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Abstract

We provide a result on the rate of convergence to equilibrium for
solutions of the Becker–Döring equations. Our strategy is to use the
energy/energy–dissipation relation. The main difficulty is the struc-
ture of the equilibria of the Becker–Döring equations, which do not
correspond to a gaussian measure, such that a logarithmic Sobolev–
inequality is not available. We prove a weaker inequality which still
implies for fast decaying data that the solution converges to equilib-
rium as e−ct1/3

.

Keywords: Becker–Döring equations, rate of convergence to equi-
librium, entropy–dissipation methods

1 Introduction

1.1 The Becker–Döring equations

The Becker–Döring equations are a system of kinetic equations to describe
the dynamics of cluster formation in a system with identical particles. They
can be used for example to model a variety of phenomena in the kinetics of
phase transitions, such as the condensation of liquid droplets in a supersat-
urated vapor.
In the following clusters are characterized by their size l, which denotes the
number of particles in the cluster. The concentration of l–clusters at time
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t will be denoted by cl(t), and we assume that the clusters are uniformly
distributed, such that there is no dependence on a space variable. The main
assumption in the Becker–Döring theory is that clusters can change their
size only by gaining or shedding one particle. Hence, the rate of change in
the concentration of clusters with at least two particles is given by

d

dt
cl(t) = Jl−1(t)− Jl(t) for l ≥ 2, (1.1)

where Jl denotes the net rate at which l–clusters are converted into (l + 1)–
clusters. We need a different equation for the rate of change of 1–clusters, the
free particles, which are also called monomers in the sequel. In the classical
Becker–Döring theory [4] the concentration of monomers is just given by a
constant. In the following we are however interested in a modified version
introduced in [5, 15], where it is assumed that the total density of particles
is conserved, i.e.

ρ :=
∞∑
l=1

lcl(t) ≡ const. for all t ≥ 0. (1.2)

This implies with (1.1) that

d

dt
c1(t) = −J1 −

∞∑
l=1

Jl. (1.3)

The constitutive relation which gives Jl in terms of cl is given by

Jl(t) = alc1(t)cl(t)− bl+1cl+1(t), (1.4)

with positive kinetic coefficients al, bl which describe the rate at which l–
clusters catch and respectively release a monomer.
The Becker–Döring equations are a special case of the so–called discrete
coagulation–fragmentation models which have numerous applications in
many areas of pure and applied sciences; for an overview of this topic we
refer to [8].

Existence of positive solutions of the Becker–Döring equations has been
shown in the seminal mathematical paper [3] for data with finite density
and coefficients satisfying al = O(l). Uniqueness was shown only for a
smaller class of coefficients, but more recently the uniqueness result has been
extended to a larger class of coefficients in [10]. The main result in [3] is on
the convergence of solutions to equilibrium, which is based on exploiting a
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suitable Lyapunov functional, in physical terms the free energy density. It
turns out that equilibrium solutions cρ exist for densities 0 ≤ ρ ≤ ρs, where
ρs is the density of saturated vapor. If ρ ≤ ρs, then the solution of the
Becker–Döring equations converges strongly to cρ. If ρ > ρs, the solution
converges weak* to cρs and the excess density ρ − ρs corresponds to the
formation of larger clusters as time proceeds, i.e. to a phase transition. The
existence of metastable states in this case has been established in [13]. It is
shown that for moderately small ρ−ρs there are data for which the solution
stays at least exponentially long in (ρ− ρs)−1 close to the data before large
clusters are formed. Numerical simulations performed in [6] indicate in fact
that for generic data the solution always passes through a metastable state.
For more details on several aspects of the Becker–Döring equations we also
refer to the review article [17].

1.2 The aim of this paper

For the subcritical case ρ < ρs, metastability has neither been observed
nor is it expected. However, to our knowledge there exist no predictions or
results on the details of the asymptotic behavior in this case. Even for the
related general coagulation–fragmentation models, discrete or continuous,
there seems presently only one result available. In [1] it is shown for the
continuous pure coagulation equations with constant coefficients that the
solution converges exponentially fast to equilibrium. The analysis in [1]
seems however not easily extendable to other equations, since it relies on
certain exact differential equations satisfied by global quantities.

It is the aim of this paper to provide a result on the speed of convergence to
equilibrium of solutions to the Becker–Döring equations in the subcritical
case ρ < ρs. Our strategy to provide an explicit rate of convergence is moti-
vated by so–called entropy– or energy–dissipation methods, which are also
one ingredient in [1] and have successfully employed to a variety of problems,
in particular in the kinetic theory of gases. In the present situation we face
two difficulties. The first lies in the nonlocal structure of the equations, the
second, more fundamental, in the structure of the equilibrium solution of
the Becker–Döring equation. It has the structure of a general exponential
measure, for which so–called logarithmic Sobolev–inequalities do not hold,
which are the crucial ingredient in entropy–dissipation methods. Neverthe-
less, we can prove a weaker inequality, which gives for fast decaying data a
rate of convergence to equilibrium as e−ct1/3

.

In Section 1.3 we first recall in more detail the structure of equilibrium
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solutions and the results on convergence to equilibrium. Section 1.4 reviews
the general idea in entropy–dissipation methods and explains the difficulties
we face in the Becker–Döring model. Our main result is given in Section
2 as well as an outline of the main idea of the proof. Finally, the detailed
proofs are the content of Section 3.

1.3 Convergence to equilibrium

In order to characterize equilibrium states and to review the results on con-
vergence it is convenient to introduce already at this stage the assumptions
on the kinetic coefficients which will be used throughout this paper. We
consider a class of coefficients which satisfy the following hypotheses:

(H1) al ≥ 1, bl ≥ 1 for all l.

(H2) al = O(l), bl = O(l).

(H3) Let Q1 = 1 and bl+1Ql+1 = alQl for l > 1.

We assume liml→∞ Q
1/l
l = 1

zs
with 0 < zs < ∞.

(H4) alzs ≤ min(bl, bl+1)

Typical examples of coefficients which appear e.g. in the theory of phase
transitions [13] are

al = a1l
α for some 0 < α < 1, (1.5)

bl = al

(
zs +

q

lγ

)
where zs > 0, q > 0 and 0 < γ < 1. (1.6)

For example, in three dimensions, if the transport of monomers is dominated
by diffusion and clusters are spherical, the typical exponent for coagulation
is α = 1/3. The Gibbs–Thomson formula gives one obtains γ = 1/3, zs

is the density of monomers in equilibrium with a flat surface and q is a
parameter proportional to the surface tension. We also refer to [14] for a
derivation of the coefficients from an Ising model with Kawasaki dynamics.
Equilibrium solutions cl are given by the condition

Jl = 0 for l ≥ 1.

which implies
cl = Qlz

l, l ≥ 1,

where Ql is defined as in (H3) and z > 0 is a parameter. The equilibrium
density

∑∞
l=1 lQlz

l is bounded for z < zs due to (H3).
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In the following we denote

ρs :=
∞∑
l=1

lQlz
l
s, (1.7)

which might be finite or infinite. This quantity can be interpreted as the
density of saturated vapor.
Convergence of solutions to equilibrium under different assumptions on co-
efficients and data is established in [3, 2, 16] and is based on the fact that
there is a Lyapunov functional, the free energy density, which is given by

V (c(t)) :=
∞∑
l=1

cl

(
ln

(
cl

Ql

)
− 1

)
.

In fact, it holds

d

dt
V (c(t)) = −

∞∑
l=1

Jl ln
(

alc1cl

bl+1cl+1

)
≤ 0. (1.8)

Since V is bounded below, it follows that Jl → 0 as t → ∞ such that
cl → Qlz

l for some z. The question remains, what is z and what happens
to density conservation (1.2) in the limit as t →∞. It is shown under some
assumptions on coefficients and data in [3, 2, 16] that if ρ < ρs then

lim
t→∞

∞∑
l=1

l|cl(t)−Qlz
l| → 0

where z is such that ρ =
∑∞

l=1 lQlz
l. If ρs < ∞ the same holds for ρ = ρs.

However, if ρ > ρs, we have

lim
t→∞

cl(t) = Qlz
l
s for each l ≥ 1,

but the density drops to ρs in the limit t →∞. The so called excess density
is contained in larger and larger clusters as times evolves.
For the coefficients satisfying (H1)-(H4), this result has been obtained in [16]
for data satisfying

∑∞
l=0 l2cl(0) < ∞ and V (c(0)) < ∞. These assumptions

will in particular be satisfied by the data considered in this paper (see (2.1)).

1.4 Entropy dissipation methods

Our strategy to obtain an explicit rate of convergence to equilibrium is
inspired by so called entropy–dissipation methods, which have in particular
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been developed in the kinetic theory of gases. The advantage of an entropy
dissipation method is that it is not necessary to linearize the equation and
even for a linear equation it does not require to work in too regular spaces
for the solutions.
Let us briefly recall some examples where the method has been successfully
employed and compare it to the situation in the Becker–Döring theory. For
more details, in particular within the framework of collisional kinetic theory,
see also the survey article [20].
The simplest example of the application of such methods is the spatially
homogeneous Fokker-Planck equation for the velocity distribution f , i.e.

∂tf(t, v) = ∇v · (∇vf + vf), t ∈ R+, v ∈ Rd. (1.9)

This equation models for instance the dynamics of particles undergoing ran-
dom collisions over fixed obstacles.
The equilibrium state for Equation (1.9) is the gaussian M = e−v2/2. Hence
if f is correctly normalized at the initial time, for instance

∫
f(0, v)dv =∫

e−v2/2dv, then it should converge toward M in latter times.
Equation (1.9) admits a Lyapunov functional, similar to the free energy
density for Becker-Döring equations, which is the relative entropy of f with
respect to M

H(f |M) =
∫

Rd

f log
f

M
dv. (1.10)

This functional satisfies

d

dt
H(f |M) = −I(f |M) = −

∫
Rd

f

∣∣∣∣∇v log
f

M

∣∣∣∣2 . (1.11)

The right hand side is called the relative Fisher information, for which the
following logarithmic Sobolev inequality

I(f |M) ≥ 2H(f |M) (1.12)

holds (see [9] and [18]). This inequality proves that f converges towards M
exponentially fast.
The idea here is exactly the same, working with an equivalent form of the
free energy density V (compare (2.2) in Section 2).
If we try to adapt the methods used for the Fokker–Planck equation for ex-
ample, we run into several problems. First, it turns out that the dissipation
of the free energy d

dtV controls in fact more the relative entropy with respect
to the local equilibrium (Qlc

l
1) than to (Qlz

l). (Notice, that (Qlc
l
1) does not
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have density ρ, unless c1 = z.) This forces us to treat the case of large c1

separately.
The second difficulty is more fundamental. Comparing the expression for
the dissipation of the free energy density with equation (1.11), the structure
is extremely close: As a matter of fact the expression for d

dtV in (1.8) looks
like a discrete version of (1.11). However the real difference comes from the
two equilibrium states, a gaussian for Fokker-Planck equation and a sort of
modified exponential measure for Becker-Döring.
Now it turns out that the kind of modified logarithmic Sobolev inequality
like (1.12) is not true for exponential measures, the limit case being Poisson
measure (see the lecture note by M. Ledoux in [12]). This inequality is known
only with very strong additional assumptions, typically it would require that
the discrete derivative of cl/cl

1 be uniformly small enough (see [12] again for
a continuous version).
This requirement being out of reach here, we prove a weaker inequality.
This weaker form still demands some strong uniform bounds on the solution
which we also need to prove (more details are given in the next section).
Difficulties in proving corresponding equivalents of (1.12) for different prob-
lems are not specific to our situation, they are much harder than here for
Boltzmann equation for instance (see [19] in particular). Of course the pres-
ence of a space variable would only complicate further everything (we refer
to [7] for Fokker-Planck equation). Nevertheless, it is interesting to note
that techniques already used in kinetic theory can be successfully applied
for coagulation-fragmentation models as e.g. in [11].

2 Rate of convergence to equilibrium

In this paper we are interested in the rate of convergence to equilibrium.
We consider fast decaying data with total density smaller than the critical
density, i.e. we assume

(H5) 0 <
∑∞

l=1 lcl(0) = ρ < ρs

(H6) For some µ > 1 it holds

∞∑
l=1

µlcl(0) < K0. (2.1)

In the following z will be always such that
∑∞

l=1 lQlz
l = ρ, i.e. (Qlz

l)
is the equilibrium cluster distribution for data satisfying (H5). A critical
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parameter in the following will be zs − z and we define

δ = 1
4(zs − z).

It turns out, that in general we cannot conclude that (2.1) is preserved
in time. However, we will establish that there exists µ̄ = µ̄(δ,K0, µ) with
µ̄ ∈ (1,min(µ, 1 + δ

2zs
)) such that

∑∞
l=1(µ̄)lcl(t) will be uniformly bounded

in time. Notice, that it is natural that µ̄ has to be sufficiently small, since
for equilibrium it holds

∑∞
l=1 µlQlz

l < ∞ if µ < zs
z .

We will also use a different definition of the free energy density which is such
that the energy density is always positive and converges to zero as t → ∞.
More precisely we write

F (c) =
∞∑
l=1

cl ln
(

cl

Qlzl

)
+ Qlz

l − cl (2.2)

and we will call F in analogy to the examples mentioned in Section 1.4 the
relative energy of (cl) with respect to (Qlz

l). Notice that

F (c) = V (c)− ln z

∞∑
l=1

lcl +
∞∑
l=1

Qlz
l

and due to (1.2) we have d
dtF = d

dtV . It is easily seen that assumptions
(H3)-(H6) imply F (c(0)) < ∞ and hence F (c(t)) ≤ F (c(0)) < ∞ for all
t > 0. Our main result shows that F converges exponentially fast, more
precisely like e−ct1/3

, to zero.
All constants in the following results and proofs depend in general on the pa-
rameters ρ, al, bl, zs. We will not explicitly state this dependence. However,
we will keep track of the dependence on the parameters δ, µ and K0.

Theorem 2.1. Assume that the coefficients al, bl satisfy (H1)-(H4) and
consider the solution c = (cl) of (1.1) with data satisfying (H5) and (H6)
for some µ > 1.
Then there exists c0 = c0(K0, µ, δ) such that

F (c(t)) ≤ F (c(0)) e−c0t1/3
(2.3)

for all t > 0.

We do not know whether the decay given by (2.3) is optimal. However,
numerical simulations suggest, that for data with c1(0) = ρ and cl(0) = 0,
l ≥ 2, the convergence can in general not be expected to be of order e−c0t.
As an immediate consequence of Theorem 2.1 we obtain exponential con-
vergence of the cluster densities in the appropriate norm.
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Corollary 2.2. Let η := z
zs

< 1. Then there exists a constant Cη such that

∞∑
l=1

l|cl(t)−Qlz
l| ≤ Cη

√
F (c(t)) (2.4)

Consequently, under the assumptions of Theorem 2.1 it holds

∞∑
l=1

l|cl −Qlz
l| ≤ Cη e−

c0
2

t1/3
. (2.5)

Let us give a brief overview of the main steps and ideas for the proof of
Theorem 2.1.
For that and the upcoming analysis, we first recall the notation for the
relative energy

F (c) =
∞∑
l=1

cl ln
(

cl

Qlzl

)
+ Qlz

l − cl =:
∞∑
l=1

Qlz
lf

(cl −Qlz
l

Qlzl

)
with f(z) := (1 + z) ln(1 + z)− z ≥ 0 and denote by

D := − d

dt
F =

∞∑
l=1

(alc1cl − bl+1cl+1) ln
(

alc1cl

bl+1cl+1

)
.

the energy–dissipation rate.
To prove Theorem 2.1 we need to find a lower bound on the dissipation rate
D. Here, we have to differentiate between two situations: first, when c1 is
large, i.e. c1(t) ≥ zs − δ, and second, when c1 ≤ zs − δ/2, a case, which we
also call subcritical from now on. In the first case, we prove (cf. Lemma
3.6, Section 3.2) that whenever c1 ≥ zs − δ, then

D ≥ δ4

C
. (2.6)

The idea of the proof is simple: if c1 is large, then not too many elements of
the sum defining D can be small, since then the constraint ρ =

∑∞
l=1 lcl can-

not be satisfied. The proof of (2.6) is independent of a bound on
∑∞

l=1 µlcl

and only requires
∑∞

l=1 lcl = ρ < ∞.
The main part of the proof of Theorem 2.1 is then, to find a lower bound on
the dissipation rate when c1 ≤ zs− δ/2 (Proposition 3.7, Section 3.3). Here,
the key idea is, that D controls the relative energy of (cl) with respect to
(Qlc

l
1) which again dominates F . However, this is possible only if 0 < c1 <
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zs, hence the restriction of this idea to the subcritical case. The proof of
Proposition 3.7 is split in several Lemmas in Section 3.3. It is shown that

D ≥ 1
C| lnF |2

F.

which then by a simple ODE argument gives (2.3). For the main estimate,
contained in Lemma 3.10 in Section 3.4, it is essential to know that

∞∑
l=1

(µ̄)lcl(t) ≤ C

uniformly in time for some µ̄ > 1. This will be a consequence of (2.1).
However, as pointed out before, we cannot show that (2.1) is preserved in
time. This is only true over time intervals where c1 is subcritical. Over time
intervals, where c1 is large, we can however construct a smaller µ′ such that∑∞

l=1(µ
′)lcl is bounded. Similarly, we have to keep c1 uniformly bounded

away from zero (after possibly an initial time interval, in case c1(0) = 0).
The corresponding a–priori estimates to control

∑∞
l=1(µ

′)lcl from above and
c1 from below, together with the proof of Corollary 2.2, are the content of
Section 3.1.
The precise argument, how to combine all ingredients to a proof of Theorem
2.1 is given in Section 3.4

3 The proofs

3.1 A–priori estimates

In the following, C will always denote a constant, which may change from
line to line, and which may depend on the parameters ρ, al, bl. Dependence
on the parameters δ,K0, µ etc. will however be indicated by the notation
C = C(δ) etc.
We first show (2.4) in Corollary 2.2 which is a consequence of the convexity
of f .

Lemma 3.1. Let η := z
zs

< 1. Then there exists a constant Cη such that

∞∑
l=1

l|cl −Qlz
l| ≤ max

(
2F (c), Cη

√
F (c)

)
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Proof. We use the relation

yx ≤ f(x) + f∗(y) (3.1)

where f∗ is the dual of f and is given by

f∗(y) = ey − y − 1. (3.2)

Notice that f and f∗ satisfy

f(|x|) ≤ f(x) and f∗(ry) ≤ r2f∗(y) for r ∈ [0, 1]. (3.3)

With y = ε1
2 ln( 1

η )l for some ε, η ∈ (0, 1] and x = |cl−Qlz
l|

Qlzl we find with (3.1),
(3.2) and (3.3) that

ε1
2 ln

(
1
η

)
l
|cl −Qlz

l|
Qlzl

≤ ε2 exp
{

1
2 ln

(
1
η

)
l
}

+ f

(
cl −Qlz

l

Qlzl

)
.

If we multiply with Qlz
l, sum over l ≥ 1 and use that due to (H3) it holds

Qlz
l ≈ exp{− ln

(
1
η

)
l} for large l, we find

1
2 ln

(
1
η

) ∞∑
l=1

l|cl − cs
l | ≤ Cε

∞∑
l=1

exp
{
− 1

2 ln
(

1
η

)
l
}

+
1
ε
F (c)

:= Cηε +
1
ε
F (c).

Choosing ε = 1 if F ≥ Cη and ε =
√

F (c)/Cη otherwise finishes the proof
of the lemma.

In the next lemma we show, that if
∑∞

l=1 µlcl(t1) < ∞, one can find for any
finite time interval (t1, t2) a µ′ such that

∑∞
l=1(µ

′)lcl(t2) < ∞.

Lemma 3.2. Let [t1, t2) ⊂ [0,∞) be an arbitrary finite time interval and
assume that for some µ > 1 it holds

∞∑
l=1

µlcl(t1) =: M1 < ∞.

Then it holds with
µ′ = 1 + e−C(t2−t1)(µ− 1)

that
∞∑
l=1

(µ′)lcl(t2) ≤ C(t2 − t1) + M1.
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Proof. Let us first present the formal argument for the proof. We compute

d

dt

∞∑
l=2

µlcl =
∞∑
l=2

µl(Jl−1 − Jl)

=
∞∑
l=2

(µl+1 − µl)Jl + µ2J1

≤ (µ− 1)
∞∑
l=2

µlalc1cl + µ2a1c
2
1

≤ C(µ− 1)
∞∑
l=2

µllcl + Cµ2.

(3.4)

Now we define

F (t, µ) :=
∞∑
l=2

µlcl.

Then (3.4) implies that F satisfies

∂tF ≤ C(µ(µ− 1)∂µF + µ2).

We can assume that µ ∈ (1, 2) and hence we have

∂tF ≤ C((µ− 1)∂µF + 1).

We define now the corresponding characteristics

X(t, µ) = 1 + e−C(t−t1)(µ− 1)

and obtain
F (t, X(t, µ)) ≤ C(t− t1) + F (t1, µ).

Hence, if we choose µ′ = 1 + e−C(t2−t1)µ we find

F (t2, µ′) ≤ C(t2 − t1) + F (t1, µ),

which finishes the proof, if all manipulations can indeed be performed.
In order to prove the estimate rigorously, we can proceed as in [13] for
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example. For that we introduce an auxiliary finite system (c(n)
l ), such that

d

dt
c
(n)
l = J

(n)
l−1 − J

(n)
l , 2 ≤ l ≤ n,

J
(n)
l = alc

(n)
1 c

(n)
l − bl+1c

(n)
l+1,

c
(n)
l = 0, l ≥ n + 1,

d

dt
c
(n)
1 = −J

(n)
1 −

n∑
l=1

J
(n)
l ,

c
(n)
l (t1) = cl(t1), l ≤ n.

Notice, that it holds
J (n)

n = alc
(n)
1 c(n)

n ≥ 0, (3.5)

since a solution of this finite system also satisfies c
(n)
l ≥ 0. Now we find

d

dt

n∑
l=2

µlc
(n)
l = (µ− 1)

n∑
l=2

µlJ
(n)
l + µ2J

(n)
1 − µ(n+1)J (n)

n

≤ (µ− 1)
n∑

l=2

µlJ
(n)
l + C

≤ C(µ− 1)
n∑

l=2

µllcl + C.

With

F (n)(t, µ) :=
n∑

l=2

µlc
(n)
l

we can proceed as described above to conclude

F (n)(t, X(t, µ)) ≤ C(t− t1) + F (n)(t1, µ).

Now we let n → ∞. It is straightforward and described also in [13], to
conclude that c

(n)
l → cl, which is the unique solution of the Becker–Döring

equations for data (cl(t1)). Since F (n)(t1, µ) → F (t1, µ) < ∞, the conclusion
of the lemma follows.

Lemma 3.3. Let [t1, t2) ⊂ [0,∞) be an arbitrary (possibly infinite) time
interval such that

c1 ≤ zs − δ/2 for all t ∈ (t1, t2).
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Furthermore assume that
∞∑
l=1

µlcl(t1) =: M1 < ∞

for some 1 < µ ≤ 1 + δ
4zs

. Then it holds

sup
t∈(t1,t2)

∞∑
l=1

µlcl(t) ≤
C

δ(µ− 1)
+ M1

Proof. We present the formal computations. For a rigorous proof one may
proceed as described in the proof of Lemma 3.2 and we omit the details. We
now write

d

dt

∞∑
l=2

µlcl =
∞∑
l=2

µl(Jl−1 − Jl)

= (µ− 1)
∞∑
l=1

µlJl + µJ1

= (µ− 1)
∞∑
l=1

(µlalc1cl − µl−1blcl) + (µ− 1)b1c1 + µJ1

= (µ− 1)
∞∑
l=1

µl−1al

(
µc1 −

bl

al

)
cl + (µ− 1)b1c1 + µJ1.

Now we use (H4), i.e. zsal ≤ bl, that with µ ≤ 1+ δ
4zs

it holds zs−µc1 ≥ δ/2,
and that

∑∞
l=1 µlalcl ≥

∑∞
l=1 µlcl due to (H1), to find

d

dt

∞∑
l=2

µlcl ≤ −δ
µ− 1
2µ

∞∑
l=1

µlcl + b1c1 + 2a1c
2
1.

Since b1c1 + a1c
2
1 ≤ b1ρ + a1ρ

2 ≤ C the desired result follows.

In the next lemma we show that c1 is positive after a possible initial time
layer.

Lemma 3.4. There exists δ̃ = δ̃(K0) such that for all t ≥ 1 we have

c1 ≥ δ̃e−ρt.
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Proof. We compute

∂tc1 = −J1 −
∞∑
l=1

Jl

≥ −a1c
2
1 − c1

∞∑
l=1

alcl +
∞∑
l=1

bl+1cl+1

= −a1c
2
1 −

∞∑
l=1

(alc1 − bl)cl − b1c1

≥ −a1c
2
1 + (zs − c1)

∞∑
l=1

alcl − b1c1

where we used (H4) in the last inequality. Now

ρ2 ≤
( ∞∑

l=1

alcl

)( ∞∑
l=1

l2cl

)
.

We find
d

dt

∞∑
l=2

l2cl ≤ ρ

∞∑
l=2

l2cl

and hence
∞∑
l=1

l2cl(t) ≤ CK0e
ρt.

Thus
∞∑
l=1

alcl ≥
ρ2

CK0
e−ρt

and as long as c1 ≤ δ̃e−ρt, with δ̃ = 1
CK0

for some C, we have

∂tc1 ≥ −(a1 + b1)c1 + (zs − c1)
ρ2

CK0
e−ρt ≥ δ̃e−ρt

and the result follows.

Lemma 3.5. Let [t1, t2) ⊂ [0,∞) be an arbitrary (possibly infinite) time
interval such that

c1 − zs ≤ δ/2 for all t ∈ (t1, t2)
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and

sup
t∈(t1,t2)

∞∑
l=1

µlcl(t) ≤ M2.

Then, if c1(t1) ≥ δ1 with δ1 = 1
CM2

it holds

inf
t∈(t1,t2)

c1(t) ≥ δ1.

Proof. The proof is analogous to the proof of Lemma 3.4, with the difference
that we have now a uniform bound

∞∑
l=1

alcl ≥
ρ2

CM2
.

3.2 Decay of the energy when c1 is large

The following lemma provides a uniform estimate for the rate of decay of
the energy if c1 ≥ zs − δ.

Lemma 3.6. There exists a constant C, such that for all t with c1(t) ≥ zs−δ
it holds

d

dt
F (c(t)) +

δ4

C
≤ 0.

Proof. We recall the expression of the dissipation rate and bl ≥ 1 to find

D =
∞∑
l=1

(alc1cl − bl+1cl+1) ln
(

alc1cl

bl+1cl+1

)

≥
∞∑
l=1

(
alc1

bl+1
cl − cl+1

)
ln

(
alc1cl

bl+1cl+1

)
.

Now we choose a real number λ < 1 such that zs − 2δ < λc1 < zs. We
denote by l0 the first index l such that

cl+1 ≤ λ
alc1

bl+1
cl. (3.6)

This number necessarily exists, since otherwise we would have

ρ =
∞∑
l=1

lcl ≥ c1 +
∞∑
l=2

l(λc1)l−1Qlc1 >

∞∑
l=1

lQlz
l = ρ.
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Then we have

D ≥ (1− λ) ln
1
λ

al0c1

bl0+1
cl0 ≥ (1− λ) ln

1
λ

(λc1)l0 Ql0c1.

The principle idea to estimate the right hand side is quite simple. If l0 is too
large, then cl+1 > λalc1cl

bl+1
for too many indices, and the total density would

be larger than ρ.
We define λ′ = λ(1− δ

zs
) such that zs − 3δ < λ′c1 and

ρ̃ =
∞∑
l=1

l(λ′c1)l−1 Qlc1.

By the definition of Ql, although the series defining ρ̃ is not exactly geomet-
ric, there exists a constant C > 0 depending only on al and bl and not on
l0, c1 or λ′ such that∑

l≥l0+1

l (λ′c1)l−1 Qlc1 ≤ Cl0 (λ′c1)l0 Ql0 .

Then we obtain

Cl0(λ′c1)l0 Ql0 ≥ ρ̃−
l0∑

l=1

l (λ′c1)l−1 Qlc1 ≥ ρ̃−
l0∑

l=1

l cl ≥ ρ̃− ρ,

because up to the index l0, we have

cl ≥ (λc1)l−1 Qlc1 ≥ (λ′c1)l−1 Qlc1.

We estimate the difference ρ̃− ρ by

ρ̃− ρ =
∞∑
l=1

lQl((λ′c1)l−1c1 − zl)

≥
∞∑
l=1

lQl((z + δ)l − zl)

≥ δ
∞∑
l=1

lQlz
l−1 = δ

ρ

z
.

Furthermore we easily check that it holds for all l and in particular l0

l(λ′c1)l ≤ zs

δ
(λc1)l.
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Hence, gathering all the estimates, we have

D ≥ (1− λ) ln
1
λ

(λc1)l0Ql0c1

≥ (1− λ) ln
1
λ

δ

zs
l0(λ′c1)l0Ql0c1

≥ 1
C

(1− λ) ln
1
λ

δ

zs
δ
ρ

z
(zs − δ)

≥ δ4

C
,

which proves the lemma.

3.3 Decay of the energy when c1 is subcritical

Proposition 3.7. Let [t1, t2) ⊂ [0,∞) be an arbitrary time interval and
assume

c1(t) ≤ zs − δ/2 for all t ∈ [t1, t2),

as well as
∞∑
l=1

µlcl(t1) ≤ M1 < ∞,

and
δ1 ≤ c1(t1)

with sufficiently small δ1 = δ1(M1, µ).
Then there exists c0 = c0(M1, δ, µ) such that

F (c(t)) ≤ F (c(t1))e−c0(t−t1)1/3

for all t ∈ [t1, t2).

We first recall that due to Lemmas 3.3 and 3.5 it holds under the assumptions
of Proposition 3.7 that

sup
t∈(t1,t2)

∞∑
l=1

µlcl(t) ≤ M1 + C(δ, µ) (3.7)

and
inf

t∈(t1,t2)
c1(t) ≥ δ1.
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An important role in the following will be played by the relative energy of
(cl) with respect to (Qlc

l
1)

F1(c) :=
∞∑
l=1

cl ln
(

cl

Qlc
l
1

)
+ Qlc

l
1 − cl =

∞∑
l=1

Qlc
l
1f

(cl −Qlc
l
1

Qlc
l
1

)
.

We will see that F1 < ∞ if c1 < zs.

Lemma 3.8. If 0 < c1 < zs we have

F (c) ≤ F1(c) < ∞

Proof. First, assume that all the sums are absolutely convergent. In view of

F1 =
∞∑
l=1

Qlz
lf

(cl −Qlz
l

Qlzl

)
+

∞∑
l=1

cl ln
(

Qlz
l

Qlc
l
1

)
+ Qlc

l
1 −Qlz

l.

we find, due to
∑∞

l=1 lcl =
∑∞

l=1 lQlz
l, that

∞∑
l=1

cl ln
(

Qlz
l

Qlc
l
1

)
=

∞∑
l=1

lcl ln
(

z

c1

)

=
∞∑
l=1

lQlz
l ln

(
z

c1

)

=
∞∑
l=1

Qlz
l ln

(
Qlz

l

Qlc
l
1

)
,

and thus

F1 = F +
∞∑
l=1

Qlc
l
1 f

(Qlz
l −Qlc

l
1

Qlc
l
1

)
≥ F.

Since
∞∑
l=1

Qlc
l
1 f

(Qlz
l −Qlc

l
1

Qlc
l
1

)
= ln

(
z

c1

)
ρ +

∞∑
l=1

Ql(cl
1 − zl) < ∞

if 0 < c1 < zs, we find that F is indeed finite under this assumption.

We denote in the following
ul :=

cl

Qlc
l
1

.

All estimates which follow will be pointwise in time, so for convenience we
omit the dependence on t in the notation.
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Lemma 3.9.

F1 =
∞∑
l=1

Qlc
l
1(ul lnul + 1− ul) ≤

1
zs − c1

∞∑
l=1

Qlc
l+1
1 (ul+1 − ul) ln ul+1.

Proof. Step 1:(“Integration by parts”) It holds for r < 1 and functions Φ :
N → R such that

∑∞
l=1 rlΦ(l) < ∞, that

∞∑
l=1

rlΦ(l) =
r

1− r

∞∑
l=1

rl(Φ(l + 1)− Φ(l)) +
r

1− r
Φ(1). (3.8)

Equation (3.8) follows easily via
∞∑
l=1

rl(Φ(l + 1)− Φ(l)) =
∞∑
l=2

rl−1Φ(l)−
∞∑
l=1

rlΦ(l)

=
∞∑
l=1

rl−1(1− r)Φ(l) − Φ(1)

=
1− r

r

∞∑
l=1

rlΦ(l) − Φ(1).

Step 2: We first observe that with

r =
c1

zs
and Φ(l) = zl

sQl(ul lnul + 1− ul)

it holds
∞∑
l=1

rlΦ(l) = F1 < ∞.

Now we can employ (3.8) to find

F1 =
c1

zs − c1

∞∑
l=1

cl
1

zl
s

(
zl+1
s Ql+1(ul+1 lnul+1 + 1− ul+1)

−Qlz
l
s(ul lnul + 1− ul)

)
=

c1

zs − c1

∞∑
l=1

cl
1Ql(ul+1 − ul) ln ul+1

+
c1

zs − c1

∞∑
l=1

cl
1

zl
s

(
(zl+1

s Ql+1 − zl
sQl)(ul+1 lnul+1 + 1− ul+1)

− zl
sQl

(
ul ln

(
ul

ul+1

)
+ ul+1 − ul

))
.
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While the last term is always negative, the second term is negative if
zsQl+1 ≤ Ql. But this holds due to (H4) and thus

F1 ≤
c1

zs − c1

∞∑
l=1

cl
1Ql(ul+1 − ul) ln ul+1.

Now we are in the position to prove the main estimate.

Lemma 3.10. There exists a constant C = C(M1, µ, δ) such that

F1 ≤ CD
∣∣∣ ln

(
1
F

) ∣∣∣2 + 1
2F

Proof. Step 1: We first notice that with (x− y) ln
(

x
y

)
≥ (x−y)2

max(x,y) and (H1)
it holds

D =
∞∑
l=1

cl+1
1 Qlal(ul+1 − ul) ln

(
ul+1

ul

)

≥
∞∑
l=1

cl+1
1 Qlal

(ul+1 − ul)2

max(ul, ul+1)

≥
∞∑
l=1

cl+1
l Ql

(ul+1 − ul)2

max(ul, ul+1)
.

(3.9)

Thus
∞∑
l=1

cl+1
1 Ql(ul+1 − ul) ln ul+1 ≤ D +

∞∑
l=1

cl+1
1 Ql(ul+1 − ul) ln ul

and we note that the second term on the right hand side is positive only if

• Case I: ul+1 ≤ ul ≤ 1

• Case II: ul+1 ≥ ul ≥ 1.

Step 2: (Case I)
Let I := {l |ul+1 ≤ ul ≤ 1}. Then∑

l∈I

cl+1
1 Ql(ul+1 − ul) ln ul

≤
( ∑

l∈I

cl+1
1 Ql

(ul+1 − ul)2

ul

)1/2( ∑
l∈I

cl+1
1 Qlul| lnul|2

)1/2

.
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Now, with (3.9)

∑
l∈I

cl+1
1 Ql

(ul+1 − ul)2

ul
≤

∑
l∈I

cl+1
1 Ql

(ul+1 − ul)2

max(ul, ul+1)
≤ D.

Furthermore one easily checks that

x| lnx|2 ≤ 2(x lnx + 1− x) for x ∈ [0, 1].

Hence, it follows ∑
l∈I

cl+1
1 Ql| lnul|2 ≤ 2c1F1.

and we obtain

1
zs − c1

∑
l∈I

cl+1
1 Ql(ul+1 − ul) ln ul+1 ≤

1
zs − c1

(D +
√

D
√

2c1F1). (3.10)

¿From now on we consider case II:
Step 3: We first note that

lnx ≤ 2
(x− 1

x
ln(1 + x)

)
for x ≥ 1.

Thus, ∑
1≤ul≤ul+1

cl+1
1 Ql(ul+1 − ul) ln ul+1

≤ 2
∑

1≤ul≤ul+1

cl+1
1 Ql(ul+1 − ul)

ul+1 − 1
ul+1

ln(1 + ul+1).

Step 4: For some λ � 1 to be determined we split the sum∑
1≤ul≤ul+1

cl+1
1 Ql(ul+1−ul)

(ul+1 − 1)
ul+1

ln(1+ul+1) =
∑

ul+1>λ

... +
∑

1≤ul≤ul+1≤λ

...
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Step 5: (The case 1 ≤ ul ≤ ul+1 ≤ λ)∑
1≤ul≤ul+1≤λ

cl+1
1 Ql(ul+1 − ul)

ul+1 − 1
ul+1

ln(1 + ul+1)

≤
( ∑

ul+1≥ul

cl+1
1 Ql

(ul+1 − ul)2

ul+1

)1/2

·
( ∑

1≤ul+1≤λ

cl+1
1 Ql

(ul+1 − 1)2

ul+1
| ln(1 + ul+1)|2

)1/2

≤ 2 ln(1 + λ)
√

D

( ∑
1≤ul+1≤λ

cl+1
1 Ql

(ul+1 − 1)2

ul+1

)1/2

.

We observe
|x− 1|2

x
≤ x lnx + 1− x for x ≥ 1.

Hence∑
1≤ul+1≤λ

cl+1
1 Ql(ul+1 − ul)

ul+1 − 1
ul+1

ln(1 + ul+1) ≤ ln(1 + λ)
√

D
√

F1.

Step 6: (The case ul+1 > λ)
For some small constant ε > 0 we have

2
∑

ul+1>λ

cl+1
1 Ql(ul+1 − ul)

ul+1 − 1
ul+1

ln(1 + ul+1)

≤ 2
∑

ul+1>λ

cl+1
1 Ql(ul+1 + 1) ln(1 + ul+1)

≤ C
∑

ul+1>λ

cl+1
1 Ql|ul+1|1+2ε

≤ C

λε

∑
ul+1>λ

cl+1
1 Ql|ul+1|1+ε

=
C

λε

∑
ul+1>λ

cl+1
1 Ql

|cl+1|1+ε

|Ql+1c
l+1
1 |1+ε

≤ C

λε

∞∑
l=1

cl+1
bl+1

al

|cl+1|ε∣∣∣Qε/(l+1)
l+1 cε

1

∣∣∣(l+1)
.
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Thus, if (bl+1

al

)1/(l+1) 1

|Qε/(l+1)
l+1 cε

1|
≤ µ (3.11)

with µ as in (3.7), then we find

2
∑

ul+1>λ

cl+1
1 Ql(ul+1 − ul)

ul+1 − 1
ul+1

ln(1 + ul+1) ≤
C

λε
.

Since by (H4) we have
(

bl+1

al

)1/(l+1)
→ 1 and Q

1/l
l → 1/zs inequality (3.11)

follows if
ε <

lnµ

ln( zs
δ1

)
.

Step 7: (Summary) We summarize Steps 1-6 and obtain

F1 ≤
1

zs − c1

(
2D +

√
D

√
2c1F1 + 2 ln(1 + λ)

√
D

√
F1 +

C

λε

)
≤ 1

2
F1 + C

(
D + | lnλ|2D +

1
λε

)
We choose

λ =
(4C

F

)1/ε

and note that
ln

1
F 1/ε

≤ 1
ε

ln
1
F

.

Summarized we find for C = C(M1, µ, δ) that

F1 ≤ C
∣∣∣ ln

(
1
F

) ∣∣∣2D + 1
2F

which finishes the proof of the lemma.

With Lemma 3.8 and Lemma 3.10 we have

F ≤ C D
∣∣∣ ln

1
F

∣∣∣2,
or

d

dt
F + c0

F

| ln 1
F |2

≤ 0

for c0 = 1
C > 0. This is equivalent to

− d

dt

1
3

(
ln

1
F

)3
≤ −c0t

which finishes the proof of Proposition 3.7.
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3.4 Proof of Theorem 2.1

We can now summarize the results to proof Theorem 2.1.
First, we notice that we cannot conclude that once c1 is below zs−δ/2, that
it will stay subcritical, unless the energy is already sufficiently small.
Thus, let (t−n , t+n ), n = 1, 2, . . . be successive disjoint time intervals such that

c1(t−n ) ≤ zs − δ,

c1(t+n ) ≤ zs − δ,

c1(t) ≥ zs − δ for all t ∈ (t−n , t+n ),
c1(t) ≥ zs − δ/2 at least for one t ∈ (t−n , t+n ).

If no such interval exists, then it holds c1(t) ≤ zs− δ/2 for all t ≥ 0. In that
case, we first know by Lemma 3.3 that

∞∑
l=1

µlcl(t) ≤ C(δ,K0, µ)

for all t ≥ 0, which implies by Lemma 3.5 that c1 ≥ δ1 for all t after a possible
initial time layer. Then Theorem 2.1 directly follows from Proposition 3.7.

Assume now, that intervals (t−n , t+n ) as above exist. Lemma 3.6 implies, since
F is decreasing, that the sum of the lengths of those intervals is bounded,
i.e.

t∗ :=
∑

n

|t+n − t−n | ≤ C
F (c(0))

δ
≤ CK0

δ
.

Since |∂tc1| ≤ ρ2 we also conclude that

|t+n − t−n | ≥
δ

C
.

Hence, the number N of intervals (t−n , t+n ), is bounded as N ≤ CK0
δ2 .

We now define a sequence µn, n = 1, . . . , N in the following way:

µ0 = µ

with µ as in (H6). Then µn is defined successively via

µn = 1 + e−C(t+n−t−n )(µn−1 − 1).

With Lemma 3.2 we find
∞∑
l=1

µl
ncl(t+n ) ≤

∞∑
l=1

µl
n−1cl(t−n ) + C(t+n − t−n ).
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On the other hand Lemma 3.3 implies

∞∑
l=1

µl
ncl(t−n+1) ≤

C

δ(µn − 1)
+

∞∑
l=1

µl
ncl(t+n ).

We find after N iterations and with

µ̄ := µN = 1 + e−Ct∗(µ− 1)

that
∞∑
l=1

(µ̄)lcl(tN ) ≤ C(δ,K0, µ).

For t ≥ tN we have by definition c1 ≤ zs − δ/2 and we find by Lemma 3.3
that

∞∑
l=1

(µ̄)lcl(t) ≤ C(δ,K0, µ)

for all t ≥ 0. This implies with Lemma 3.5 that c1(t) ≥ δ1 for some δ1 =
δ1(δ,K0, µ).
Thus, we can combine Lemma 3.6 and Proposition 3.7 to find the conclusion
of Theorem 2.1.
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sic Properties and Asymptotic Behaviour of Solutions. Comm. Math. Phys.,
104:657–692, 1986.
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Slyozov–Wagner equations. J. Stat. Phys., 106, 5-6:957–991, 2002.
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