Vj) · n] n,

where n denotes the normal n =
xi−xj

|xi−xj |
. This is possible because we work

directly in physical variables. In the impulsion variables this is also possible
(see [32], [27])

We performed numerical tests In figures 1 and 2 we presente a three di-
mensional evolution of 125 bubbles, initially semiregularly distributed around
a 5x5x5 grid, with velocity zero.

The physical data are: diameter = 10−3m, concentration = 12.7% (this
corresponds to a box which side is 8mm long), gravity = −9.81ez, viscosity
= 10−3Pa.s, ρf = 1000kg/m3, ρp = 0.

First, we observe the formation of horizontal continuous layers, normal
to gravity (this is due to attraction of bubbles lifting in the same horizon-
tal plane) next, a vertical repulsion between layers destabilize their shape.
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Finally we obtain, when bubbles reach their limit velocity (due to friction)
a cloud of dispersed bubbles or pairs of bubbles (rather normal to gravity)
elongated in the gravity direction. Especially, including the real collisions,
we do not observe anymore the strong horizontal layering. This effect has
been obtained with a modification of the short range forces to make them
repulsive (see [19], [29], [30]). The main macroscopic effect rather comes from
particles stiking together as can be seen in figures 1 and 2 (thick cicles are
those touching each other in the three dimensional space).

Acknowledgment We would like to thank J.F. Bourgat and INRIA (project
M3N) for providing the numerical results in the Appendix, as well as B.
Lucquin for a constant help in developing the numerical code.
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Figure 1: Snapshots of the evolution of 125 bubbles initially semiregularly
distributed in a box, with velocity zero, at t=0., 0.02, 0.05, 0.1s. The circles
are projections of bubbles on the vertical plane xz and thick cercles represent
pairs or group of bubbles.
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Figure 2: Distribution at t = 0.5s of 125 bubbles. The circles are projections
of bubbles on the vertical plane xz and thick circles represent pair of bubbles.
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7 Appendix 2 : numerical simulations for a

Stokes flow

7.1 Introduction

We present here some numerical simulations for the simplified model of par-
ticles in a Stokes flow detailed in section 5.1 under the form of a kinetic
equation for the dynamics of the particles. The purpose of this appendix is
mainly to investigate numerically the long time behaviour of this equation
in the case where there is gravity.

In the case without gravity, the result is known (see section 5.2 ) and
the solution concentrates towards zero velocities. It should be noticed that
equation 1.5 is not invariant under galilean transformations. This simply
comes from our assumption that the fluid is at rest at infinity. Because of
this lack of galilean invariance in the equation, we cannot reduce the case
with gravity to the case without gravity.

However even with this remark, one does not expect a completely dif-
ferent behaviour for the cases with or without gravity. Hence a reasonable
conjecture for the case with gravity could have been the following

Conjecture 1 The solution f to equation 1.5 converges weakly to ρ̃δ(v−v0)
for some ρ̃(x) and v0(x) depending on the parameters of the equation and
possibly the initial data.

A weaker conjecture could also be as follows.

We define the functional

F (t) =
∫

IR6 |v − vm|
2f(t, x, v)dxdv , (7.1)

where vm is the average velocity

vm(t) =
(
∫

IR6 vf(t, x, v)dxdv
)

/
(
∫

IR6 fdxdv
)

. (7.2)

Conjecture 2 The solution to equation 1.5 concentrates in velocity in long
time. More precisely, vm tends to some v0 and the functionnal F just defined
in ( 7.1 ) converges to zero as the time goes to infinity.

As surprising (or unsurprising) as it may seem, these two conjectures
cannot be numerically verified at all. Based on numerical evidences, the
asymptotic behaviour is thus completely different when we add a gravity.
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7.2 Presentation of the computation

We solve numerically the system

d

dt
Xi(t) = Vi(t), (7.3)

d

dt
Vi(t) = −λVi(t) +

1

N

N
∑

j=1

Aη(Xj − Xi) · Vj + g. (7.4)

(7.5)

This corresponds to the system 5.1 normalized with µ = κ = 1
λ

except
that in the interaction term of 7.4 the sum is done for all indices j including
i. The matrix Aη is a regularisation of the matrix A defined in section 5.1,
more precisely

Aη(x) = −
1

|x| + η

(

Id +
x ⊗ x

(|x| + η)2

)

. (7.6)

In the simulations presented further, λ and η are chosen equal to 0.1, g is
the vector (0, 0, 1) and we take 200 particles.

Solving numerically the previous system presents no significant problem
once you have chosen a time step small enough for stability. Moreover by op-
position to the case of a potential flow, short range effects are not important
here. In fact, although the interaction does not completely prevent them,
collisions are very rare and usually the particles remain far enough from each
other.

We have considered three kinds of initial conditions. The first one cor-
responds to random position in the cube [0, 1]3 and random velocities in
[−30, 30]3. The second one consists in taking Xi(0) = (i − 1, 0, 0) and
Vi(0) = (0, 0, 1), and the last one Xi(0) = (i−1, 0, 0) and Vi(0) = (0, 0, i−1).

7.3 Conclusions

The figures below clearly show that the velocity fluctuation F (t) does not
vanish. On other tests which we do not present here, we never observed a
concentration of velocities.

Another computation, not shown here, concerns the minimal distance
between particles. We indeed checked that collisions are extremely rare :
particles never come close to each other.
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Figure 3: concentration in velocity F (t) = 1
N

∑N
i=1 |Vi(t) − Vm(t)|2, with

Vm = 1
N

∑N
i=1 Vi(t), in the case of random initial positions and velocities.

This seems to indicate that F (t) converges towards zero but it is false as the
next picture shows it.
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Figure 4: same as figure 1 but rescaled along the vertical axis. The functional
F (t) stops decreasing after a while.
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Figure 5: concentration in velocity F (t) = 1
N

∑N
i=1 |Vi(t) − Vm(t)|2, with

Vm = 1
N

∑N
i=1 Vi(t), with Xi(0) = (i − 1, 0, 0) and Vi(0) = (0, 0, 1). Again

F (t) does not converges towards zero. The stabilisation time and level are
quite different from the previous picture, and therefore it is not due to a
numerical artefact.
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Figure 6: first coordinate of the average velocity Vm, with Xi(0) = (i−1, 0, 0)
and Vi(0) = (0, 0, 1). The fluctuation never vanishes.
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Figure 7: this picture shows the position of all the particles at time 200, with
initial repartition Xi(0) = (i − 1, 0, 0) and Vi(0) = (0, 0, i − 1).
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Figure 8: this picture shows the position of all the particles at time 10000,
with initial repartition Xi(0) = (i − 1, 0, 0) and Vi(0) = (0, 0, i − 1).
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