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Introduction

Kinetic equations are a particular case of transport equation in the phase
space, i.e. on functions f(x, v) of physical and velocity variables like

∂tf + v · ∇xf = g, t ≥ 0, x, v ∈ Rd.

As a solution to a hyperbolic equation, the solution cannot be more regular
than the initial data or the right hand-side. However a specific feature of
kinetic equations is that the averages in velocity, like

ρ(t, x) =

∫
Rd

f(t, x, v)φ(v) dv, φ ∈ C∞
c (Rd),
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are indeed more regular. This phenomenon is called velocity averaging.
It was first observed in [24] and then in [23] in a L2 framework. The final

Lp estimate was obtained in [17] (and slighty refined in [3] to get a Sobolev
space instead of Besov). The case of a full derivative g = ∇x · h was treated
in [45] and although it is in many ways a limit case, it is important for some
applications as it can replace compensated compactness arguments.

In addition to these works, this course presents and sometimes reformu-
lates some of the results of [6], [17], [22], [31], [32], [36], [37], [45].

There are of course many other interesting contributions investigating
averaging lemmas that are not quoted or only briefly mentioned through the
text.

1 Kinetic equations: Basic tools

1.1 A short introduction to kinetic equations

For a more complete introduction to kinetic equations and the basic theory,
we refer to [6] or [21]. Many proofs are omitted here but are generally well
known and not difficult.

1.1.1 The basic equations

During most of this course, we will deal with the simplest equations

∂tf + α(v) · ∇xf = g(t, x, v), t ∈ R+, x ∈ Rd, v ∈ ω, (1.1)

where ω is often Rd (but might only be a subdomain); or with the stationary
version

α(v) · ∇xf = g(x, v), t ∈ R+, x ∈ O, v ∈ ω, (1.2)

where O is an open, regular subset of Rd and ω is usually rather the sphere
Sd−1. The transport coefficient α will always be regular, typically Lipschitz
although here bounded would be enough.

Of course (1.1) is really a subcase of (1.2) in dimension d + 1 and with
α′(v) = (1, α(v)), O = R∗

+ × Rd, ω = ω.
Neither (1.1) nor (1.2) have a unique solution as there are many solutions

to

∂tf + α(v) · ∇xf = 0,
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for instance. Indeed for (1.1) an initial data must be provided

f(t = 0, x, v) = f 0(x, v), (1.3)

and for (1.2) the incoming value of f on the boundary must be specified

f(x, v) = f in(x, v), x ∈ ∂O, α(v) · ν(x) ≤ 0, (1.4)

where ν(x) is the outward normal to O at x.
It is then possible to have existence and uniqueness in the space of dis-

tributions

Theorem 1.1 Let f 0 ∈ D′(Rd × ω) and g ∈ L1
loc(R+, D′(Rd × ω)). Then

there is a unique solution in L1
loc(R+, D′(Rd × ω)) to (1.1) with (1.3) in the

sense of distribution given by

f(t, x, v) = f 0(x− α(v) t, v) +

∫ t

0

g(t− s, x− α(v) s, v) ds. (1.5)

Note that if f solves (1.1) then for any φ ∈ C∞
c (Rd × ω)

d

dt

∫
Rd×ω

f(t, x, v)φ(x, v) ∈ L1
loc(R+),

so f has a trace at t = 0 in the weak sense and (1.3) perfectly makes sense.
Proof. It is easy to check that (1.5) indeed gives a solution. If f is another
solution then define

f̄ = f − f 0(x− α(v) t, v)−
∫ t

0

g(t− s, x− α(v) s, v) ds.

Remark that
∂tf̄ + α(v) · ∇xf̄ = 0,

and hence ∂t(f̄(t, x+ α(v) t, v) = 0 so that f̄ = 0.
An equivalent result may be proved for (1.2) with the condition that the

support of the singular part (in x) of the distribution g does not extend to
the boundary ∂O.

On the other hand, the modified equation, which we will frequently use,

α(v) · ∇xf + f = g, x ∈ Rd, v ∈ ω, (1.6)

is well posed in the whole Rd without the need for any boundary condition
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Theorem 1.2 Let g ∈ S ′(Rd × ω), there exists a unique f in S ′(Rd × ω)
solution to (1.6). It is given by

f(x, v) =

∫ ∞

0

g(x− α(v) t, v) e−t dt. (1.7)

1.1.2 Liouville equation

The equation reads

∂tf + α(v) · ∇xf + F (t, x, v) · ∇vf = 0, t ≥ 0, x ∈ Rd, v ∈ Rd, (1.8)

where F is a given force field. In many applications, like the Vlasov-Maxwell
system 1.2, F is in fact computed from the solution f .

Eq. (1.8) describes the dynamics of particles submitted to the force F
and as such is connected to the solution of the ODE

dX(t, s, x, v)

dt
= α(V (t, s, x, v)),

d V (t, s, x, v)

dt
= F (t,X, V ),

X(s, s, x, v) = x, V (s, s, x, v) = v,
(1.9)

which represents the trajectory of a particle starting with position and ve-
locity (x, v) at time t = s.

The ODE (1.9) is well posed for instance if

α(v) ∈ W 1,∞
loc (Rd), F ∈ W 1,∞

loc (R+ × R2d),

|α|+ |F | ≤ C(t) (1 + |x|+ |v|),
(1.10)

thanks to Cauchy-Lipschitz Theorem. Weaker assumptions are however
enough, W 1,1

loc and bounded divergence in [16] or even BVloc in [1], but will
not be required here.

Under (1.10), (1.8) is also well posed

Theorem 1.3 Assume (1.10) and ∇v · F ∈ L∞(R+ × R2d), for any mea-
sure valued initial data f 0 ∈ M1(R2d), there exists a unique f included in
L∞([0, T ], M1(Rd)) solution to (1.8) in the sense of distribution and satis-
fying (1.3). It is given by

f(t, x, v) = f 0(X(0, t, x, v), V (0, t, x, v)).
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If F and α are regular enough (C∞), the same theorem holds if f 0 is only
a distribution.

This theorem implies many properties on f , for example

Proposition 1.1 (i) f ≥ 0 if and only if f 0 ≥ 0.
(ii) If f 0 ∈ L∞(R2d) then f ∈ L∞(R+ × R2d) and

‖f(t, ., .)‖L∞(R2d) ≤ ‖f 0‖L∞(R2d)

(iii) If f 0 ∈ Lp(R2d) then f ∈ L∞([0, T ], Lp(R2d)) and

‖f(t, ., .)‖Lp(R2d) ≤ ‖f 0‖Lp(R2d) e
t ‖∇vF‖∞/p.

From the point of view of averaging lemma, Eq. (1.8) does not have a
particularly interesting structure. Indeed most of the time, the acceleration
term F ·∇vf will be considered as a right hand side with no particular relation
to f . Surprisingly enough this is generally optimal.

1.1.3 A simple case: local equilibrium

Let us consider (1.2) in the special case where

f(x, v) = ρ(x)M(v).

This might seem like an over simplification but it will nevertheless provide
many examples of optimality later on. For the moment we will be satisfied
with a few remarks.

We have
M(v)α(v) · ∇xρ(x) = g.

Let us hence write g = M(v)h(x, v).
Assuming that h is a regular function (L1∩L∞ for example), this provides

some regularity for ρ but not necessarily in term of Sobolev spaces.
Notice first that some assumption is needed on α. Indeed if there exists

a direction ξ ∈ Sd−1 such that α(v) is colinear to ξ or α ‖ ξ for enough v

|{v ∈ Rd | α(v) ‖ ξ}| 6= 0,

and if M is supported in this set (no matter how regular) then it is only
possible to deduce from (1.2) that

ξ · ∇xρ ∈ L∞.
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Nothing can be said a priori about the derivatives in the other directions.
Even if α(v) is not concentrated along some directions like α(v) = ξ, some

assumption is needed on M . If not, M itself may be concentrated along one
direction ξ in which case the same phenomenon occurs.

This shows the two features of all the averaging results that will be proved:
Some assumption is needed on |{v ∈ Rd | α(v) ‖ ξ}| and the more regular in
velocity f is, the more regular ρ is.

In fact the regularity provided by averaging lemmas (in terms of Sobolev
spaces) is in many situations not the optimal way of describing the regularity
of solutions to (1.2) (see [10], [12] and [52] for example in the case of scalar
conservation laws).

1.2 An application: The Vlasov-Maxwell system

The Vlasov-Maxwell system describes the evolution of charged particles and
it reads

∂tf+v(p)·∇xf+(E(t, x)+v(p)×B(t, x))·∇pf = 0, t ≥ 0, x, p ∈ Rd. (1.11)

The fields E and B are the electric and magnetic fields and are solutions to
Maxwell equations

∂tE − curlB = −j, divE = ρ,

∂tB + curlE = 0, divB = 0,
(1.12)

where ρ and j are the density and current of charged particles and therefore
computed from f

ρ(t, x) =

∫
Rd

f(t, x, p) dp, j(t, x) =

∫
Rd

v(p) f(t, x, p) dp. (1.13)

Initial data are required for the system

f(t = 0, x, p) = f 0(x, p), E(t = 0, x) = E0(x), B(t = 0, x) = B0(x).
(1.14)

Finally the variable p represents the impulsion of the particles. In the classical
case (velocities of the particles much lower than the light speed), it is simply
the velocity and

v(p) = p.
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In the relativistic case, the velocity is related to the impulsion through

v(p) =
p

(1 + |p|2)1/2
.

For simplicity all physical constants were taken equal to 1.
Globally in time and in dimension 3 and more, only the existence of

solutions in the sense of distributions is known (and thus no uniqueness).
This was proved in [15] and it is one of the first examples of application of
averaging lemmas.

As usual one considers a sequence of classical solutions fε, Eε, Bε to a
regularized system. The form of this system is essentially unimportant as
long as it has the same a priori estimates as (1.11)-(1.12). For (1.11) and
from the analysis in 1.1.2, one first has

‖fε(t, ., .)‖Lp(R2d) ≤ ‖f 0
ε ‖Lp(R2d), ∀t ≥ 0, ∀p ∈ [1, ∞]. (1.15)

The only other available a priori estimate is the conservation of energy∫
R2d

E(p)fε(t, x, p) dx dp+

∫
Rd

(|Eε(t, x)|2 + |Bε(t, x)|2) dx ≤∫
R2d

E(p)f 0
ε (x, p) dx dp+

∫
Rd

(|E0
ε (x)|2 + |B0

ε (x)|2) dx.
(1.16)

This relation is an inequality instead of an equality as the regularized system
typically dissipates a bit. The term E(p) is equal to the usual kinetic energy
|p|2 in the classical case and to (1 + |p|2)1/2 in the relativistic case.

Therefore assuming that

f 0 ≥ 0, f 0 ∈ L1 ∩ L∞(R2d),

∫
R2d

E(p) f 0 dx dp <∞, E0, B0 ∈ L2(Rd),

(1.17)
then the same bounds are uniformly true in ε for fε(t, ., .), Eε(t, .) and B(t, .).

On the other hand, we obviously have that∫
Rd

ρε(t, x) =

∫
R2d

fε(t, x, p) =

∫
R2d

f 0
ε . (1.18)

In the relativistic case∫
Rd

|jε(t, x)| dx ≤
∫

R2d

|fε(t, x, p)| =
∫

R2d

f 0
ε , (1.19)
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while in the classical case, through Cauchy-Schwarz inequality∫
Rd

|jε(t, x)| dx =

∫
R2d

|p|fε ≤
(∫

R2d

fε

)1/2 (∫
R2d

|p|2fε

)1/2

. (1.20)

As a consequence ρε and jε are uniformly bounded in L1.
Moreover a simple interpolation estimate may provide Lp estimates for

ρε and jε

ρε(t, x) ≤
∫

B(0,R)

fε dp+

∫
|p|>R

fε dp ≤ Rd‖fε‖L∞ +
1

Rα

∫
Rd

E(p) fε dp

≤ ‖fε‖
α

α+d

L∞

(∫
Rd

E(p) fε dp

) d
d+α

,

through minimization in α; α = 1 in the relativistic case and α = 2 in the
classical case. So∫

Rd

(ρε(t, x))
d+α

d dx ≤ ‖fε‖
α
d
L∞

∫
R2d

E(p) fε dp dx.

Eventually one may obtain the following uniform bounds

ρε(t, .) ∈ L1 ∩ L(d+α)/d(Rd), jε(t, .) ∈ L1 ∩ L(d+α)/(d+α−1)(Rd). (1.21)

We may thus extract weak-* converging subsequences for fε, Eε, Bε and ρε,
jε in the corresponding spaces. One may then try to pass to the limit in
(1.11) and (1.12). This works just fine for all terms except

(Eε(t, x) + v(p)×Bε(t, x)) · ∇pfε = ∇p · (((Eε(t, x) + v(p)×Bε(t, x))fε),

as it is of course not possible to pass to the limit in a product of only weakly
converging sequences.

Unfortunately, it is not possible to prove compactness of fε and Maxwell
eq. being hyperbolic the compactness of Eε and Bε would require it for ρε

and jε. However for φ ∈ D(R2d)∫
R2d

Eε(t, x) fε(t, x, p)φ(x, p) dx dp =

∫
Rd

Eε(t, x)

∫
Rd

fε(t, x, p)φ(x, p) dp dx,

and what is only needed is the compactness of moments of fε like∫
Rd

fε(t, x, p)φ(x, p) dp. (1.22)
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From the estimates proved in the third chapter, one gets that uniformly in ε∫
Rd

fε(t, x, p)φ(x, p) dp ∈ H1/4(Rd),

and that all moments are compact. This proves the following

Theorem 1.4 Assume that (1.17) holds then there exists f ∈ L∞(R+, L
1 ∩

L∞(R2d)) with ∫
R2d

E(p) f(t, x, p) dx dp ∈ L∞(R+),

and E, B ∈ L∞(R+, L
2(Rd)) solution in the sense of distribution of (1.11)-

(1.12).

Note finally that from the compactness of the moments like
∫

Rd fε(t, x, p)
φ(x, p) dp, it would be possible to deduce the compactness of ρε and jε and
then of Eε and Bε. This is not necessary to obtain the existence though.

2 The L2 estimate

2.1 Presentation

This chapter is entirely devoted to proving the following: If f and g satisfy
Eq. (1.2) namely

α(v) · ∇xf = g, x ∈ Rd, v ∈ ω,

with f, g ∈ L2(Rd × ω) then the moment

ρ(x) =

∫
ω

f(x, v) dv, (2.1)

belongs to the Hilbert space Hk(Rd) with k depending on the assumptions
on α : ω −→ Rd but at best k = 1/2.

Following [6] and [32], (1.2) is rewritten as

α(v) · ∇xf + f = f + g,

and we get
ρ(x) = T f + T g,
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with

T f(x) =

∫
ω

∫ ∞

0

f(x− α(v)t, v) e−t dt dv. (2.2)

The aim is now to determine the exponent k such that T is continuous from
L2(Rd × ω) to Hk(Rd). For further use, we will work with

Ts f(x) =

∫
ω

∫ ∞

0

f(x− α(v)t, v) t−s e−t dt dv. (2.3)

This estimate on T is the core estimate for averaging lemmas. With the
exception of the one with a full derivative in [45], most others estimates can
be derived from it, usually through some kind of interpolation procedure. The
L2 regularizing effect presented here was first obtained in [24] and precised
in [22], [23].

The operator T and in particular its dual T ∗ in the case α(v) = v

T ∗h(x, v) =

∫ ∞

0

h(x+ v t) e−t dt

are related to the X-ray transform X : Rd −→ Rd × Sd−1

X h(x, v) =

∫ ∞

−∞
h(x+ vt) dt.

Note that T takes a function of two variables x and v and makes it into a
function of only x (because of the average), so conversely the dual T ∗ takes
a function h of only the x variable and makes it into a function T ∗h of the
two variables x and v.

This operator was studied separately in harmonic analysis (see for in-
stance [9], [18], [54]) but with emphasis on mixed type inequalities like the
continuity from Lp(Rd) to L1(Rd, Lp(Sd−1)) and not on the gain of differen-
tiability which is our main goal here. These other inequalities are nevertheless
very usefull and can be seen as a kind of dispersion estimates for (1.2).

Note that even though this chapter deals uniquely with the stationary
case, most of the proofs can easily be adapted to the unstationary case (1.1)
(which can anyway be obtained as a subcase of this one) or to more general
averages like (1.22).

Finally the Fourier transform in x is denoted F and we recall that it is
an isometry on L2(Rd) and that

Hk(Rd) =

{
ρ ∈ S ′(Rd)

∣∣∣ ∫
Rd

(1 + |ξ|)2k |F ρ(ξ)|2 dξ <∞
}
.
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The homogeneous Sobolev space (used in the next chapter) is simply

Ḣk(Rd) =

{
ρ ∈ S ′(Rd)

∣∣∣ ∫
Rd

|ξ|2k |F ρ(ξ)|2 dξ <∞
}
.

2.2 Averaging lemmas through Fourier transform

The proof here is mainly taken and adapted from [6]. Applying Fourier
transform to (2.3), one gets

F Ts f =

∫
ω

F f(ξ, v)

∫ ∞

0

e−i t α(v)·ξ e
−t

ts
dt dv.

This is simply equal to ∫
ω

F f(ξ, v)

1 + iα(v) · ξ
dv,

if s = 0.
Denote

χ(z) =

∫ ∞

0

e−i t z e
−t

ts
dt.

Notice that of course

|χ(z)| ≤
∫ ∞

0

e−t

ts
dt ≤ C <∞,

provided that s < 1. This already gives that

|F Ts f | ≤
∫

ω

|F f(ξ, v)| dv,

and thanks to Cauchy-Schwarz that∫
Rd

|Ts f(x)|2 dx ≤ |ω|
∫

Rd×ω

|f(x, v)|2 dx dv. (2.4)

On the other hand, if |z| ≥ 1, we have in addition

|χ(z)| ≤
∣∣∣∣∫ K

0

t−s dt

∣∣∣∣+ ∣∣∣∣∫ ∞

K

e−i t z e
−t

ts
dt

∣∣∣∣
≤ C K1−s +

∣∣∣∣1z
∫ ∞

K

e−t |t−s − s t−s−1| dt
∣∣∣∣

≤ CK1−s +
C

|z|
K−s ≤ C

|z|1−s
,

11



through minimization in K. The combination of both yields

|χ(z)| ≤ C

1 + |z|1−s
.

Now by Cauchy-Schwarz, we have that

|F Ts f |2 ≤
∫

ω

|F f(ξ, v)|2 dv
∫

ω

|χ(ξ · α(v))|2 dv

≤
∫

ω

|F f(ξ, v)|2 dv
∫

ω

C

1 + |α(v) · ξ|2−2s
dv.

We recall that for all φ ∈ C1(R)∫
ω

φ (|α(v) · ξ|) dv = −
∫ ∞

0

φ′(y) |{v ∈ ω ; |α(v) · ξ| < y}| dy.

Let us assume that

∀ζ ∈ Sd−1, ∀ε ∈ R+, |{v ∈ ω ; |α(v) · ζ| < ε}| ≤ εθ. (2.5)

We obtain that∫
ω

C

1 + |α(v) · ξ|2−2s
dv ≤

∫ ∞

0

C

1 + |y|3−2s

yθ

|ξ|θ
dy ≤ C

|ξ|θ
,

provided that θ − 3 + 2s < −1. Together with (2.4) and assuming that
|ω| <∞, this implies that∫

Rd

(1 + |ξ|)θ |F Ts f |2 dξ ≤ C

∫
Rd×ω

|f(x, v)|2 dx dv.

As a consequence we have proved the

Theorem 2.1 Assume |ω| < ∞, that (2.5) holds and that θ + 2s < 2 then
Ts is continuous from L2(Rd × ω) to Hθ/2(Rd).
Consequently if |ω| <∞, (2.5) holds, and if f, g ∈ L2(Rd × ω) satisfy (1.2)
then ρ defined through (2.1) belongs to Hθ/2(Rd).

Notice finally that θ is at most 1, in the case α(v) = v and ω = Sd−1 for
instance. If θ = 1 then s can at most be equal to 1/2 and the average ρ
belongs to H1/2.
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2.3 Real space method for averaging lemmas

The use of Fourier transform is not strictly necessary for averaging lemmas;
it is sometimes useful to proceed otherwise, for discretized problems like in
[5] for instance. The proofs however rely on orthogonality properties of the
operator T so that a direct proof is difficult. The method presented here uses
instead a T T ∗ argument and is taken from [32]. We restrict ourselves to the
case

α(v) = v, ω = Sd−1, (2.6)

to simplify the exposition and since the general case was already dealt with
in section 2.2.

The dual of operator Ts is

T ∗s h(x, v) =

∫ ∞

0

h(x+ vt) t−s e−t dt. (2.7)

It is then equivalent to prove the lemma and to show that T ∗s sends H−1/2

in L2(Rd × Sd−1) or L2(Rd) in L2(Sd−1, H1/2(Rd)) since T ∗s commutes with
the derivation in x.

Denote by ∆θ
x the differentiation operator

∆θ
xh = F−1 (|ξ|2θ F h),

with obviously ∆1
x = −∆ the laplacian.

Now compute∫
R2d

∆1/4
x T ∗s h ·∆1/4

x T ∗s h dx dv =

∫
Rd

∆1/2
x Ts T

∗
s h · h(x) dx.

We then observe that

Ts T
∗
s h(x) =

∫ ∞

0

∫ ∞

0

∫
Sd−1

1

(ut)s
h(x+ (t−u)v)e−t−u dv du dt

= 2

∫ ∞

0

∫ t

0

∫
Sd−1

1

(ut)s
h(x+ (t−u)v)e−t−u dv du dt.

With two changes of variables from t−u to τ and from the polar coordinates
τv to y

T̄s T̄
∗
s h(x) =

∫ ∞

0

∫ t

0

∫
Sd−1

1

ts(t− τ)s
h(x+ τv)e−2t+τ dv dτ dt

=

∫ ∞

0

∫
|y|≤t

1

ts
h(x− y)

e−2t+|y|

(t− |y|)s
· dy

|y|d−1
dt.
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Hence when differentiating Ts T
∗
s , we obtain exactly the structure of a Riesz

transform provided still that s < 1/2. Therefore the operator Ts T
∗
s is con-

tinuous from L2(Rd) to Ḣ1(Rd) or ∆
1/2
x Ts T

∗
s is continuous inside L2(Rd).

We finally recover Theorem 2.1. This proof is even slighty simpler than
the previous one but only in the simple case of (2.6), the general case would
be somewhat more complicated.

2.4 A direct proof

We present here a direct method in L2 for the dual operator T ∗ from [32]. The
proof is much longer than the two previous ones, it is nevertheless interesting
because it more clearly exhibits the orthogonality argument at the core of
the result.

Precisely we prove the slighty suboptimal

Proposition 2.1 The operator T ∗s with (2.6) is continuous from L2(Rd) in
L2

v(S
d−1, Hθ(Rd) for θ < 1/2 provided s < 1/2.

A direct proof could be written for Ts by adapting the one for T ∗s , it would
even be slighty longer though.

In the spirit of [18], we first prove Proposition 2.1 for characteristic func-
tions of sets and even only for sets which are composed of small hypercubes
Ci. The heart of the argument is that for an operator T̃ derived from T ∗s (it
is a derivative of a regularization of T ∗s ) then the scalar product∫

Rd

∫
Sd−1

T̃ ICi
T̃ ICj

dv dx

is very small provided the two cubes Ci and Cj are far apart.
Hence if h = IE and E is composed of N hypercubes then the L2 norm

of T̃ h behaves only like
√
N times the L2 norm for one hypercube T̃ IC . For

L1 or L∞ though, the norm of T̃ h behaves like N times the norm for one
hypercube.

This gain of one
√
N is typical of such orthogonality argument (or almost

orthogonality like here) and it is responsible for the gain of 1/2 derivative.

2.4.1 The case of characteristic functions: Reduction of the prob-
lem

The first point to note is that we may work in a domain S0 in v which is
included in {v ∈ Sd−1, 1/4d < vi < 1/2 ∀i ≤ d} instead of working in
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the whole sphere since the sphere may be decomposed in a finite number of
domains of the same form as S0 and the result is the same on any of them
due to the invariance by rotation of the problem.

Next for any N > 0, we say that a set E belongs to CN if it is the union
of closed squares (or cubes or hypercubes) of the form [i1/N, i1/N + 1/N ]×
. . . × [id/N, id/N + 1/N ] where i1, . . . , id are integers. Of course we choose
this form for CN because the “bad” directions which are along the axis of
coordinates do not belong to S0. Then we prove

Lemma 2.1 For any N > 0 and any E ∈ CN , we have for θ < 1/2 and
s < 1/2

‖T ∗s IE‖2
L2

v(S0, Hθ(Rd)) ≤ C|E|.

Proof. We compute directly the norm using the well known expression

‖T ∗s IE‖2
L2

vHθ
x

=

∫
x, y∈Rd

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|2|x−y|−d−2θ dv dy dx.

Let us decompose according to the distance between x and y

‖T ∗s IE‖2
L2

vHθ
x

=

∫
|x−y|≥1

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|2|x−y|−d−2θ dv dy dx

+
∞∑
i=1

∫
2−i≤|x−y|<2−i+1

. . .

Of course the first term is dominated by the power 2 of the norm of T ∗s IE in
L2

x,v which is trivially bounded by the measure of E, as we already noticed
that T ∗s is bounded from L2(Rd) to L2(S0 × Rd). Since we do not want to
get the precised critical case θ = 1/2, it is therefore enough to show that for
any M and any θ < 1/2∫

1/M≤|x−y|<2/M

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|2Md+2θ dv dy dx ≤ C|E|. (2.8)

Indeed fixing θ < 1/2 and choosing θ′ ∈]θ, 1/2[, one would have from (2.8)
with θ′ that

‖T ∗s IE‖2
L2

vHθ
x
≤ C|E|+

∞∑
i=1

C |E| × 2−i(2θ′−2θ) ≤ C ′ |E|.
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The next point to note, is that we may limit ourselves to the case where
E has a fixed bounded diameter K independent of M or i and where we
integrate over a ball of the same diameter. Indeed let us fix a ball, then∫

x∈B(x0,K)

∫
1/M≤|x−y|<2/M

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|2Md+2θ dv dy dx

≤ C

∫
B(x0,K)

∫
|x−y|∼1/M

∫
v

|T ∗s IE∩B(x0,2K)(x, v)−T ∗s IE∩B(x0,2K)(y, v)|2Md+2θ

+ Ce−K

∫
B(x0,K)

∫
1/M≤|x−y|<2/M

∫
v

(|T ∗s IE(x, v)|2 + |T ∗s IE(y, v)|2)Md+2θ,

because of the e−t term in T ∗s of course. If we are able to prove that for θ′ > θ
but with θ′ < 1/2∫

B(x0,K)

∫
1/M≤|y−x|<2/M

∫
v

|T ∗s IE∩B(x0,2K)(x, v)−T ∗s IE∩B(x0,2K)(y, v)|2Md+2θ′

≤ CK |E ∩B(x0, 2K)|,
(2.9)

summing on the balls, we get∫
x∈Rd

∫
1/M≤|x−y|<2/M

∫
v∈S0

|T ∗s IE(x, v)−T ∗s IE(y, v)|2Md+2θ dv dy dx

≤ CKM
θ−θ′|E|

+ Ce−K

∫
Rd

∫
1/M≤|x−y|<2/M

∫
v

(|T ∗s IE(x, v)|2 + |T ∗s IE(y, v)|2)Md+2θ

≤ CKM
θ−θ′|E|+ Ce−KMd+2θ|E|.

A simple scaling argument shows that, in (2.9), CK is dominated by a power
of K (depending on p). So choosing eventually K in terms of M we may
deduce (2.8) from (2.9). Hence from now on, E will have a given finite
diameter and the integrals in x or y will be taken inside a ball.

Before finaly turning to proving (2.9), we remark that we may choose
M = N (not a great surprise). If E ∈ CN then E belongs to every C2iN

simply by dividing each hypercube in 2di smaller identical hypercubes: So
we may always take N ≥ M . And if (2.9) is true for M = N , it is true for

16



all M ≤ N since for instance∫
2/N≤|x−y|<4/N

∫
v

|T ∗s IE(x, v)−T ∗s IE(y, v)|2
(
N

2

)d+2θ

dv dy dx

≤ 2

∫
2/N≤|x−y|<4/N

∫
v

|T ∗s IE(x, v)−T ∗s IE(x+ (y − x)/2, v)|2
(
N

2

)d+2θ

+ 2

∫
2/N≤|x−y|<4/N

∫
v

|T ∗s IE(x+ (y − x)/2, v)−T ∗s IE(y, v)|2
(
N

2

)d+2θ

≤ 4

2d+2θ
N2θ−2θ′

∫
1/N≤|x−y|<2/N

∫
v

|T ∗s IE(x, v)−T ∗s IE(y, v)|2Nd+2θ′ dv dy dx.

Then 4N2θ−2θ′ is less than 1 (unless N is of order one but the proof is trivial
then) if θ′ ≥ θ + C/ lnN . So (2.9) for M = N implies (2.9) for M = N/2
and by repeating the same argument lnN/ ln lnN times, for lnN ≤M ≤ N
with a final number of derivatives equal to θf = θ0 − C/ ln lnN , which is all
right. Now of course if M ≤ lnN then the argument is obvious because we
may lose at most a lnN factor which does not matter.

The last reduction of the problem we make is to regularize T ∗s . Indeed by
the same kind of argument, we may take T ∗s of the form

T ∗s IE =

∫ ∞

0

IE(x+ vt)
e−t

(1/N + t)s
dt,

and denoting Ci, 1 ≤ i ≤ n, the hypercubes which compose E and xi their
center, we approximate T ∗s IE by

TN(x, v) =
n∑

i=1

li(x, v)φi(x),

li(x, v) =

∫ ∞

0

ICi
(x+ vt) dt, φi(x) =

e−|x−xi|

(1/N + |x− xi|)s
.

We may do so because

|TN(x, v)− T ∗s IE(x, v)| ≤ C

∫ ∞

0

IE(x+ vt)N s−1 e−t

1/N + t
dt.

Therefore since s+ θ < 1, we have∫
2/N≤|x−y|<4/N

∫
v

|(T ∗s IE−TN)(x, v)|2Nd+2θ dv dy dx ≤ C‖T ∗1 IE‖2
L2

x,v
≤ C|E|,
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and in proving (2.9), we may replace T ∗s IE by TN .

Instead of (2.9), we prove

sup
|ξ|≤1

∫
B(0,K)

∫
v∈S0

|∇xTN(x+ ξ, v)|2 dv dx

≤
∫

B(0,2K)

∫
v∈S0

|∇xTN(x, v)|2 dv dx ≤ N2−2θ |E|.
(2.10)

Estimate (2.10) implies (2.9). Indeed, writing

|TN(x, v)− TN(y, v)| =
∣∣∣∣∫ 1

0

(y − x)∇xTN(x+ s(y − x), v) ds

∣∣∣∣
≤ |x− y| ×

∫ 1

0

|∇xTN(x+ s(y − x), v)| ds,

and inserting this in the left hand side of (2.9), we find after a simple Hölder
estimate in s∫

B(0,K)

∫
1/N≤|y−x|<2/N

∫
v

|T ∗s IE∩B(x0,2K)(x, v)−T ∗s IE∩B(x0,2K)(y, v)|2Nd+2θ

≤
∫ 1

0

∫
B(x0,K)

∫
1/N≤|ξ|<2/N

∫
v

|∇xTN(x+ sξ, v)|2Nd+2θ−2 dv dy dx ds

≤
∫ 1

0

∫
|ξ|≤2/N

∫
B(x0,K)

∫
v

|∇xTN(x+ sξ, v)|2Nd+2θ−2 dv dx dy ds ≤ C|E|,

if (2.10) holds. To prove (2.10), we compute the derivative of TN which may
be decomposed into

|∇xTN(x, v)| =

∣∣∣∣∣
n∑

i=1

∇xli(x, v)φi(x)+li(x, v)∇xφi(x)

∣∣∣∣∣ ≤
∣∣∣∣∣∑

i

∇xli(x, v)φi(x)

∣∣∣∣∣
+ CN s

∑
i

li(x)
e−|x−xi|

1/N + |x− xi|
.

The last term is not a problem, it leads to the same computation as for the
approximation of T ∗s IE by TN (as s+ θ < 1) and so we do not repeat it here.
We focus on the first term instead.
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It is easy to compute ∇xli. It has a non zero component only in the space
orthogonal to v. We denote by L(x, v) the line passing through x and of
direction v and by n+

i (x, v) the outward normal of the side of the hypercube
Ci through which L(x, v) enters Ci and n−i the outward normal of the side
of the hypercube through which L(x, v) leaves. Then

e · ∇xli(x, v) =
e · n+

i

v · n+
i

− e · n−i
v · n−i

. (2.11)

Consequently this derivative is zero if the two sides are parallel and since
v ∈ S0, ∣∣∣∣∣

n∑
i=1

∇xli(x, v)φi(x)

∣∣∣∣∣ ≤ CKN. (2.12)

This estimate would not however provide any gain in derivative.
Since v·∇xli = 0, it is enough to do the proof for the first d−1 components

∂kli of ∇xli. We choose k = 1: the computation for any other k ≤ d − 1 is
the same because of the symmetry in S0.

2.4.2 The orthogonality argument

Define Ni as the set of j such that Cj intersects one of the half lines centered
inside Ci and of direction inside S0 (because of the definition of S0, for any
x, on a line connecting x, Ci and Cj, Ci is between x and Cj).

Note that, with Bi the set of x such that L(x, v) enters Ci on a given
chosen side Ck

i , k = 1 . . . 2d,∫
B(0,2K)

∫
S0

∣∣∣∣∣
n∑

i=1

∂x1liφi(x)

∣∣∣∣∣
2

dv dx = 2d

n∑
i=1

∑
j∈Ni

∫
S0

∫
Bi

∂x1li φi ∂x1lj φj dx dv.

Then we perform a change of variable from (x) to (η, t) where t = |x − xi|
and η + xi is the point where L(x, v) crosses the chosen side of Ci (thus
|η| ≤ 1/N) to get∫

B(0,2K)

∫
S0

∣∣∣∣∣
n∑

i=1

∂x1liφi(x)

∣∣∣∣∣
2

dv dx

≤ C
n∑

i,j=1

∫
S0

∫
t≤2K

∫
η∈Ck

i −xi

(∂x1li φi ∂x1lj φj)(xi+vt+η, v)ψ(η, t, v)dη dt dv.
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Define for η a vector with |η| ≤ 1/N

∆η
i (t) =

∑
j∈Ni

∫
S0

∂x1li(η+xi+vt, v)φi(η+xi+vt)

×∂x1lj(η+xi+vt, v)φj(η+xi+vt)ψ(v) dv.

The estimate that we are looking for is a consequence of

|∆η
i (x)| ≤ Ct−2s × logN. (2.13)

Indeed since ψ is a perfectly regular function, we may switch the order of
integration and apply (2.13) to find

∫
B(0,2K)

∫
S0

∣∣∣∣∣
n∑

i=1

∇xliφi(x)

∣∣∣∣∣
2

dv dx ≤ C logN
n∑

i=1

∫
t≤2K

∫
η∈Ck

i −xi

t−2s dη dt

≤ C logN
n∑

i=1

N1−d ≤ CN logN |E|,

which would finish to prove (2.10) and the lemma. The bound (2.13) is thus
the almost orthogonality property that we want.

Fix j ∈ Ni, a real t and a side of Ci, we denote by Si the subspace
of S0 so that L(x0, v) enters Ci on the chosen side and therefore ∂x1li is a
constant. Then since ∂x1lj is non zero as a function of v, on a space of
measure C(|xi − xj|N)1−d,∣∣∣∣∫

Si

∂x1lj(η + xi − vt, v)ψ(v) dv

∣∣∣∣ ≤ CN−d+1 × |xi − xj|−d+1.

But using the cancellations and provided ψ is a regular function, we can
prove the better inequality∣∣∣∣∫

S1

∂x1lj(η + xi − vt, v)ψ(v) dv

∣∣∣∣ ≤ CN−d × |xi − xj|−d. (2.14)

This additional cancellation is behind (2.13).
Denote by C1

j and C2
j the sides of Cj whose normal vectors n1

j and n2
j

are parallel to e1 and αk
j (x, v) the function with value 1 if L(x, v) intersects

Ck
j and 0 otherwise. Note that since v ∈ S0, there cannot exist v, v′ ∈ S0
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such that L(x, v) enters the hypercube on the side C1
j but L(x, v′) leaves the

hypercube on C2
j or the converse. Therefore

∣∣∣∣∫
Si

∂x1lj(η+xi−vt, v)ψ dv
∣∣∣∣ ≤

∣∣∣∣∣
∫

Si

(α1
j (η+xi−vt, v)−α2

j (η+xi−vt, v))
ψ

v1

dv

∣∣∣∣∣.
We know that α2

j (x, v) = α1
j (x,Rijv) withRij such that |Rijv−v| ≤ C/N |xi−

xj|. Since the functions ψ and 1/v1 are C∞ over S0, we immediately get (2.14)
from the fact that αk

j is the indicatrix of a subset of Si of diameter at most
C/(N |xi − xj|).

Now note that in ∆i(t), in fact φi(η + xi − vt) and φj(η + xi − tv) are
almost constant since |η + xi − vt| is equal to t± 1/N and |η + xj − xi + tv|
to |xj − xi|+ t± 1/N (the points xi − tv, xi and xj are almost on the same
line if ∇lj is not zero). So up to an approximation of the kind we already
performed, we may take it constant and we then have thanks to (2.14)

|∆η
i (t)| ≤ CN−dt−s

∑
j∈Ni

(|xi − xj|+ t)−s |xi − xj|−d

≤ CN−dt−s

N∑
k=1

(k/N + t)−s (k/N)−d × kd−1,

summing first on all j ∈ N ′
i which are at the same distance of xi. Eventually

we find (2.13).

2.4.3 The general case and the proof of Prop. 2.1

The proof uses Lemma 2.1 and a standard approximation procedure.

Let us consider any nonnegative function f with compact support and
which is constant on any hypercubes of the form [i1/N, i1/N + 1/N ]× . . .×
[id/N, id/N + 1/N ] for a given integer N . Therefore f takes only a finite
number of positive values 0 < α1 < . . . < αn. Denoting by Ei the set of
points x where f is equal to αi, we know that Ei ∈ CN from the assumption
on f . Hence for any θ < 1/2 by Lemma 2.1

‖T ∗s f‖L2
vHθ

x
≤

n∑
i=1

αi‖T ∗s IEi
‖L2

vHθ
x
≤ C

n∑
i=1

αi|E|1/2.
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Denote by f ∗(t) the decreasing rearrangement corresponding to f (see [2]).
Then f ∗(t) has value αi on the interval [βi+1, βi] with βi =

∑n
j=i |Ej|. Con-

sequently the Lorentz norm of f satisfies

‖f‖L2,1 =

∫ ∞

0

t1/2f ∗(t)
dt

t
=

n∑
i=1

αi(β
1/2
i − β

1/2
i+1) ≥ C

n∑
i=1

αi|Ei|1/2.

So eventually we showed that for any θ < 1/2

‖T ∗s f‖L2
vHθ

x
≤ C‖f‖L2,1 .

Since L2,1 is embedded in H−k for any k > 0 and since we do not care about
the critical case, this implies that for any θ < 1/2 and any function f as
described at the beginning

‖T ∗s f‖L2
vW θ,2

x
≤ C‖f‖L2 .

Now it is enough to note that functions with compact support and whose
level sets belong to CN for a given N , are dense in L2 which concludes the
proof of Prop. 2.1.

3 The Lp estimates

3.1 Presentation

Consider a solution to

α(v) · ∇xf = ∆a/2
x g, x ∈ Rd, v ∈M, a < 1, (3.1)

and with the average for some Φ ∈ C∞
c (M) and M a regular hypersurface of

Rd

ρΦ(x) =

∫
M

f(x, v) Φ(v) dv. (3.2)

Let us assume that

∃C, ∀ξ ∈ Sd−1, ∀ε |{v ∈M s.t. |α(v) · ξ| ≤ ε}| ≤ C εk. (3.3)

Note that in the usual unstationary case α(v) = (1, a(v)), M = Rd−1 and the
previous condition simply becomes

∃C, ∀ξ ∈ Rd−1, ∀τ ∀ε |{v ∈ Rd−1 s.t. |a(v) · ξ − τ | ≤ ε}| ≤ C εk. (3.4)

Then the following holds
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Theorem 3.1 Let f and g satisfy (3.1) and

f ∈ Ẇ β, p1
v (M, Lp2

x (Rd)), β ≥ 0,

g ∈ Ẇ γ, q1
v (M, Lq2(Rd)), −∞ < γ < 1− k/2,

(3.5)

with 1 < p2, q2 < ∞, 1 ≤ p1 ≤ min(p2, p
∗
2) and 1 ≤ q1 ≤ min(q2, q

∗
2)

where for a general p, p∗ is the dual exponent of p, and assume moreover
that γ − 1/q1 < 0. Then,

‖ρ‖Ḃs,r
∞,∞

≤ C‖f‖1−θ

W
β,p1
v (L

p2
x )
× ‖g‖θ

W
γ,q1
v (L

q2
x )
,

with

1

r
=

1− θ

p2

+
θ

q2
, s = (1− a) k θ,

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
.

(3.6)

For simplicity in this chapter we consider only the simplified setting: The
equation reads

v · ∇xf = ∆a
x g, x ∈ Rd, v ∈ Rd, a < 1, (3.7)

and the average is

ρ(x) =

∫
Rd

f(x, v)φ(v) dv. (3.8)

The aim is to prove and investigate the optimality of

Theorem 3.2 Let f and g satisfy (3.7) and

f ∈ Ẇ β, p1
v (Rd, Lp2

x (Rd)), β ≥ 0,

g ∈ Ẇ γ, q1
v (Rd, Lq2

x (Rd)), −∞ < γ < 1,
(3.9)

with 1 < p2, q2 < ∞, 1 ≤ p1 ≤ min(p2, p
∗
2) and 1 ≤ q1 ≤ min(q2, q

∗
2)

where for a general p, p∗ is the dual exponent of p, and assume moreover
that γ − 1/q1 < 0. Then,

‖ρ‖Ḃs,r
∞,∞

≤ C‖f‖1−θ

W
β,p1
v (L

p2
x )
× ‖g‖θ

W
γ,q1
v (L

q2
x )
,
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with

1

r
=

1− θ

p2

+
θ

q2
, s = (1− a)θ,

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
.

(3.10)

This result essentially uses the L2 regularizing effect given by Th. 2.1 and a
lot of interpolation. The definition of the spaces Ẇ s,p and Ḃs,p

∞,∞ are recalled
later on.

Notice that as predicted by the simple example in the first chapter the
regularity of the average ρ depends only on the regularity in velocity of f
and g. The more general case of (1.2), (2.1) with the condition (2.5) would
just give the same result provided β, γ ≤ 0 (the regularity would in fact
depend on the exponent in (2.5) with the one given in Th. 3.2 if it is 1).
However dealing with β > 0 or γ > 0 would likely require a more stringent
assumption; At least it is not known how to do it with only (2.5).

For a large part (the case p1 = p2, q1 = q2, β = 0 and γ ≤ 0), Theorem
3.2 was proved in [17] using dyadic decomposition in the Fourier space to
interpolate and obtaining the average ρ in the Besov space Bs,r

∞ . This was
improved in [3] using product Hardy spaces for the interpolation with an
average in the Sobolev space W s,r. We also refer to [6], [13], [46].

The case of positive derivatives in v (but still with p1 = p2, q1 = q2) was
obtained in [31] with a simpler but less effective interpolation method that
we use here also.

3.2 Sobolev, Besov spaces and real interpolation

This section only aims at recalling or introducing the basic tools that we will
need. No proof is included and the reader should refer to [2] for instance for
more details and information.

Definition 3.1 Let E and F be two Banach spaces. An interpolated space
at order θ between E and F is a space G included in E +F such that for all
operators T continuous in E and in F then T is continuous in G and

‖T‖G ≤ ‖T‖1−θ
E ‖T‖θ

F .
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Note that there is no reason why the interpolate should be unique (and in
most cases it is not). The definition in fact works also if T is an operator
between two Banach spaces

Proposition 3.1 Let T be a continuous operator from E1 to E2 and from
F1 to F2. Let Gi be an interpolated space at order θ between Ei and Fi. Then
T is continuous from G1 to G2 and

‖T‖G1→G2 ≤ ‖T‖1−θ
E1→E2

‖T‖θ
F1→F2

.

It is for example well known that an interpolate at order θ between the spaces
Lp(Rd) and Lq(Rd) is the space Lr(Rd) with

1

r
=

1− θ

p
+
θ

q
.

Let us recall the definition of Sobolev spaces

W 1,p(Rd) = {f ∈ Lp(Rd) | ∇f ∈ Lp(Rd)},
W−1,p(Rd) = {f = g +∇ · h | g ∈ Lp(Rd), h ∈ (Lp(Rd))d},

and homogeneous Sobolev spaces

Ẇ 1,p(Rd) = {f ∈ D′(Rd) | ∇f ∈ Lp(Rd)},
Ẇ−1,p(Rd) = {f = ∇ · h | h ∈ (Lp(Rd))d},

with the obvious extensions for W k,p where k ∈ Z. Then the spaces W s,p(Rd)
with s ∈ R can be obtained by interpolation: For instance if s ∈ [0, 1] then
Ẇ s,p(Rd) is an interpolate at order s between Lp(Rd) and Ẇ 1,p(Rd). If 1 <
p <∞ then an equivalent definition is that f ∈ Ẇ s,p(Rd) iff ∆s/2f ∈ Lp(Rd).

Different approaches exist to interpolation theory namely the complex
methods and the real methods which are a bit more complicated but more
constructive. We describe here one real method: The so-called K-theory from
[35].

For E and F two Banach spaces and ρ ∈ E + F we define

Kρ(t) = inf
ρ=ρ1+ρ2

(‖ρ1‖E + t‖ρ2‖F ). (3.11)

We define (E, F )θ,k as the space of functions ρ such that(∫ ∞

0

(Kρ(t) t
−θ)k dt

t

)1/k

<∞,
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and in the particular case k = ∞

sup
t
Kρ(t) t

−θ <∞.

All spaces (E, F )θ,k for any θ ∈]0, 1[, k ∈ [1, ∞] are interpolated spaces
at order θ. The method generates all Besov spaces (and Lorentz spaces for
the interpolation between Lp and Lq). We will use it only for k = ∞ and
describe the main interpolated spaces.

The space (W s1,p(Rd), W s2,p(Rd))θ,∞ is the Besov space Bs,p
∞ (Rd) with

s = (1− θ) s1 + θ s2.

This space is very close from the Sobolev space and in particular

W s,p(Rd) ⊂ Bs,p
∞ (Rd) ⊂ W s′,p(Rd) ∀s′ < s.

For the homogeneous spaces (Ẇ s1,p(Rd), Ẇ s2,p(Rd))θ,∞, we obtain the ho-
mogeneous Besov space Ḃs,p

∞ (Rd) with on a compact support Ω

Ẇ s,p(Ω) ⊂ Ḃs,p
∞ (Ω) ⊂ Ẇ s′,p(Ω) ∀s′ < s.

Unfortunately the space (W s1,p(Rd), W s2,q(Rd))θ,∞ is not a Besov space if
p 6= q, we denote it Bs,r

∞,∞ but it also satisfies

W s,p(Rd) ⊂ Bs,p
∞,∞(Rd) ⊂ W s′,p(Rd) ∀s′ < s.

3.3 Proof of the Theorem

We regularize the operator v · ∇x by adding λf (λ is a parameter of interpo-
lation which will be chosen later in terms of f and g)

(λ+ v · ∇x) f(x, v) = ∆α/2
x g(x, v) + λf(x, v).

We denote by Tλ the operator

Tλf(x) =

∫ ∞

0

∫
Rd

f(x− vt, v) e−λt φ(v) dv dt. (3.12)

Consequently

ρ(x) =

∫
Rd

f(x, v)φ(v) dv = λTλf + ∆a/2
x Tλg. (3.13)

We study this operator Tλ in the next subsection and conclude the proof of
Theorem 3.2 in the last one.
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3.3.1 Estimates for Tλ

We prove

Proposition 3.2 For any 1 ≤ p1 ≤ min(p2, p
∗
2) with 1 < p2 <∞, for any s

with s ≤ 1/p1, we have

Tλ : Ẇ s,p1

loc,v(R
d, Lp2

x (Rd)) −→ Ẇ 1+s−1/p1, p2(Rd), with norm Cλs−1/p1 .

Notice first that with a simple change of variable

Tλf(x) =
1

λ

∫ ∞

0

∫
Rd

f(x− vt/λ, v) e−t φ(v) dv dt =
1

λ
Tfλ(λx),

with fλ(x) = f(x/λ, v). Therefore it is enough to show Prop. 3.2 for λ = 1,
i.e. for the operator T .

We begin with the simple case where we only have L1 regularity in veloc-
ity. In this case T can at best exchange derivability in v for derivability in
x, more precisely we have

Lemma 3.1 ∀ 0 ≤ s < 1, T : Ẇ s,1
v,loc(Rd, Lp

x(Rd)) −→ Ẇ s,p(Rd), for every
1 ≤ p ≤ ∞.

Proof. It is a direct computation, once one has noticed that

∂xi
f(x− vt, v) = −1

t
∂vi

(f(x− vt, v))) +
1

t
(∂vi

f)(x− vt, v).

First of all, simply by commuting the integrals, it is obvious that∥∥∥∥∫
Rd

f(x− vt, v)φ(v) dv

∥∥∥∥
Lp

≤ C‖f‖L1
vLp

x
,

where C does not depend on t. Then we also obtain from our remark that∥∥∥∥∂xi

∫
Rd

f(x− vt, v)φ(v) dv

∥∥∥∥
Lp

≤ C

t
‖f‖W 1,1

v Lp
x
.

By interpolation, we conclude that for any s < 1∥∥∥∥∫
Rd

f(x− vt, v)φ(v) dv

∥∥∥∥
Ẇ s,p

≤ C

ts
‖f‖W s,1

v Lp
x
,

and by integrating in t against e−t we get the desired result.
With exactly the same idea, one obtains for negative derivatives,
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Lemma 3.2 ∀ s ≤ 0, T : Ẇ s,1
v (Rd, Lp

x(Rd)) −→ Ẇ s,p(Rd).

It remains to combine this with the L2 case provided by Theorem 2.1. In
fact one has for any s ∈ R

∆s/2
x h(x+ vt) = ∆s/2

v h(x+ vt) t−s,

which implies for the dual operator T ∗ and if s < 1

∆s/2
x T ∗h = ∆s/2

v

∫ ∞

0

h(x+ vt)
e−t

ts
dt = ∆s/2

v T ∗s h,

according to the definition of Ts (2.3). As we precisely proved Th. 2.1 for Ts

and therefore T ∗s one obtains

Lemma 3.3 ∀s < 1/2, T : Ḣs
v(L

2
x) −→ Ḣs+1/2.

To obtain the behaviour of T on any space of the form Ẇ s,p1
v (Lp2

x ), we only
have to interpolate between Lemma 3.1 and Lemma 3.3. A slight problem
arises because the operator ∆

s/2
x does not operate nicely on L1.

For any 1 < p2 < 2, we first point out that the proof of Lemma 3.1
also shows that T sends Ẇ s,1

v (H1
x) in ∆

−s/2
x H1 with H1 the Hardy space;

This would also be true with any Banach space whose norm is invariant by
translation (i.e. the norm of f(x+ h) is equal to the norm of f).

Then we can interpolate without any problem between Ẇ s,1
v (H1

x) and

Ḣs
vL

2
x to obtain Ẇ s,p2

v Lp2
x whose image by T is in the interpolation of ∆

−s/2
x H1

and Ḣs+1/2, that is Ẇ 1−1/p2,p2 . Finally we interpolate between Ẇ s,1
v (Lp2

x )
and Ẇ s,p2

v Lp2
x , which is the space Ẇ s,p1

v Lp2
x with its image in the interpolate

between Ẇ s,p2 and Ẇ 1−1/p2,p2 . That precisely gives Prop. 3.2.

3.3.2 Conclusion of the proof of Theorem 3.2

We are ready to prove Theorem 3.2. We first do it with the additional
assumption that β < 1/p1. Indeed with that we may apply Proposition 3.2
to both f and g.

We have
ρ = ρ1 + ρ2 = λTλf + ∆a/2

x Tλg,

with by Proposition 3.2

‖ρ1‖Ẇ 1+β−1/p1, p2 ≤ C λ× λβ−1/p1 × ‖f‖
Ẇ

β,p1
v L

p2
x
,

‖ρ2‖Ẇ 1+γ−1/q1−a, q2 ≤ Cλγ−1/q1 × ‖g‖Ẇ
γ,q1
v L

q2
x
.
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We then minimize in λ according to the K-method of real interpolation which
was earlier described. We take

λ = t1/(1+β−1/p1−γ+1/q1),

and we indeed find

K(t) ≤ tθ × ‖f‖1−θ

Ẇ
β,p1
v L

p2
x

× ‖g‖θ
Ẇ

γ,q1
v L

q2
x
,

with

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
,

as given by Theorem 3.2. Consequently ρ belongs to the space Ḃs,r
∞,∞ as the in-

terpolation of order (θ,∞) of the two spaces Ẇ 1+β−1/p1, p2 and Ẇ 1+γ−1/q1−a,q2 .

It only remains to indicate how we prove Theorem 3.2 for β ≥ 1/p1.
Clearly if Proposition 3.2 were true for these values, we would be done since
there would not be any difficulty with the previous argument of real inter-
polation.

If one tries to prove any of the lemmas in the previous subsection for
β ≥ 1/p1, the problem is that we do not have enough integrability in t. More
precisely, we would have to integrate a term in t−k with k ≥ 1 which is not
possible. However

Tλ f =

∫ ∞

0

∫
Rd

∂t(t)f(x− vt, v)e−λt φ(v) dv dt

=

∫ ∞

0

∫
Rd

f(x− vt, v) λte−λt φ(v)

+

∫ ∞

0

∫
Rd

v · ∇xf(x− vt, v)te−λt φ(v)

=

∫ ∞

0

∫
Rd

f(x− vt, v) λte−λt φ(v)

+
1

λ

∫ ∞

0

∫
Rd

∆a/2
x g(x− vt, v)λte−λt φ(v).

The first term has the same homogeneity as Tλf but with more integrability
around the origin in t. The second term, once it is multiplied by λ behaves
exactly like the usual Tλg.
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Therefore, repeating this simple trick as many times as necessary, we
avoid any problem of integrability in t for Tλf and we may consider β as
large as we want.

Notice finally that this would not work for Tλg because we have used that
v · ∇xf = ∆

a/2
x g and we do not have anything like that for g. This is only

natural as one cannot expect to gain more than one derivative from averaging
lemmas.

3.4 Optimality

This is the exact analogue in a slighty more general situation of the two notes
[36] and [37], which show that the usual averaging lemmas (with p1 = p2,
q1 = q2 and β = 0) are optimal.

They are given in dimension two for simplicity. We do it in two steps.
For the first one consider two C∞

c functions a and b and take

fN(x, v) = N δ(1/p1−β) × a(N x1, x2/N) b(N δv1),

gN(x, v) = N1−δ+δ/p1−δβ × ∂1a(N x1, x2/N) N δv1 b(N
δv1).

(3.14)

We then simply choose δ such that gN belongs to the space W γ,q1
v (Lq2

x ) uni-
formly in N for every q2, so

δ =
1

1− 1/p1 + β + 1/q1 − γ
.

Notice that if γ < 0, we also have to require that wb(w) be the γ derivative
of some function. Moreover, we have

v · ∇xfN = gN + hN ,

with for any r

‖hN‖L1
v(W 1,r

x ) ≤ CN−2δ.

Therefore the contribution from hN to the regularity of the average is one full
derivative and (from the point of view of counterexample) we may neglect
this term.

To finish with this counterexample, it is enough to notice that for any
1 ≤ r ≤ ∞

‖ρN‖Ẇ s,r ≥ N s−δ(1−1/p1+β).
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Hence for this norm to be bounded uniformly in N , we need that

s ≤ δ(1− 1/p1 + β) =
1− 1/p1 + β

1− 1/p1 + β + 1/q1 − γ
,

which is precisely the value given by Theorem 3.2. This counterexample also
shows that, provided p1 ≤ p2 and q1 ≤ q2, the regularity gained by averaging
does not depend on the integrability in x of either f or g.

Now we prove that the exponent r given by Theorem 3.2 is optimal. To
do so we consider

fN(x, v) = N1/p2+δ(1/p1−β) × a(N x1, x2) b(N
δv1),

gN(x, v) = N1+1/p2−δ+δ/p1−δβ × ∂1a(N x1, x2) N
δv1 b(N

δv1).
(3.15)

To bound uniformly gN in the space given by (4.3) (fN was correctly nor-
malized), we need to take

δ =
1 + 1/p2 − 1/q2

1− 1/p1 + β + 1/q1 − γ

We again have
v · ∇xfN = gN + hN ,

with hN more regular than gN and so negligible for our purpose. Finally

‖ρN‖W s,r ≥ N s+1/p2−1/r−δ(1−1/p1+β).

Since we already know that s is at most the value given by Theorem 3.2, we
take that one and deduce that for ρN to be uniformly bounded, we need that

1

r
=

1

p2

− s

p2

+
s

q2
,

which is the value given by theorem 3.2. If we care only about local regularity
then any 1/r larger than this will do of course.

4 Limit Cases

Some limitations of Theorem 3.2 are investigated here. The first two are
the case of a full derivative (a = 1 in (3.7)) and the case of only L1 reg-
ularity in velocity for f ; in both cases, only compactness can be expected
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from averaging lemmas and of course no gain of derivatives. These two situa-
tions however have important uses: The first one as it replaces compensated
compactness arguments in some cases (see for example [40] and [50] for com-
pensated compactness) and the second one for Boltzmann equation or other
collisional models. The last part of the chapter is devoted to the limitation
p1 ≤ min(p2, p

∗
2) (or q1 ≤ min(q2, q

∗
2)) and it illustrates the complexity of

averaging lemmas with mixed norm.

4.1 The case of a full derivative

The main result here was obtained in [45]. We deal with Eq. (3.1) with a = 1
or

v · ∇xf = divxg, x ∈ Rd, v ∈ Sd−1. (4.1)

Very little can be expected in this case as indeed all functions f satisfy (4.1)
with a right hand side just as regular as themselves. Nevertheless (4.1) is
enough to ensure some compactness for the average

ρ(x) =

∫
Sd−1

f(x, v) dv. (4.2)

In fact one may first prove the

Theorem 4.1 Let f and g satisfy (3.7) and

f ∈ Ẇ β, p1
v (Sd−1, Lp2

x (Rd)), β ≥ 0,

g ∈ Ẇ γ, q1
v (Sd−1, Lq2(Rd)), −∞ < γ < 1,

(4.3)

with 1 < p2, q2 < ∞, 1 ≤ p1 ≤ min(p2, p
∗
2) and 1 ≤ q1 ≤ min(q2, q

∗
2)

where for a general p, p∗ is the dual exponent of p, and assume moreover
that γ − 1/q1 < 0. Then,

‖ρ‖B0,r
∞,∞

≤ C‖f‖1−θ

W
β,p1
v (L

p2
x )
× ‖g‖θ

W
γ,q1
v (L

q2
x )
,

with

1

r
=

1− θ

p2

+
θ

q2
,

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
.

(4.4)
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The space B0,r
∞,∞ is again obtained by interpolation but here as ρ trivially

belongs to Lp2(Rd) we have that ρ belongs to all Lr′ with r′ ∈ [p2, r[ or
]r, p2]. Moreover it is possible to deduce from Theorem 4.1

Corollary 4.1 Consider two sequences fn and gn solutions to (4.1). Assume
moreover that fn is uniformly bounded in Ẇ β,p1

v (Sd−1, Lp2(Rd)) with

β ≥ 0, 1 < p2 <∞, 1 ≤ p1 ≤ min(p2, p
∗
2),

and that gn is uniformly bounded and compact in Ẇ γ,q1
v (Sd−1, Lq2(Rd)) with

−∞ < γ < 1, 1 < q2 <∞, 1 ≤ q1 ≤ min(q2, q
∗
2).

Then the sequence ρn is compact in any Lr′ with r′ ∈]p2, r[ or ]r, p2[ and r
given by (4.4).

These two results were obtained in [45] (with a different decomposition of
the operator v · ∇x and thus with ρ in a true Besov space). They are quite
useful for kinetic formulations as the next chapter illustrates.
Proof of Cor. (4.1). It is an almost straightforward consequence of Theo-
rem 4.1. As fn is uniformly bounded, it converges weak−∗ to some limit f
(at least after extraction of a sub sequence). On the other hand, still after
extraction, gn converges strongly to some limit g and thus

v · ∇xf = divx g,

or
v · ∇x(fn − f) = divx (gn − g).

Applying now Th. 4.1 to fn − f and gn − g, we find that

‖ρ− ρn‖B0,r
∞,∞

≤ C‖f − fn‖1−θ

W
β,p1
v (L

p2
x )
× ‖g − gn‖θ

W
γ,q1
v (L

q2
x )
.

As gn−g strongly converges toward 0 and fn is uniformly bounded, we deduce
that ρn − ρ converges strongly toward 0 in B0,r

∞,∞. Therefore it also does in

all Lr′ with r′ ∈]p2, r[ or ]r, p2[ since ρ− ρn is uniformly bounded in Lp2 .

Proof of Theorem 4.1. We follow the steps of the proof of Th. 3.2 and
decompose

ρ = ρ1 + ρ2 = λTλf + divx Tλg.
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From Prop. 3.2 we get that

‖ρ1‖Ẇ 1+β−1/p1, p2 ≤ C λ× λβ−1/p1 × ‖f‖
Ẇ

β,p1
v L

p2
x
,

‖ρ2‖Ẇ γ−1/q1, q2 ≤ Cλγ−1/q1 × ‖g‖Ẇ
γ,q1
v L

q2
x
.

So again minimizing in λ in the functional K(t) we take

λ = t1/(1+β−1/p1−γ+1/q1),

and we indeed find

K(t) ≤ tθ × ‖f‖1−θ

W
β,p1
v L

p2
x

× ‖g‖θ
W

γ,q1
v L

q2
x
,

with

θ =
1 + β − 1/p1

1 + β − 1/p1 − γ + 1/q1
.

Therefore ρ belongs to Bs,r
∞,∞ and it only remains to notice that

s = (1− θ) (1 + β − 1/p1) + θ (γ − 1/q1) = 0,

which finishes the proof.

4.2 L1 integrability only for f

Theorem 3.2 does not give any regularity for the average if 1/p1 − β = 1. A
case of notable interest is

v · ∇xf = g, (4.5)

where f is only in L1(Rd×Sd−1). It is notably crucial for collisional models:
See [15] for the existence of renormalized solutions to Boltzmann equation,
and [26], [27], [48] for the famous derivation of hydrodynamic limits.

In that situation the average ρ is not generally in any Sobolev spaces.
Even though it was shown in [25] that some compactness property still holds
namely

Theorem 4.2 Let fn and gn be two sequences uniformly bounded in the space
L1(Rd × Sd−1) and solutions to (4.5). Assume moreover that the sequence
fn is uniformly equi-integrable in v. Then the sequences of averages ρn is
compact in L1

loc(Rd).
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The proof relies first on the fact that if fn is equi-integrable in velocity then
it is in both variables:

Proposition 4.1 Let fn and gn be two sequences uniformly bounded in L1(Rd×
Sd−1) and solutions to (4.5). If the sequence fn is uniformly equi-integrable
in v ∈ Sd−1 then it is uniformly equi-integrable in (x, v) ∈ Rd × Sd−1.

It is then possible to get

Theorem 4.3 Let fn and gn be two sequences uniformly bounded in the space
L1(Rd × Sd−1) and solutions to (4.5). Assume moreover that the sequence
fn is uniformly equi-integrable in (x, v) ∈ Rd × Sd−1. Then the sequence of
averages ρn is compact in L1

loc(Rd).

With the additional assumption that gn is equi-integrable, this last result
was already noticed in [23].

We only give here the proof of 4.3 with a slight variant of the method
used in [25].

If f and g satisfy (4.5), and if there is an increasing function Φ ∈ C(R+)
with φ(ξ)/ξ increasing and Φ(ξ)/ξ −→∞ as ξ →∞ and such that

I(f) =

∫
Rd×Sd−1

Φ(|f(x, v)|) dx dv <∞,

then there exists a function ε(h) depending only on Φ with lim ε(h) = 0 as
h→ 0 and such that for any φ ∈ C1

c (Rd, R+)∫
Rd

|ρ(x+ h)− ρ(x)|φ(x) dx ≤ Cφ ε(h) (‖f‖L1 + ‖g‖L1 + I(f)). (4.6)

Of course (4.6) would imply Theorem 4.3.

Notice that

v · ∇x(φf) = g φ+ f v · ∇φ.

Now decompose

(λ+ v · ∇x) (φf) = ḡ + λfM
1 + λfM

2 ,

with

fM
1 = φ f I|f |≤M , fM

2 = φ f I|f |>M , ḡ = g φ+ f v · ∇xφ.
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Then

φ ρ = Tλ ḡ + λTλf
M
1 + λTλ f

M
2 .

Obviously∫
Rd

|ρ(x+ h)− ρ(x)|φ(x) dx ≤
∫

Rd

|φ(x+ h)ρ(x+ h)− φ(x)ρ(x)|

+ h‖∇φ‖L∞ ‖ρ‖L1

≤
∫

Rd

|Tλḡ(x+ h)− Tλ ḡ| dx+

∫
Rd

|λTλf
M
1 (x+ h)− λTλf

M
1 | dx

+

∫
Rd

|λTλ f
M
2 (x+ h)− λTλ f

M
2 | dx+ Cφ h‖f‖L1

≤ 2‖Tλḡ‖L1 + 2λ ‖Tλf
M
2 ‖L1 +

∫
Rd

|λTλf
M
1 (x+ h)−λTλf

M
1 | dx+ Cφ h‖f‖L1 .

From Prop. 3.2, we have

‖Tλḡ‖L1 ≤ C

λ
‖ḡ‖L1 ≤ C

λ
(‖g‖L1 + Cφ‖f‖L1),

and

‖Tλf
M
2 ‖L1 ≤ C

λ
‖fM

2 ‖L1 ≤ C

λ

M

Φ(M)
I(f),

as (remember that φ(ξ)/ξ is increasing)∫
Rd×Sd−1

|f(x, v)| I|f |>M dx dv =

∫
Rd×Sd−1

Φ(|f(x, v)|) I|f |>M
|f |

Φ|f |
dx dv

≤ sup
ξ>M

ξ

Φ(ξ)

∫
Rd×Sd−1

Φ(|f(x, v)|) dx dv.

For the last term Tλf
M
1 , notice first that is is compactly supported in the

support of φ so

‖Tλf
M
1 ‖W 1/2,1(Rd) ≤ Cφ‖Tλf

M
1 ‖H1/2(Rd).

Furthermore as fM
1 belongs to L2(Rd × Sd−1) then

‖Tλf
M
1 ‖H1/2(Rd) ≤ C λ−1/2 ‖fM

1 ‖L2(Rd×Sd−1) ≤ C λ−1/2M1/2 ‖fM
1 ‖

1/2

L1 .
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Consequently∫
Rd

|λTλf
M
1 (x+ h)− λTλf

M
1 | dx ≤ h1/2 ‖Tλf

M
1 ‖W 1/2,1(Rd)

≤ Cφ h
1/2 λ1/2M1/2 ‖fM

1 ‖
1/2

L1 .

Combining all estimates, one obtains∫
Rd

|ρ(x+ h)− ρ(x)|φ(x) dx ≤C
λ

(‖g‖L1 + Cφ‖f‖L1) + C
M

Φ(M)
I(f)

+ Cφ λ
1/2 h1/2M1/2 ‖fM

1 ‖
1/2

L1 + Cφ h ‖f‖L1 .

For any h, it only remains to minimize in λ and M to obtain (4.6).
Notice finally that in most applications, Φ is equal to ξ log ξ (from entropy

bounds). In that case, the function ε(h) is

ε(h) =
1

log 1/h
.

4.3 Mixed norm inequalities

A disappointing condition in Theorem 3.2 is that p1 ≤ min(p2, p
∗
2) (and the

same for q1 and q2). First of all it tells that the best case would be when f
or g belongs to Lp(Rd × Sd−1) and any additional integrability in velocity is
“lost”. This somehow contradicts the idea that the regularity of the average
depends only on the regularity in velocity; This idea though is supported by
some heuristics arguments and results like [53] (where the average is however
obtained in a weak space).

It turns out that this question is probably quite difficult. We give a proof
(but only in dimension 2) which improves Theorem 3.2 but also an example
showing that this cannot be carried out too far (namely if f is only L1 in x
then nothing may be gained even it is L∞ in v).

4.3.1 An improvement on the condition p1 ≤ p2

We can prove the following

Proposition 4.2 Let f , g in L4/3(R2, L2(S1)) satisfy (4.5). Assume more-
over that f and g are even in v then the average ρ =

∫
S1 f(x, v) dv belongs

to W s,4/3(R2) for all s < 1/2.
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Therefore we gain 1/2 derivative on the average even though we work only in
L4/3 in x. This result is proved only in dimension 2, an equivalent in higher
dimension is unknown (and would probably involve another critical space
than L4/3). In dimension 2, L4/3 is probably critical in the sense that any Lp

with p < 4/3 would give less than 1/2 derivative.
If f or g is in L2(S1, L4/3(R2)), then nothing is known. Notice that, of

course, by Hölder estimates, L4/3(R2, L2(S1)) is stronger (included in) than
L2(S1, L4/3(R2)).

The assumption f even in v is not necessary, and Prop. 4.2 can of course
be combined with the other estimates in chapter 3 by interpolation to give
more elaborate estimates (we refer to [32] for more details).

Proof of Prop. 4.2. We again decompose

ρ = T f + T g.

Since f and g are even

T f =

∫
Sd−1

∫ ∞

0

f(x− vt, v) e−t dt =

∫
Sd−1

∫ ∞

−∞
f(x− vt, v) e−t dt = T0 f.

Now we have to prove that T0 is continuous from L4/3(R2, L2(S1)) to the
space W s,4/3(R2) for any s < 1/2. By duality this is equivalent to the con-
tinuity of the dual T ∗0 from L4(R2) to W s,4(R2, L2(S1)). Finally with a
decomposition similar to the one performed in subsection 2.4.3, it is enough
to show

Lemma 4.1 For any set E and any 0 ≤ θ < 1/2,

‖∆θ/2
x T ∗0 IE‖4

L4
x(R2, L2

v(S1)) ≤ C |E|. (4.7)

Proof of Lemma 4.1. First of all, we decompose the sphere S1 into sub-
domains Sk with k = 1, 2 such that |vk| > 1/2 in Sk. Of course it is enough
to prove (4.7) with Sk instead of S1 and by symmetry we do it only for S1.
Now we are going to make two reductions.
Step 1: Reduction to the compactly supported case.

We explain why it is enough to prove for any K > 0 and any set E ∈
B(0, K), the inequality

‖∆θ/2
x T ∗0 IE‖4

L4
x(B(0,K), L2

v(S1)) ≤ C(K) |E|. (4.8)
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Take any set E ⊂ R2 with finite measure and any K > 0. We decompose E
into ∪iEi with Ei ⊂ B(xi, K) and |xi − xj| > K/2 and Ei ∩ Ej = ∅, ∀i 6= j.
Then

IE(y) =
∑

i

IEi
(y),

and consequently

T ∗0 IE(x, v) =
∑

i

T ∗0 IEi
(x, v) IB(xi,2K)(x) +

∑
i

T ∗0 IE(x, v) I|x−xi|>2K = I + II.

Now, of course because of the condition |xi − xj| > K/2∫
R2

(∫
S1

|∆θ/2
x I|2 dv

)2

dx = C
∑

i

∫
B(xi,2K)

(∫
S1

|∆θ/2
x T ∗0 IEi

(x, v)|2 dv
)2

dx

≤ C(2K)
∑

i

|Ei| ≤ C(2K) |E|,

since (4.8) is obviously invariant by translation and hence true as well if we
replace B(0, K) by B(y,K) for any y.

As for the second term, we remark that, as Ei ⊂ B(xi, K)

T ∗0 IEi
(x, v) I|x−xi|>2K ≤ e−|x−xi|/2−K/2,

and that furthermore (that inequality is proved in [18]), for any x∫
S1

|T ∗0 IEi
(x, v)|2 dv ≤ C |Ei|.

Eventually we simply bound in L4∫
R2

(∫
S1

|II|2 dv
)2

dx ≤ C e−K
∑
i,j

|Ei|1/2 |Ej|1/2

∫
R2

e−|x−xi|/2−|x−xj |/2 dx

≤ C e−K |E|.

We have decomposed T ∗0 IE into two terms for any K. The first one belongs to
W θ,4

x (L2
v) with norm (C(2K) |E|)1/4 (which is obviously at most polynomial

in K) and the second one in L4 with norm e−K/4 |E|1/4. By real interpolation,
we deduce that T ∗0 IE belongs to W θ′,4

x (L2
v) with norm C|E|1/4 for any θ′ < θ,

which is exactly what we want.
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Step 2: Reduction to the X-ray transform.
The aim here is to get back the case where T ∗0 IE(x, v) is invariant along

any line with direction v like the X-ray transform. So first of all, we write

|∆θ/2
x T ∗0 IE(x, v)| = |∆θ/2

x

∫ 0

−∞
v · ∇xT

∗
0 IE(x+ tv, v) dt|

≤
∫ +∞

−∞
|∆θ/2

x v · ∇xT
∗
0 IE(x+ tv, v)| dt.

All these expressions make sense because now E ⊂ B(0, K)

v · ∇xT
∗
0 IE(x+ tv, v) =

∫ ∞

0

v · ∇xIE(x+ tv + rv) e−r dr

=

∫ ∞

0

∂

∂r

(
IE(x+ tv + rv)

)
e−r dr

= −
∫ ∞

0

IE(x+ tv + rv) e−r dr,

(4.9)

by integration by parts in r. Then T ∗0 is the integral on the whole line by
(2.3) and so

v · ∇xT
∗
0 IE(x+ tv, v) =

∫ ∞

−∞
IE(x+tv+rv) e−|r| × r

|r|
dr. (4.10)

Now we denote

T IE(x, v) =

∫ +∞

−∞
|∆θ/2

x v · ∇xT
∗
s IE(x+ tv, v)| dt.

Thanks to (4.9) and (4.10), we know the following properties on T , for some
θ′ > 0 (in fact θ′ = 1/2− θ)

v · ∇xT IE(x, v) = 0, ‖∆θ′/2
x T IE‖L2

B(0,K)×S1
≤ C |E|1/2. (4.11)

We want to deduce from (4.11)

‖T IE‖4
L4

x(B(0,K), L2
v(S1)) ≤ C(K) |E|. (4.12)

Step 3: Deduction of (4.12) from (4.11).
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We begin with

‖T IE‖4
L4

x(B(0,K), L2
v(S1)) =

∫
B(0,K)

(∫
v∈S1

|T IE(x, v)|2 dv
)2

dx

=

∫
B(0,K)

∫
v,w∈S1

|T IE(x, v)|2 × |T IE(x,w)|2 dv dw dx

=

∫
v∈S1

∫
x∈B(0,K)

∫
w∈S1

|T IE(x, v)|2 |T IE(x,w)|2 dw dx dv.

We change variables in x decomposing x in y + lv with y in the plane H1

of equation x1 = 0. Since |v1| > 1/2, the jacobian of the transformation is
bounded and as all the terms in the integral are non negative, we may simply
bound

‖T IE‖4
L4

x(B(0,K), L2
v(S1)) ≤

∫
v∈S1

∫
y∈H1

∫ K

l=−K

∫
w∈S1

|T IE(y+lv, v)|2

× |T IE(y+lv, w)|2 dw dl dy dv

≤
∫

v∈S1

∫
y∈H1

|T IE(y, v)|2 ×
(∫ K

l=−K

∫
w∈S1

|T IE(y+lv, w)|2dw dl
)
dy dv,

because Tf(x, v) is constant on any line with direction v and therefore
T IE(y + lv, v) does not depend on l. We denote

I(y, v) =

∫ K

l=−K

∫
w∈S1

|T IE(y + lv, w)|2 dw dl,

and we want to show that I belongs to L∞. So we fix y and v and we first
decompose S1 into the union of Si

1 with Si
1 = {w ∈ S1, 2−i−1 < |v−w| < 2−i}

and so

I(l, v) =
∞∑
i=0

Ii(l, v) =
∞∑
i=0

∫ K

l=−K

∫
w∈Si

1

|T IE(y + lv, w)|2 dw dl.

Of course T IE(y + lv, w) is constant along any line with direction w so we
may bound

Ii ≤
1

2K

∫
w∈Si

1

∫ K

l=−K

∫ K

s=−K

|T IE(y + sw + lv, w)|2 ds dl dw.
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We change again variables from l and s to z = y + sw + lv. We denote by
Cy,v,w the set {y + sw + lv, |s| ≤ K, |l| ≤ K} and by |(v, w)| the sinus of
the angle between v and w. Then

Ii ≤
1

2K

∫
w∈Si

1

∫
z∈Cy,v,w

|T IE(z, w)|2 dz dw
|(v, w)|

≤ 2i+1

2K

∫
w∈Si

1

∫
z∈Cy,v,w

|T IE(z, w)|2 dz dw.

Denote Cy,v =
⋃

w∈Si
1
Cy,v,w and Ẽ = E ∩ Cy,v. Clearly, as all the terms are

non negative

Ii ≤
2i+1

2K

∫
w∈Si

1

∫
z∈Cy,v

|T IẼ(z, w)|2 dz dw.

Using a Hölder estimate, we find for any p > 2,

Ii ≤
2i+1

2K
× |Cy,v|1−2/p ×

∫
w∈Si

1

(∫
z∈Cy,v

|T IẼ(z, w)|p dz

)2/p

dw

≤ C(K) 2i+1 × 2−i(1−2/p) ×
∫

w∈S1

(∫
z∈B(0,2K)

|T IẼ(z, w)|p dz
)2/p

dw,

because the measure of Cy,v is bounded by a constant depending on K times
2−i. Now by Sobolev embedding, for 1/2−θ′/2 ≤ 1/p < 1/2, the last integral
is dominated by the L2

wH
θ′
z norm of T IẼ. Therefore, taking 1/p = 1/2−θ′/2,

we get by (4.11)

Ii ≤ C(K) 2i+1 × 2−iθ′ ×
∫

w∈S1

∫
z∈B(0,2K)

|∆θ′/2
x T IẼ(z, w)|2 dz dw

≤ C(K) 2i+1 × 2−iθ′ × C |Ẽ| ≤ C(K)× 2−iθ′ ,

because the measure of Ẽ is less than the measure of Cy,v. Eventually we
may sum up the series and get

I =
∞∑
i=0

Ii ≤ C(K).
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This has as immediate consequence that

‖∆s/2
x T IE‖4

L4
x(B(0,K), L2

v(S1)) ≤ C(K)

∫
v∈S1

∫
y∈H1

|∆s/2
x T IE(y, v)|2 dy dw

≤ C(K)× |E|,

using again the known L2 estimate (4.11) on T .

Note that it is relatively simple to find a set E for which the lemma
would be false if p > 4 in dimension two. Indeed, one may take for example
a set composed of the N sets Ei of equations in polar coordinates r, θ, θ ∈
[i/N, i/N + i/2N ] and r ≤ 1. Then |E| ≥ 1 and for any x in the square of

size 1/N centered at the origin
∫

v
|∆1/4

x IE(x, v)|2 dv = N and so to have

N−2 ×Np ≤
∫

B(0,2K)

(∫
v

|∆1/4
x IE(x, v)|2 dv

)p/2

dx ≤ CNp/2,

one must have p ≤ 4.

4.3.2 A example in L1

The example that we give below shows that in L1(Rd) (in x) no derivative
may be gained.

Consider the following function gN

gN(x, v) =
N∑

i=1

N∑
j=1

(−1)i I|x1−i/N |≤1/N2 × δ(x2 = j/N)× ΦN(v).

Instead of true dirac masses, we should take approximations of them in L1

so that gN belong to L1
x. However to keep things as simple as possible, we

will do just as if Dirac masses belong to L1. Then, we obviously have

‖gN‖L1
x L∞v = N ×N ×N−2 × ‖ΦN‖L∞ ≤ 1.

The function ΦN will be determined later on but with an L∞ norm less than
one.

Next we define fN by means of gN

fN(x, v) = a(x)×
∫ ∞

0

gN(x− vt, v) dt,
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with a(x) a regular function with compact support and value 1 in the ball of
radius 2. Therefore we have

v · ∇xfN = gN + hN ,

with

hN = (v · ∇x a)×
∫ ∞

0

gN(x− vt, v) dt.

It is obvious that hN is at least as regular as gN and so

‖v · ∇xfN‖L1
x L∞v ≤ C. (4.13)

Now let us compute the L1
x L

∞
v norm of fN . Given x and v the value of fN

depends on the number of times the line issued from x, and with direction
v, crosses one of the small segments of which gN is composed. This almost
never happens. For instance, if Nx2 is an integer and if v is along the x1-axis,
then fN is the average of Dirac masses. This case is avoided by assuming
that Φ((a, 0)) = 0, for any a and it ensures that fN does not exhibit any
Dirac mass itself.

However, it remains the other cases where for example x1 = i/N ± 1/N2

for some i. Then if |v1| ≤ 1/N2 , f(x, v) is of order N . Finally the norm of
fN may be estimated as

‖fN‖L1
x L∞v ≤ C (1 +N ×N ×N−2) ≤ C. (4.14)

For ρN those points of concentration of fN do not have any importance.
Indeed ρN is the average of fN in v and if fN is of order N at some points,
it is only for values of v in an angular sector of size N−2. Consequently, ρN

is at most of order one. Then consider a segment with relative coordinates
(a, b) (relative with respect to x), this segment is seen from x with an angular
variation of

max

(
1

N2b
,

b

N2 a2

)
.

Hence for a given x which is typically at a distance 1/2N of the closest line
x2 = j/N , the measure of the set of velocities v, such that the corresponding
line crosses at least one segment, is

N∑
j=1

(
j × 1

N j
+

N∑
i=j

j/N

N2 i2/N2

)
∼ 1.
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Note that this also justifies that a given line almost never intersects more
than one segment.

Now of course there is the question of the alterning signs in gN which
could produce cancellations in ρN . This is where the definition of ΦN , and
the fact that it is L∞ but not in any Sobolev space, plays a crucial role.
Indeed let us choose a ΦN such that ρN is indeed of order 1 at the point
(1/2, 1/2) for instance. This is possible but only because we do not need any
derivability on ΦN .

Then notice that ρ is almost periodic of period 2/N . If the segments in
gN where equidistributed in the whole space, it would be exactly periodic
but as it is, some small perturbation has to be expected from the compact
support in gN . Because the derivative of ρN is obviously at most of order N ,
this means that ρN is of order one on a domain a measure of order one also.

To conlcude this counterexample, we remark that ρN changes sign if we
add 1/N to x1 due to the alterning signs in gN . Therefore, the derivative of
ρN is exactly of order N and

‖ρN‖W s,1
loc
∼ N s. (4.15)

The combination of (4.13), (4.14) and (4.15) shows that, although fN and gN

are uniformly bounded in L1
xL

∞
v , ρN is not uniformly bounded in any W s,1

loc ,
s > 0.

We turn to the case of exponents p ≥ 2. We use polar coordinates in x
and v, hence x = reiθ v = eiφ. We take

gN(x, v) = eiNθI r≤N × e−iNφ,

such that

‖gN‖Lq
x L∞v

= N2/q.

As in the previous case, we define fN as

fN(x, v) =

(∫ ∞

0

g(x− vt, v) dt

)
× a(r/N),

for a a C∞
c function. We obtain

‖v · ∇xfN‖Lq
x L∞v

∼ N2/q. (4.16)
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Given any x = reiθ, if we choose v = ei(θ+π), then fN(x, v) is equal to N, so
that

‖fN‖Lp
x L∞v

∼ N1+2/p. (4.17)

Now given x and assuming that v is not parallel to x, then there are cancel-
lations in the integral defining fN . As a matter of fact, the order of fN is the
typical length on which there cannot be any cancellation. It is easy to see
that this length is N/r or N if r ≤ 1. Therefore, given the oscillation in ρN

coming from the eiNθ in gN

‖ρN‖W s,1
loc
∼ N1+s. (4.18)

As previously, this norm has to be bounded by the norm of gN to the power s
times the norm of fN to the power 1− s. Estimates (4.16), (4.17) and (4.18)
have as a consequence that s has to satisfy

1 + s ≤ 2s

q
+ 1− s+

2

p
− 2s

p
,

or

s ≤ 1/p

1− 1/q + 1/p
.

This again corresponds to the result predicted by Theorem 3.2.

Before ending this subsection, we would like to point out that these
examples do not rigorously allow us to conlude that the conditions p1 ≤
min(p2, p

∗
2), or the same for qi, are absolutely necessary. At least a coun-

terexample with an exponent p2 < 2 for f and an exponent q2 > 2 for g (or
the converse) is missing.

5 Application to Scalar Conservation Laws

The purpose of this chapter is to present a (relatively short and self-contained)
application of the previous results namely for kinetic formulations of scalar
conservation laws. Its scope is much too limited to give an overview of
conservation laws, or even scalar conservation laws, kinetic formulations or
regularity results for these equations. Hence many major contributions to
the field are not described. We refer the interested reader to [42] for a more
complete description of kinetic formulations, and to [11], [28], or [47] for
example for an introduction to the theory of conservation laws.
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Scalar conservation laws are hyperbolic equations on a scalar u(t, x) ∈ R

∂tu+∇x · (A(u(t, x))) = 0, t ≥ 0, x ∈ Rd,

u(t = 0, x) = u0(x),
(5.1)

where the flux A will always be regular here, namely A ∈ C2(R, Rd).
The characteristics for Eq. (5.1) are lines. More precisely if u is a regular

(C1) solution then
u(t, x+ ta(u0(x))) = u0(x),

where a(ξ) = A′(ξ). Of course this also shows that regular solutions cannot
exist in general for all times : if x = x1 + ta(u0(x1)) = x2 + ta(u0(x2)), then
u(t, x) would have to be equal to both u0(x1) and u0(x2).

This lack of regular solutions in large times requires the use of weak solu-
tions for which, unfortunately, there is no uniqueness; hence the introduction
of entropy to discriminate.

We present here the theory of entropy solutions through kinetic formu-
lations, as this is the simplest way to apply averaging lemmas. Other ap-
proaches are of course as valid; the more tradional being the use of vanishing
viscosity and Kruzkov entropy.

5.1 Kinetic Formulation

5.1.1 The definition

The kinetic formulation for scalar laws was first introduced in [38] (and at
the same time in [39] for isentropic gas dynamic).

Assume that u is a classical solution to (5.1). Define then

f(t, x, v) =


1 if 0 ≤ v < u(t, x),

− 1 if u(t, x) < v ≤ 0,

0 in the other cases.

(5.2)

Compute (in the sense of distribution)

∂tf = ∂tu δ(u(t, x)− v) = −a(u(t, x)) · ∇xu(t, x) δ(u(t, x)− v)

= −a(v) · ∇xu(t, x) δ(u(t, x)− v) = −a(v) · ∇xf,

and so f solves the free transport equation. When u is no more C1 this
computation cannot be done. Instead one may define
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Definition: A function u ∈ L1
loc(R+ × Rd) is an entropy solution to (5.1) if

and only if there exists a non negative measure m ∈ M1
loc(R+ × R2d), such

that the function f defined through (5.2) satisfies

∂tf + a(v) · ∇xf = ∂vm. (5.3)

Note that if f satisfies (5.3) then f is of bounded variation in time with
value in a negative Sobolev space (BVloc(R+, W

−1−0,1(Rd+1))). Therefore
the trace of f at t = 0 (t = 0+ more precisely) is well defined and since u
can be recovered through

u(t, x) =

∫
R
f(t, x, v) dv (5.4)

the value of u at t = 0 makes perfect sense and one may add an initial
condition to the definition.

Through the rest of this chapter, we will assume for simplicity the equiv-
alent of (2.5)

∃C, ∀ξ ∈ Rd, ∀τ, ∀ε ∈ R+, |{v ∈ R; |a(v) · ξ − τ | ≤ ε}| ≤ ε. (5.5)

This condition enables us to use the equivalent of Theorem 3.2. However
most of the theory would remain valid under the weaker assumption

∃C, ∀ξ ∈ Rd, ∀τ, ∀ε ∈ R+, |{v ∈ R; |a(v) · ξ − τ | ≤ ε}| ≤ εθ, (5.6)

for some θ > 0.
The main aim of this chapter is to prove the following

Theorem 5.1 Assume (5.5). For any u0 ∈ L1(Rd), there exists a unique
function u ∈ L∞(R+, L

1(Rd)), entropy solution to (5.1) with u(t = 0) = u0.

Moreover if u0 ∈ L∞ the solution satisfies u ∈ W
s,3/2
loc (R∗

+ × Rd) for any
s < 1/3.

5.1.2 Propagation of Lp norms

Let us begin by showing the easiest property of entropy solutions, namely

Proposition 5.1 Take any φ ∈ C2(R), convex and assume that∫
Rd

φ(u0(x)) dx <∞,
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then for any t > 0 and any entropy solution u with initial data u0∫
Rd

φ(u(t, x)) dx ≤
∫

Rd

φ(u0(x)) dx.

In particular if u0 ∈ Lp then u ∈ L∞(R+, L
p(Rd)).

Proof. Define φn a sequence converging toward φ with φ′′n ∈ Cc(R). Notice
that because of (5.2)∫

Rd

φn(u(t, x)) dx =

∫
Rd×R

φ′n(v) f(t, x, v) dx dv.

Now multiplying (5.3) by φ′n(v), integrating in space and velocity

d

dt

∫
Rd×R

φ′n(v) f(t, x, v) dx dv =

∫
Rd×R

φ′n(v) ∂vmdxdv

= −
∫

Rd×R
φ′′n(v)mdxdv ≤ 0,

because φ′′n ≥ 0 and m ≥ 0. Consequently∫
Rd

φn(u(t, x)) dx =

∫
Rd×R

φ′n(v) f(t, x, v) dx dv

≤
∫

Rd×R
φ′n(v) f(0, x, v) dx dv

=

∫
Rd

φn(u0(x)) dx,

and passing to the limit in n, one obtains the proposition. Notice that the
sign of the measure is crucial to get the estimate.

5.2 Existence by transport-collapse approximation

As usual the existence of a solution is obtained by an approximation proce-
dure. The classical one is the vanishing viscosity method, it however requires
the use of compensated compactness arguments or velocity averaging lemmas
with a full derivative in x (see 4.1). Here we instead use the transport and
collapse introduced by Y. Brenier (see for example [7], [51] for the conver-
gence of the method or [29] for other relaxation schemes).
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5.2.1 Presentation of the method

For any n we define the function fn recursively on the intervals ]i/n, (i+1)/n].
The approximate solution un is then always given by

un(t, x) =

∫
R
fn(t, x, v) dv. (5.7)

Step 0: Initialization We start with

fn(0, x, v) =


1 if 0 ≤ v < u0(t, x),

− 1 if u0(t, x) < v ≤ 0,

0 in the other cases.

Step 1: Transport. Given fn(i/n, x, v), fn on ]i/n, (i+1)/n[ is the solution
to

∂tfn + a(v) · ∇xfn = 0,

with the corresponding initial data at t = i/n. Finally un on ]i/n, (i+ 1)/n[
is given by (5.7). This explicitly gives

fn(t, x, v) = fn(i/n, x− a(v) (t− i/n), v).

Notice however that on this interval, one does not necessarily have the con-
straint (5.2) as there is nothing in the free transport equation to ensure it.

Step 2: Collapse We introduce the non linear collapse operator L on the
functions of the variable v by

Lf(v) =


1 if 0 ≤ v <

∫
R
f(v) dv,

− 1 if

∫
R
f(v) dv < v ≤ 0,

0 in the other cases.

(5.8)

Then one defines

fn((i+ 1)/n, x, v) = L (fn(i/n, x− a(v)/n, v)) = Lfn((i+ 1)/n−, x, v),

where fn((i + 1)/n−, x, v) is the limit of fn(t, x, v) for t → (i + 1)/n with
t < (i+ 1)/n.

50



Therefore one recovers for all i

fn(i/n, x, v) =


1 if 0 ≤ v < un(i/n, x),

− 1 if un(i/n, x) < v ≤ 0,

0 in the other cases.

(5.9)

Finally let us point out the main property of the collapse operator. For any
f with sup |f | ≤ 1 and any regular function φ(v) with φ′(v) ≥ 0∫

R
φ(v)Lf(v) dv ≤

∫
R
φ(v) f(v) dv. (5.10)

The proof of this estimate is not given here (see [7]).

5.2.2 Convergence to an entropy solution

In the sense of distribution fn satisfies

∂tfn + a(v) · ∇xfn = gn, (5.11)

with

gn =
∞∑
i=1

δ(t− i/n) (fn(i/n, x, v)− fn(i/n−, x, v)).

Moreover

sup |fn(0, x, v)| = 1,

∫
Rd+1

|fn(0, x, v) dx dv =

∫
Rd

u0(x) dx <∞,

and by induction on the intervals [i/n, (i+ 1)/n], for any t > 0

‖fn(t, ., .)‖L1(Rd+1) = ‖un(t, .)‖L1(Rd) = ‖u0‖L1 , sup
x,v

|fn(t, x, v)| = 1.

Hence we may extract a converging subsequence, still denoted fn,

fn −→ f, w − ∗L∞.

And in addition we may use (5.10) to deduce that for any test function
Φ(x, v) with ∂vΦ ≥ 0∫

Rd+1

Φ(x, v) (fn(i/n, x, v)− fn(i/n−, x, v)) dx dv ≤ 0.
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Hence there exists a non negative measure Mi,n(x, v) such that

(fn(i/n, x, v)− fn(i/n−, x, v)) = ∂vMi,n(x, v).

Obviously this implies that

gn = ∂vmn, mn ≥ 0, (5.12)

with

mn(t, x, v) =
n∑

i=1

δ(t− i/n)Mi,n(x, v).

Now define ΦM

ΦM(v) = v for |v| ≤M,

ΦM(v) = M for v ≥M,

ΦM(v) = −M for v ≤ −M,

Multiplying eq. (5.11) by ΦM and integrating on [0, T ]× Rd+1 , one gets∫
Rd+1

ΦM(fn(T, x, v)− fn(0, x, v)) dx dv = −
∫ T

0

∫
Rd+1

∂vΦM dmn(t, x, v).

So from the L1 estimate on fn∫ T

0

∫ M

−M

∫
Rd

dmn(t, x, v) ≤ 2M‖fn(t, ., .)‖L1 ≤ 2M‖u0‖L1(Rd).

Therefore still extracting a subsequence, we obtain

mn −→ m, w − ∗M1
loc

with m a non negative measure in M1
loc(R+×Rd+1). The limit f then satisfies

∂tf + a(v) · ∇xf = ∂vm.

It remains to show that the constraint (5.2) holds. Assuming that un is
compact in L1 then this follows from (5.9) and we are done.
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5.2.3 Compactness of un

Take a function Φ ∈ C∞(R) satisfying

Φ(v) = 1 if |v| ≤ 1, Φ(v) = 0 if |v| ≥ 2, 0 ≤ Φ(v) ≤ 1 ∀v.

Then define

uR
n =

∫
R
fn(t, x, v) Φ(v/R) dv.

This uR
n is an average of fn as defined by Eq. (3.2). Moreover we have

∂tfn + a(v) · ∇xfn = ∂vmn,

with mn bounded in any W−r,p([0, T ] × Rd × [−R, R]) for r > 0 and p <
(1− r/d)−1 as

‖mn‖W−r,1([0, T ]×Rd×[−R, R] ≤ Cr

∫
[0, T ]×Rd×[−R, R]

dmn ≤ Cr R ‖u0‖L1 .

Next the supremum of fn is less than 1 so fn is locally in any Lp and in
particular

‖fn‖L2([0, T ]×B(0,K)×[−R, R]) ≤ C
√
TKR.

Using Theorem 3.1, one gets that uR
n belongs to W

s,5/3
loc (R+ × Rd) for any

s < 1/5 with
‖uR

n‖W s,5/3([0, T ]×B(0,K)) ≤ C(s, T,K,R), (5.13)

and therefore uR
n is locally compact so that

uR
n −→ uR =

∫
R
f(t, x, v) Φ(v/R) dv. in L

5/3
loc . (5.14)

Now as u0 ∈ L1 there exists an even convex function χ ∈ C2(R) with
χ(0) = 0, χ(ξ)/|ξ| −→ +∞ as |ξ| → +∞ and such that∫

Rd

χ(u0(x)) dx <∞.

Note that from the definition of fn this implies that∫
Rd×R

χ′(v) fn(t = 0, x, v) dv dx =

∫
Rd

χ(u0(x)) dx <∞.
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Indeed assume that u0(x) ≥ 0 (the negative case being the same as χ is even)
then ∫

R
χ′(v) fn(t = 0, x, v) dv =

∫ u0(x)

0

χ′(v) dv = χ(u0(x)).

Multiplying Eq. (5.11) by χ′ and integrating, one gets from (5.12)

d

dt

∫
Rd×R

|χ′(v)| |fn(t, x, v)| dv dx =
d

dt

∫
Rd×R

χ′(v) fn(t, x, v) dv dx

=

∫
Rd×R

gn χ
′ dx dv = −

∫
Rd×R

mn χ
′′(v) dv dx ≤ 0.

This shows that∫
Rd

|un − uR
n | dx ≤

∫
Rd

∫
|v|≥R

|fn(t, x, v)| dv

≤ 1

|χ′(R)|

∫
Rd×R

χ′ fn dx dv ≤
1

|χ′(R)|

∫
Rd

χ(u0(x)) dx,

and so un− uR
n in L1 goes to 0 as R tends to infinity, uniformly in n. From

the compactness of uR
n (5.14), we deduce the compactness of un in L1

loc and
we are done.

The heart of the argument here is the compactness provided by averaging
lemma. Non optimal averaging lemmas would be enough though.

5.3 Uniqueness and propagation of BV bound

Uniqueness for scalar conservation was first obtained in [34]. We give here a
formal argument corresponding to the proof in [43] which uses directly the
kinetic formulation.

5.3.1 Uniqueness

Consider two entropy solutions u1 and u2 to the scalar law, then

Proposition 5.2 (L1 contractivity) We have for any t > 0

‖u1(t, .)− u2(t, .)‖L1(Rd) ≤ ‖u0
1 − u0

2‖L1(Rd).
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This of course implies the uniqueness of the solution but it does even more
than that (see the next subsection).

Denote f1 and f2 the two functions defined from u1 and u2 by (5.2) and
m1, m2 the measures in (5.3). For simplicity assume that u1 and u2 are non
negative and hence so are f1 and f2.

First note that as a consequence f 2
i = fi. The function f 2

i solves the same
equation but multiplying (5.3) by 2fi we also get

∂tf
2
i + a(v) · ∇xf

2
i = 2fi ∂vmi.

Thus
2fi ∂vmi = ∂vmi,

and ∫
R
fi ∂vmi dv = 0. (5.15)

Of course this is only formal. The rigourous argument requires the use of
convolution as in [43].

Now use (5.3) for f1 and f2 and compute

d

dt

∫
Rd×R

|f1 − f2|2 dx dv =

∫
Rd×R

(f1 − f2)(∂vm1 − ∂vm2)

= −
∫

Rd×R
(f1 ∂vm2 + f2 ∂vm1),

by (5.15). As fi is non increasing∫
Rd×R

f1 ∂vm2 dx dv = −
∫

Rd×R
∂vf1m2 dx dv ≥ 0,

and the same is true for the other term. Finally

d

dt

∫
Rd×R

|f1 − f2|2 dx dv ≤ 0.

To conclude note that |f1 − f2| is equal to 0 if 0 ≤ v ≤ u1 and 0 ≤ v ≤ u2

or if v > u1 and v > u2; it is equal to 1 if u1 < v < u2 or u2 < v < u1.
Therefore ∫

Rd×R
|f1 − f2|2 dx dv =

∫
Rd

|u1 − u2| dx,

and
d

dt

∫
Rd

|u1 − u2| dx ≤ 0.

Again this computation is only formal.
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5.3.2 Propagation of BV norm

Take any h in Rd and apply Prop. 5.2 for a solution u(t, x) and the solution
u(t, x+ h) which corresponds to the initial data u0(x+ h), it shows that∫

Rd

|u(t, x+ h)− u(t, x)| dx ≤
∫

Rd

|u0(x+ h)− u0(x)| dx,

and so ∫
Rd

|u(t, x+ h)− u(t, x)|
|h|

dx ≤
∫

Rd

|∇xu
0(x)| dx. (5.16)

Hence as a corollary

Corollary 5.1 Let u be an entropy solution to (5.1) and assume that u0 ∈
BV (Rd) then u(t, .) ∈ BV (Rd) and

‖u(t, .)‖BV ≤ ‖u0‖BV .

Note that typically, there is no equality (the inequality is strict). Indeed the
equality holds only as long as there is a strong solution.

There are many ways to prove this result. The regularity will typically
be shown to hold uniformly for a sequence of approximating solutions. If one
considers the sequence fn obtained through transport-collapse, it is easy to
check that

‖fn(t, ., .)‖BV (Rd, M1(R)) = ‖fn(i/n+, ., .)‖BV (Rd, M1(R)), ∀t ∈ [i/n, (i+1)/n[,

and that the collapse operator contracts the BV norm or

‖fn(i/n+, ., .)‖BV (Rd, M1(R)) ≤ ‖fn(i/n−, ., .)‖BV (Rd, M1(R)).

One then gets that

‖fn(t, ., .)‖BV (Rd, M1(R)) ≤ ‖fn(0, ., .)‖BV (Rd, M1(R)) = ‖u0‖BV (Rd),

and from that an estimate on the BV norm of un.

Finally let us point out that the proof through uniqueness given here is
interesting because if one goes back to the estimate on f , it bounds∫

Rd×R

|f(t, x+ h, v)− f(t, x, v)|2

|h|
dx dv,
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which is not the BV norm of f as it would be natural but looks in fact like
the H1/2 norm on f . Of course as u is the average of f

‖u(t, .)‖BV = ‖f(t, ., .)‖BVx(M1
v ),

and this in turn dominates any Hs
x(L

2
v) norm of f with s < 1/2 (by interpo-

lation as f is also BV in velocity by its definition). However it is only the
very specific form of f which provides the bound the other way around.
In fact the argument in section 5.3.1 could be used to directly bound

‖f‖2
Hs

x(L2
v) =

∫
R2d×R

|f(t, x, v)− f(t, y, v)|2

|x− y|2s+d
dx dy dv.

5.4 Regularization

The first section proves a regularization of the solution in Lp. Then averaging
lemmas may be directly applied to get the regularization of Theorem 5.1. We
finish by showing Olĕınik BV regularizing property and with some comments
on other (non Sobolev) regularity properties.

5.4.1 Dispersion estimates and Lp regularity

As all other regularizing effects shown here, this one relies only on the proper-
ties of free transport. The use of dispersion estimates on the kinetic equation
to improve the Lp norm of u was already performed in [38] (see also [42] where
a simple illustration is given and [44] or [19] for a more complete treatment
but purely for kinetic equations).

Let us first take the simple example

∂tf + v · ∇xf = 0, f(t = 0, x, v) =
1

1 + |v|k
1

1 + |x|l
.

Then the solution is simply

f(t, x, v) =
1

1 + |v|n
1

1 + |x− v t|l
.

Therefore although
∫

(1 + |v|k) f(t = 0) dv ∈ L1
loc(Rd) only for k < n− d, we

have that
∫

(1+ |v|k) f(t) dv ∈ L1
loc(Rd) for any t > 0 and for all k < n+ l−d.

This shows that the solution enjoys additional decay in velocity, depend-
ing on its decay in space.

57



The same feature is true for the solution f to (5.3) with the additional
remark that moments in velocity imply Lp norm for u. In order to simplify
the exposition, let us assume that

|v| |a′(v)| ≤ C|a(v)|, C |a(v)| ≥ |v|l, for |v| large enough. (5.17)

Note that from (5.6), one would expect l = θ but of course (5.6) does not
imply any estimate like (5.17) (which is not strictly necessary in addition).
Now we have

Proposition 5.3 Assume that for some p ≥ 1, u0 ∈ Lp(Rd), then for any
t > 0, u(t, .) ∈ Lp+l

loc (Rd) and for any k > 1∫ T

0

∫
Rd+1

|v|p+l−1

(1 + |x|)k
|f(t, x, v)| dx dv dt ≤ C

∫
Rd

|u0(x)|p dx. (5.18)

Proof. By Eq. (5.3) we have

f(t, x, v) = f(0, x− a(v)t, v) +

∫ t

0

∂vm(t− s, x− a(v) s, v) ds

Therefore for t > 0∫ T

0

∫
Rd+1

|v|p+l−2

(1 + |x|)k
vf(t, x, v) dx dv dt =

∫ T

0

∫
Rd+1

|v|p+l−1

(1 + |x|)k
|f(t, x, v)|

=

∫ T

0

∫
Rd+1

|v|p+l−1

(1 + |x|)k
|f(0, x− a(v)t, v)| dx dv dt

+

∫ T

0

∫ t

0

∫
Rd+1

|v|p+l−2

(1 + |x|)k
v ∂vm(t− s, x− a(v)s, v) dx dv ds dt.

On the one hand, for k > 1, by (5.17)∫ T

0

∫
Rd+1

|v|p+l−1

(1 + |x|)k
|f(0, x− a(v)t, v)| dx dv dt

=

∫ T

0

∫
Rd+1

|v|p+l−1

(1 + |x+ a(v) t|)k
|f(0, x, v)| dx dv dt

≤ C

∫
Rd+1

|v|p−1f(0, x, v)

∫ T

0

|a(v)|
(1 + |x+ a(v) t|)k

dt dx dv

≤ C

∫
Rd+1

|v|p−1f(0, x, v) dx dv = C

∫
Rd

|u0(x)|p dx.
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On the other hand with a change of variable, and an integration by parts∫ T

0

∫ t

0

∫
Rd+1

|v|p+l−2

(1 + |x|)k
v ∂vm(t− s, x− a(v)s, v) dx dv ds dt

=

∫ T

0

∫ t

0

∫
Rd+1

|v|p+l−2

(1 + |x+ a(v) s|)k
v ∂vm(t− s, x, v) dx dv ds dt

= −(p+ l)

∫ T

0

∫ t

0

∫
Rd+1

|v|p+l−1

(1 + |x+ a(v) s|)k
m(t− s, x, v) dx dv ds

− k

∫ T

0

∫ t

0

∫
Rd+1

|v|p+l−1 a′(v) · (x+ a(v)s)

(1 + |x+ a(v) s|)k+1 × |x+ a(v) s|
m(t− s, x, v) dx dv ds dt

≤ C k

∫ T

0

∫ T−s

0

∫
Rd+1

|v|p+l−2

(1 + |x+ a(v) s|)k+1
m(r, x, v) dx dv dr ds

as m is non negative and by (5.17). With the same argument as for f(0) one
concludes that∫ T

0

∫ t

0

∫
Rd+1

|v|p+l−2

(1 + |x|)k
v ∂vm(t− s, x− a(v)s, v) dx dv ds dt

≤ C k

∫ T

0

∫
Rd+1

|v|p−2m(r, x, v)

∫ T

0

|a(v)|
(1 + |x+ a(v) s|)k+1

ds dx dv dr

≤ C k

∫ T

0

∫
Rd+1

|v|p−2m(r, x, v) dx dv dr.

Notice that from the estimate on the propagation of the Lp bound for u∫
Rd

|u(t, x)|p dx+

∫ t

0

∫
Rd+1

|v|p−2m(t, x, v) dx dv dt ≤
∫

Rd

|u0(x)|p dx,

so finally∫ T

0

∫
Rd+1

|v|p+l−1

(1 + |x|)k
|f(t, x, v)| dx dv dt ≤ C

∫
Rd

|u0(x)|p dx.

It is in fact conjectured that with suitable assumptions on a, then the solution
u becomes immediately bounded. This is still unproved however. If one could
prove an estimate like∫ T

0

∫
Rd+1

|v|p+l−1

(1 + |x|)k
|f(t, x, v)| dx dv dt ≤ C

∫
Rd

|u0(x)|p

(1 + |x|)k′
dx,
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then by boostraping it, it would show that the solution belongs to Lp for any
p < ∞. But notice that the argument of Prop. 5.3 may precisely only be
used once because it requires the full Lp of u0 and not only a weighted Lp.

5.4.2 Regularization by averaging lemma

Define as before for a regular Φ

uR =

∫
R
f(t, x, v) Φ(v/R) dv.

Note that from the definition of f (5.2)∫
R
|∂vf(t, x, v)| dv = 2.

Indeed (at least for a continuous u), assuming for simplicity that u(t, x) ≥ 0

∂vf(t, x, v) = δ(v − u(t, x))− δ(v),

integrating this gives the claimed estimate, which is then easy to extend by
density for any u ∈ L1

loc.
So that

‖f‖L∞(R+×Rd,BVloc(R)) ≤ C.

As on the other hand ‖f‖L∞(R+×Rd+1) = 1, by interpolation for any s < 1/2

‖f‖L∞(R+×Rd, Hs(R)) ≤ C.

Because ‖f‖L∞(R+, L1(Rd+1)) = ‖u‖L∞(R+, L1(Rd)), with a last interpolation for
any T > 0

‖f‖L2([0, T ]×Rd, Hs(R)) ≤ C (‖u‖L∞(R+, L1(Rd)).

Since m is a locally bounded measure, it belongs to W θ,1
loc (R+×Rd+1) for any

θ < 0. Thanks to (5.5), we may apply Theorem 3.1 and get

uR ∈ W s,3/2
loc (R+ × Rd+1), ∀ s < 1/3.

Now if u ∈ L∞ then for R > ‖u‖L∞ , uR = u and

u ∈ W s,3/2
loc (R+ × Rd+1), ∀ s < 1/3. (5.19)

This is the regularity given in Theorem 5.1
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Proposition 5.4 Assume that u0 ∈ L1 ∩ L∞(Rd) and that u is the entropy

solution to (5.1). Then if (5.5) holds, u ∈ W s,3/2
loc (R+×Rd) for any s < 1/3.

If u is only in Lp, then the argument would be more complicated and we
only give a sketch. It is necessary to do another interpolation using R as a
parameter, namely

u = uR + vR, vR =

∫
R
(1− Φ(v/R)) f dv.

The control on vR is simple, for any T > 0, K > 0,

‖vR‖L1([0, T ]×B(0,K)) ≤
∫ T

0

∫
B(0,K)

∫
|v|≥R

f dv dx dt

≤ 1

Rp−1

∫ T

0

∫
B(0,K)

∫
R
|v|p−1 f dv dx dt ≤ 1

Rp−1
‖u‖p

Lp([0, T ]×B(0,K)).

So it would remain to bound the behaviour of ‖uR‖W s,3/2 in terms of R. That
is more delicate because it depends on the behaviour of a(v) for large v so
the final result also depends on this behaviour.

Let us only give the example where d = 1 and v = a(v). Define then
fR(t, x, v) = Rf(t/R, x,R v) and mR(t, x, v) = R−1m(t/R, x,R v)

∂tfR + v∇xfR = ∂tf +Rv∇xf = ∂vmR,

and

uR(t/R, x) =

∫
R

Φ(v/R) f(t/R, x, v) dv =

∫
R

Φ(v) fR dv.

Moreover

‖uR‖3/2

W s,3/2([0, T ]×B(0,K))
≤ (1 +R−1)3/2

R
‖uR(t/R, x)‖3/2

W s,3/2([0, RT ]×B(0,K))

≤
R∑

k=1

(1 +R−1)3/2

R
‖uR(t/R, x)‖3/2

W s,3/2([T (k−1), Tk]×B(0,K))
.

By Theorem 3.2, as [T (k − 1), Tk] is of length T , for r < 1/2

‖uR(t/R, x)‖W s,3/2([T (k−1), Tk]×B(0,K)) ≤‖fR‖1−s
L2([T (k−1), Tk]×B(0,K), Hr(R))

×‖mR‖s
M1([T (k−1), Tk]×B(0,K)×[−2, 2]).
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Note that as r < 1/2

‖fR‖2
L2([T (k−1), Tk]×B(0,K), Hr(R)) ≤ R2

∫ Tk/R

T (k−1)/R

∫
B(0,K)

∫
R
|∂r

vf(t, x, v)|2

≤ RK T ‖f‖2
L∞(R+×R, Hr(R)) ≤ C R.

With the same computation∫ Tk

T (k−1)

∫
B(0,K)

∫ 2

−2

mR(t, x, v) dv dx dt

≤ R−1

∫ Tk/R

T (k−1)/R

∫
B(0,K)

∫
|v|≤2R

m(t, x, v) dv dx dt.

And from the computation on the propagation of the Lp norm of u (see the
corresponding subsection), one deduces that∫ T

0

∫
R

∫
R
|v|p−2m(t, x, v) dv dx dt ≤ ‖u0‖.

So finally with p̃ = min(2, p)∫ Tk

T (k−1)

∫
B(0,K)

∫ 2

−2

mR(t, x, v) dv dx dt ≤ C R2−p̃−1,

and

‖uR(t/R, x)‖W s,3/2([T (k−1), Tk]×B(0,K)) ≤ C R1/2−s/2+2s−sp̃−s = C R1/2+s/2−sp̃.

Concluding

‖uR‖W s,3/2([0, T ]×B(0,K)) ≤ C R1/2−s/2+2s−sp̃−s = C R1/2+s/2−sp̃,

so that using the real method of interpolation described earlier, we get that
u ∈ W r,q

loc with r < (p− 1)/(2(p− sp̃− 1/2+ s/2)) and 1/q = (1− 2r)+4r/3.

5.4.3 Olĕınik BV regularization

It is possible to show that the solution immediately becomes BV in the
particular case of a strictly convex flux in dimension 1: inf a′(v) > 0.
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The original argument was given in [41] for the vanishing viscosity ap-
proximation, with first proving a semi-Lipschitz bound on u. Here we instead
use the transport collapse scheme described in subsection 5.2.1.

To simplify assume that

a(v) = v, u0 ≥ 0, u0 ∈ L∞(R). (5.20)

This is not a huge hypothesis as anyway the computation can only be done
for strictly increasing a(v).

The following uniform bound holds for the sequences fn and un defined
in 5.2.1

Proposition 5.5 For any t > 0, any R > 0

‖t ∂xun(t, .)− 1‖M1([−R, R]) ≤ 2R‖u0‖L∞ + 2t ‖u0‖2
L∞ .

Proof. We argue by induction on every interval ]i/n, (i + 1)/n]. Let us
start with the first ]0, 1/n]. For t < 1/n, fn is simply the solution to the
free transport and hence

fn(t, x, v) = f(0, x− vt, v).

So

∂xun(t, x) =

∫
R
∂xfn(0, x− vt, v) dv

=

∫
R
(−1

t
∂v(fn(0, x− vt, v)) +

1

t
(∂vfn)(0, x− vt, v)) dv

=
1

t

∫
R
(∂vfn)(0, x− vt, v) dv.

As such for 0 < t < 1/n, since f(0) satisfies (5.2)

t ∂xun(t, x)−1 =

∫
R
(δ(v)−δ(v−u0(x−vt))) dv−1 = −

∫
R
δ(v−u0(x−vt)) dv.

Therefore ∫ R

−R

|∂xun(t, x)− 1| dx =

∫
R

∫ R+vt

−R+vt

δ(v − u0(x)) dx dv

≤
∫ R+‖u0‖L∞ t

−R−‖u0‖L∞ t

∫
R
δ(v − u0(x)) dx dv ≤ 2R ‖u0‖L∞ .
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As un is continuous in time at t = i/n (the collapse operator only modifies
fn), the same estimate is true at t = 1/n.

Next, assume that the estimate is true at time t = i/n. Define

gn(i, x, v) = fn(i/n+, x+ v i/n, v),

and notice that

∂vgn = (∂vfn)(i/n+, x+ v i/n, v) +
i

n
∂xfn(i/n+, x+ v i/n, v).

On the other hand for t ∈]i/n, (i+ 1)/n]

un(t, x) =

∫
R
fn(t, x, v) dv =

∫
R
gn(i, x− vt, v) dv,

so with the same argument as before

∂xun =
1

t

∫
R
(∂vgn)(i, x− vt.v) dv =

1

t

∫
R
(∂vfn)(i/n+, x+ v (i/n− t), v)

+
1

t

i

n

∫
R
∂xfn(i/n+, x+ v (i/n− t), v) dv.

By the definition of fn(i/n+) (5.8), one gets the induction relation

t ∂xun − 1 =

∫
R
(δ(v)− δ(v − un(i/n, x+ v (i/n− t)))) dv − 1

+
i

n

∫
R
∂xun(i/n, x+ v (i/n− t), v) δ(v − un(i/n, x+ v (i/n− t))) dv

=

∫
R
(
i

n
∂xun(i/n, x+ v (i/n− t))− 1) δ(v − un(i/n, x+ v (i/n− t))) dv.

(5.21)

Consequently for i/n < t < (i+ 1)/n∫ R

−R

|t ∂xun − 1| dx ≤
∫ R+(t−i/n) ‖u0‖L∞

−R−(t−i/n) ‖u0‖L∞

∫
R
|i/n∂xun(i/n, x)− 1|

δ(v − un(i/n, x)) dv dx

≤
∫ R+(t−i/n) ‖u0‖L∞

−R−(t−i/n) ‖u0‖L∞

|i/n∂xun(i/n, x)− 1| dx

≤ 2(R + (t− i/n) ‖u0‖L∞) ‖u0‖L∞ +
2 i

n
‖u0‖2

L∞

≤ 2R‖u0‖L∞ + 2 t‖u0‖L∞ ,
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because we have assumed that u(i/n, x) satisfies the estimate.

5.4.4 Comments on the regularization effect

In dimension one there is a wide gap between the previous BV regularity and
the 1/3 derivative provided by averaging lemmas. So of course it is natural
to wonder whether in higher dimensions (or for non convex fluxes) one could
not improve the result of averaging lemmas and possibly reach BV , which
for many reasons would be a crucial step.

The answer is not known for entropy solutions. However there is a coun-
terexample if one considers the larger class of solutions with bounded entropy
production. Those are u such that the function f defined through (5.2) solves
(5.3) with m a bounded measure (but not necessarily non negative). Obvi-
ously there is no uniqueness in this case. For those solutions an example
detailed in [12] shows that the 1/3 derivative is optimal.

What is missing is a precise and careful use of the sign of m (this is true
as well for the Lp regularization). The kind of techniques that are used for
averaging lemmas do not make that easy however, and again it is not sure
at all that the regularity can be improved anyway. We refer to [8] for more
on the regularity of scalar conservation laws (not necessarily with averaging
lemmas).

Regularity in Sobolev spaces is not the only interesting property of so-
lutions. For instance BV regularity is interesting over W 1/3,3/2 because, in
particular, it provides the existence of strong traces of the solution. Instead
of trying to get BV bound, one may directly study the traces though. This
kind of approach is better able to take advantage of the structure of Eq.
(5.3). So for example, strong traces are proved to exist for the solution in
[52] (even for solutions with only bounded entropy). More recently it was
shown that the solutions enjoy a “BV like” structure (see [10]).

Finally let us mention that kinetic formulations and the corresponding
averaging results are not limited to scalar conservation laws: See [39] or [30]
for other examples, [49] for a class of hyperbolic equations with possibly
degenerate second order terms, or again [42].
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