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Abstract. We study several regularizing methods, stationary phase or av-
eraging lemmas for instance. Depending on the regularity assumptions that
are made, we show that they can either be derived one from the other or
that they lead to different results. Those are applied to Scalar Conservation
Laws to precise and better explain the regularity of their solutions.

1 Introduction

We investigate three kind of regularizing results and their connections. The
first is connected to scalar conservation laws, namely

∂tu+∇ · (A(u)) = 0, u(t, x) ∈ R, t ∈ R+, x ∈ Rd,

u(t = 0, x) = u0(x) ∈ L1 ∩ L∞(Rd).
(1.1)

The flux A is a function from R to Rd, which we assume to be C2 for sim-
plicity.

We refer to [16] for the original well posedness argument for this equation
and the most important notion of entropy solutions; to [24] for a previous
uniqueness result for BV initial data; to [19] for a presentation of this class
of equations (and especially the kinetic formulations related to the approach
in this paper). For a more general introduction to conservation laws, see for
example [7] or [20].
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It is known that the solution u to (1.1) immediately becomes more regular
but it is still unclear exactly how much. The first argument in [18] proves
that in dimension 1 and for a strictly convex flux A, then u(t, .) ∈ BVloc(Rd)
with a norm behaving like 1/t. A natural generalization is the conjecture
that

‖t∇x · (a(u(t, .))‖M1
loc(Rd) ≤ C (‖u0‖L∞ + ‖u0‖L1), (1.2)

where a is the derivative of the flux A with respect to u.
Unfortunately (1.2) is not proved except in some particular situations,

namely in 1d (or with a 1d structure) and for convex fluxes in [13] (see also
[22] for a geometric argument or [23] for more references) and in [4] still in
1d for fluxes having only a finite number of critical points A′′(ξ) = 0, and
non degenerate A(k)(ξ) 6= 0 for some finite k if A′′(ξ) = 0.

However, even as an essentially still open problem, a natural question is
which kind of regularity (1.2) would imply for the solution u.

Another way of obtaining a regularizing effect for (1.2) is through the
kinetic formulation and averaging lemmas. Introducing

f(t, x, v) =


1 if 0 ≤ v ≤ u(t, x),

− 1 if u(t, x) ≤ v ≤ 0,

0 in the other cases.

(1.3)

It was proved first in [17] (see also [19] for an overview of kinetic formulation)
that u is an entropy solution to (1.1) iff there exists a non negative measure
m s.t.

∂tf + a(v) · ∇xf = ∂vm. (1.4)

The solution u can be obtained as an average of f

u(t, x) =

∫
R
f(t, x, v) dv,

and therefore one may use “averaging lemmas” to gain regularity on u. Av-
eraging lemmas are a characteristic feature of kinetic equations : Averages
in velocity of the solution are more regular than the solution itself. This was
first noticed in a L2 framework in [12] and [11] and later much extended in
very different situations : See [9], [1] or [3] for the Lp theory for example and
[10] for a generalization to other PDE’s.

With a bootstrap argument, it was shown in [17] that

u ∈ W s,p
loc (R+ × Rd), s <

θ

θ + 2
, p =

4 + θ

2 + θ
, (1.5)
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where θ is given by a non degeneracy condition on a

∀v ∈ I, ∀ξ ∈ Sd−1, |{w ∈ I, |ξ · a(w)− ξ · a(v)| ≤ ε}| ≤ Lεθ. (1.6)

In [14] and [15], it was shown that if a(v) = v (or a diffeomorphism of the
identity), then the regularity on u can be obtained directly by combining
averaging lemmas with a sort of hypoelliptic argument (not a true hypoel-
lipticity which would work on f as in [2] since it is done on the average).
Nothing was known however if instead of the specific form, one only assumes
(1.6) on a.

Summing up, we wish to give an answer to
Problem 1 : Assume (1.6) and that u ∈ L1 ∩L∞ satisfies (1.2), find the

best s such that u ∈ W s,1.
Problem 2 : Assume (1.6) and that f given by (1.3) solves (1.4), show

with a direct estimate that u satisfies (1.5).
It should be noted that there is a wide gap between the regularity provided

by the argument in [18] (1 derivative) and the one of [17] (1/3 derivative in
the best case α = 1). Indeed using the kinetic formulation and averaging
lemmas it is not known how to use the sign of the measure in (1.4).

In fact the regularity given by (1.5) is true for all solutions to (1.1) with
bounded entropy production and not only for the entropy solution. It was
proved in [8] that if one considers this more general class of solutions, then
(1.5) is indeed the optimal result.

Finally let us point out that looking for the regularity of the solution u to
(1.1) in terms of Sobolev spaces is probably not the most subtle or efficient
way. See for instance [6] for a more precise structure on the solution. and [5]
for more on regularity of scalar conservation laws.

2 The results and relation with a stationary

phase argument

2.1 The connection between the two problems

The first problem may in fact be seen as a weaker form of the second. Indeed
assume that u satisfies (1.2) at some time t0 and define f at time t0 by (1.3).
Now for any t ≤ t0 put

g(t, x, v) = f(t0, x+ (t0 − t) a(v), v).
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Then g solves the free kinetic equation

∂tg + a(v) · ∇xg = 0.

Moreover (1.2) and the definition of g and f exactly means that

‖g(t = 0, ., .)‖M1(Rd, BVv(R)) ≤ C (‖u0‖L∞ + ‖u0‖L1).

This is exactly the regularity on f used in [14] and [15] for the modified
averaging lemma.

More precisely, from [15] it is known that averaging lemmas can easily be
deduced from the properties of the operator

T f =

∫ t

0

∫
R
f(t− s, x− s a(v), v) e−s φ(v) dv ds, (2.1)

for a regular and compactly supported function Φ. Notice that the initial
value problem corresponds to f having a Dirac mass at t = 0 and that
correspondingly the properties of T can be deduced from this initial value
operator

T0 h(t, x) =

∫
R
h(x− t a(v), v)φ(v) dv, (2.2)

simply by integrating then in time (and doing Hölder estimates if necessary).
It is possible to prove the following result for T0

Proposition 2.1 Assume that a satisfies (1.6) and that I is a closed interval
of R+ not containing 0 if s ≥ 1. Then T0 is continuous from Lp(Rd, Wα,p(R))
to W s,p(I × Rd) for any s < θ(1 − 1/p̄ + α), where p̄ = min(p, p∗) and
1/p∗ = 1− 1/p.

With Prop. 2.1 it is possible to answer both problems

Theorem 2.1 Take u ∈ L∞(R+, L
1 ∩ L∞(Rd)) satisfying (1.2) for a func-

tion a with the property (1.6). Then u(t, .) ∈ W s,1(Rd) for any s < θ, t > 0.

And for the second, directly by averaging lemmas without bootstrap

Theorem 2.2 Assume that a satisfies (1.6) and that u ∈ L∞(R+, L
1 ∩

L∞(Rd)) is a solution to (1.1) with bounded entropy production : i.e. f
defined through (1.3) solves (1.4) for a bounded (but not necessarily non
negative) measure m. Then u has the regularity given by (1.5).
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2.2 The proof of Prop. 2.1 in the very regular case by
a stationary phase argument

When a is very regular then the properties of T0 may be deduced from the
usual stationary phase argument. Indeed Prop. 2.1 is true if α = 0 by
standard averaging lemmas (see again [9] for instance). By interpolation, it
is enough to prove it for α = 1. On the other hand in that case, denoting
f̂ = F f the Fourier transform of a function f in x one has

|F T0h| =
∣∣∣∣∫

R
ĥ(ξ, v) eita(v)·ξ φ(v) dv

∣∣∣∣
=

∣∣∣∣∫
R

∫ v

−∞
(∂vĥ(ξ, w)φ(w) + ĥ(ξ, w)∂vφ(w)) dw eita(v)·ξ dv

∣∣∣∣
≤
∫

R
Q(ξ) (∂vĥ(ξ, w)φ(w) + ĥ(ξ, w)∂vφ(w)) dw,

where

|Q(ξ)| ≤ sup
I

∣∣∣∣∫
I

eita(v)·ξ dv

∣∣∣∣ ,
for all intervals I included in the convex hull of the support of φ.

Therefore as soon as one can bound Q then it is enough to apply again
the result of [9] to conclude on the regularity of T0. In particular if a is
regular enough then Prop. 2.1 can be deduced from

Proposition 2.2 Let a ∈ Ck(I) for I ⊂ R with (1.6) and k ≥ 1/θ. Then
the following holds true for a constant C depending only on θ, L, ‖a′′‖L1(I)

and ‖a(k)‖L∞(I) ∣∣∣∣∫
I

eiξ·a(v) dv

∣∣∣∣ ≤ C

|ξ|θ
.

2.3 The not so regular case

The main problem with the previous approach is of course that a ∈ Ck with
k ≥ 1/θ. Indeed θ may be very small, making this a quite unreasonable
assumption, whereas A ∈ C2 i.e. a ∈ C1 is enough for the theory of scalar
conservation laws for instance.

Moreover in high dimension, if a ∈ C∞, then θ ≤ 1/d as for any v0 it is
always possible to find a direction ξ s.t. ξ · a′(v0) = . . . = ξ · a(d−1)(v0) = 0

5



and hence |{v, |ξ · (a(v) − a(v0))|}| ≤ C |v − v0|d. Therefore the coefficient
in (1.6) can sometimes be much better for a non regular a than for a regular
one...

Unfortunately when a is not regular enough then condition (1.6) is no
more the right one for the stationary phase argument (see the discussion at
the end of the last section). Nevertheless Prop. 2.1 is still true and therefore
Th. 2.1 and 2.2 as well.

In fact instead of studying T0 only in dimension 1 for the velocities, it is
possible to generalize it to higher dimensions

T0h(x, v) =

∫
RN

h(x− t a(v), v)φ(v) dv, (2.3)

where now a : RN → Rd. In that case the gain in regularity depends on the
dimension and more precisely

Proposition 2.3 Assume a ∈ C1(RN , Rd), and that a satisfies (1.6). Take
I any closed interval of R+.Then for any α < N/p̄, T0 is continuous from
Lp(Rd, W α,p(R)) to Lp(I, W s,p(Rd)) for any s < θ(1 − 1/p̄ + α/N), where
p̄ = min(p, p∗) and 1/p∗ = 1− 1/p.

The dependency on N may seem strange and for instance in the simplest case
N = d, a(v) = v, it was shown in [14] and [15] that the gain in regularity
is θ(1 − 1/p̄ + α) (i.e. the same as for N = 1 in the proposition). In
this particular case there are however many more symmetries than what
condition (1.6) explicits. In the general case, this could in fact be precised
by replacing (1.6) by a condition on the regularity and dimension of the set
{v, a(v) · ξ = τ}. This would however typically involve many derivatives of
a, which we are trying to avoid. Notice finally that for scalar conservation
laws, we are in the case N = 1 and this problem does not exist at all.

Proof of Prop. 2.3. From usual results on averaging lemmas, it is known that
T0 is continuous from Lp(Rd × RN) to W s,p with s < θ(1 − 1/p̄). Because
φ is regular and compactly supported, one may also freely assume that h is
compactly supported in velocity.

By interpolation it is enough to do the case α = 1 (or any other integer)
and again by interpolation the cases p = 1 and p = 2 are enough.

Start with p = 1 and for the usual technical reason take instead any
p > 1. After Fourier transform in x and t, one gets

Ft,x (It∈I T0h)(τ, ξ) =

∫
RN

ĥ(ξ, v)χ(τ − a(v) · ξ)φ(v) dv,
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with χ regular and

|χ(η)| ≤ sin(|I|η)
η

.

Using that
ĥ(ξ, v) = (∇vĥ(ξ, v)) ?v γ,

with γ(v) = Cv/|v|N , we get

Ft,x (It∈I T0h)(τ, ξ) = −
∫

RN

∇vĥ(ξ, v)M(τ, ξ, v),

for
M = γ ?v (φ(v)χ(τ − a(v) · ξ)) dv.

On the other hand M is regular in τ and ξ and for example assuming that
suppφ ⊂ B(0, R)

|M | ≤ C

∫
|v|≤R

|χ(τ − a(w) · ξ)|
|v − w|

dw

≤ C

(∫
RN

sinN(|I||τ − a(w) · ξ|)
|τ − a(w) · ξ|N

dw

)1/N

.

Denote for n < n0 with 2−n0 ≤ |ξ| < 2−n0+1

Ωn = {v, R 2−n−1 ≤ |a(v) · ξ/|ξ| − τ/|ξ|| < R 2−n},

and decompose using (1.6)

|M | =C

(∑
n<n0

2N(n+1)

|ξ|N RN
2−nθ Rθ

)1/N

=
C

|ξ|
2(1−θ/N)n0 =

C

|ξ|θ/N
.

The same kind of estimates may be derived for derivatives of M in ξ or τ
(with the corresponding loss of exponent in the bound). Consequently by
usual Calderon-Zygmund theory, one has

‖|ξ|θ/N Ft,x (It∈I T0h)(τ, ξ)‖Lp(I×Rd) ≤ C‖h‖Lp(Rd, W 1,p(RN )),

which is the desired estimate for p close to 1.
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For p = 2, things are even simpler as one may compute the norm directly
in Fourier transform∫

R
|Ft,x (It∈I T0h)(τ, ξ)|2 dτ

≤
∫

RN

|∆α/2
v ĥ|2 dv

(∫
RN

∣∣∣∣∫
R
χ(τ − a(v) · ξ) dτ

∣∣∣∣2N/(N−2α)

dv

)(N−2α)/N

,

again by Sobolev embedding (and necessarily limiting ourselves to the case
2α ≤ N).

Now
∣∣∫ χ(τ − a(v) · ξ) dτ

∣∣ ≤ C/|a(v) · ξ| and the same dyadic decompo-
sition in v as before yields that∫

R
|Ft,x (It∈I T0h)(τ, ξ)|2 dτ ≤

C

|ξ|θ(1−2α/N)

∫
RN

|∆α/2
v ĥ|2 dv,

which again is the estimate of the proposition after integration in ξ.

3 Appendix : The stationary phase argument

3.1 The regular case: Proof of Prop. 2.2.

First recall the usual stationary phase result in 1d (see Stein [21] for instance)

Proposition 3.1 Let ψ ∈ Ck(R), I ⊂ R, v0 ∈ I, l + 1 ≤ k s.t.

ψ′(v0) = . . . = ψ(l)(v0) = 0, ψ(l+1)(v0) 6= 0, ψ′(v) 6= 0 ∀v 6= v0.

Then ∃C, depending only on k, ψ′, ‖ψ′′‖L1(I), ψ
(l+1)(v0) and |I| s.t.∣∣∣∣∫

I

ei|ξ|ψ(v) dv

∣∣∣∣ ≤ C

|ξ|1/(l+1)
.

Turning to the proof of Prop. 2.2, one only has to prove that the property
(1.6) implies that ψ = ξ

|ξ| · a(v) satisfies the assumptions of Prop. (3.1) on

intervals I1 ∪ . . . ∪ IN = I with l + 1 = 1/θ and N depending only on the
constants in (1.6).
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First observe that if

ψ′(v0) = . . . = ψ(l)(v0) = 0,

with l ≤ k then for v close enough to v0∣∣∣∣ ξ|ξ| · (a(v)− a(v0))

∣∣∣∣ ≤ 2|a(l+1)(v0)|
l!

|v − v0|l+1.

So

|{v, |ξ · a(v)− ξ · a(v0)| ≤ |ξ| ε}| ≥ C ε1/(l+1).

From (1.6), this implies that 1/(l + 1) ≥ θ or l ≤ l0 = 1/θ − 1. If l = l0 it
shows that |ψ(l0+1)(v0)| ≥ CLl0+1.

Now let us bound the maximal number of such points v0 where ψ′ may
vanish. Denote

nl = #Vl = #{v ∈ I, ψ′(v) = . . . = ψ(l)(v) = 0, ψ(l+1)(v) 6= 0}.

For l ≤ l0, assume that nl > 0 otherwise there is nothing to do. In some
interval J of length η one finds v1 < . . . < vm in Vl. As ψ(l)(vi) = 0 there exist
m − 1 v2

i ∈ [vi, vi+1] s.t. ψ(l+1)(v2
i ) = 0. Applying the same for the v2

i and
so on, one finally gets z ∈ J s.t. ψ(l+m−1)(z) = φ(0). Taking m = l0 + 2− l,
this would entail

ψ(l0+1)(z) = 0,

which we showed is impossible at any vi and thus at any z for η small enough
with respect to continuity modulus of a(l0+1).

Therefore in any interval of size η, there is less than m = l0 +1− l points
of Vl and then necessarily

nl ≤ (l0 + 1− l) |I|/η.

The total number of points in V = ∪lVl = {v, ψ′(v) = 0} is less than
C (l0 + 1)2 |I|/η. Denoting by vi those points and defining

Ii = [vi/2 + vi−1/2, vi/2 + vi+1/2],

one may apply Prop. 3.1 on each Ii and conclude the proof of Prop. 2.2.
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3.2 The stationary phase in the not regular case

Independently of the two problems mainly considered here, one could wonder
if something remains of the stationary phase argument itself under the only
assumption (1.6) and a ∈ C1 for instance.

There could be some reasons to hope still for a result as for instance the
following simple remark due to P. Gérard suggests. Denote again

Q(ξ) =

∫
I

eia(v)·ξ dv,

and compute∫
Rd

|Q(ξ)|2|ξ|−d+θ dξ =

∫
I2

∫
Rd

ei(a(v)−a(w))·ξ |ξ|−d+θ = C

∫
I2
|a(v)− a(w)|−θ,

which is bounded directly by condition (1.6).
This would suggest a behaviour of Q like |ξ|−θ/2 in the low regularity

case instead of |ξ|−θ. This is however not true if one still wants a pointwise
estimate.

In fact, instead of (1.6), the correct assumption for the stationary phase
argument is

|{v, |a′(v)| ≤ ε}| ≤ C εν . (3.1)

In the case where a has enough regularity then (3.1) and (1.6) are equivalent
with the relation between the exponents

ν =
θ

1− θ
.

This is not true if a is not regular and for instance for θ ≤ 1/2, it is very
easy to find a ∈ C1(R) satisfying (1.6) but s.t.

|{v, a′(v) = 0}| > 0.

In that case, it is in general not possible to recover a stationary phase ar-
gument at all, showing that (1.6) is no longer the right assumption. More
precisely

Lemma 3.1 Take d = 1 and a ∈ C1(I) an increasing (or decreasing) func-
tion. Assume that there exists a constant C and an exponent γ > 0 s.t.

|Q(ξ)| =
∣∣∣∣∫
I

eiξ a(v) dv

∣∣∣∣ ≤ C |ξ|γ.
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Then necessarily
|{v, a′(v) = 0}| = 0.

Proof of Lemma 3.1. If |Q(ξ)| ≤ C |ξ|−γ, then as Q is on the other hand
bounded, there exists an exponent k s.t.∫

R
|Q(ξ)|2k dξ <∞.

But of course∫
R
|Q(ξ)|2k dξ =

∫
R

∫
I2k

eiξ(a(v1)−a(w1)+...a(vk)−a(wk)) dv1 dw1 . . . dvk dwk dξ

=

∫
I2k

δ(a(v1)− a(w1) + . . . a(vk)− a(wk)) dv1 dw1 . . . dvk dwk.

This last integral can easily be shown to be +∞ if a is increasing and
|{v, a′(v) = 0}| > 0.

With (3.1) however, it is easy to recover a stationary phase argument, for
instance

Proposition 3.2 For any a ∈ W 2,∞(I) satisfying (3.1) with ν < 2, there
exists a constant C s.t. ∀ξ ∈ Rd

|Q(ξ)| =
∣∣∣∣∫
I

eiξ·a(v) dv

∣∣∣∣ ≤ C |ξ|−ν/2.

Proof of Prop. 3.2. Fixing the direction of ξ and considering a(v) · ξ/|ξ|
instead of a, we may reduce ourselves to the case d = 1.

For any ε, find all intervals Ji = [ai, bi] s.t.

|a′(ai)| = |a′(bi)| = ε, inf
Ji

|a′| < ε/2, sup
Ji

|a′| ≤ ε,

sup
[ai−η, ai]

|a′| > ε, sup
[bi, bi+η]

|a′| > ε ∀η > 0.

Note that the number nε of such intervals is finite as |Ji| ≥ ε/‖a′′‖L∞ . Now
define

Iε = I \ (J1 ∪ · · · ∪ Jn) = I1 ∪ · · · ∪ In ⊂ {v, |a′(v)| > ε/2}.
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Note in addition that by condition (3.1)

|I \ Iε| ≤ |{v, |a′(v)| ≤ ε}| ≤ C εν .

As a consequence

|Q(ξ)| ≤

∣∣∣∣∣
n∑
i=1

∫
Ii

eiξa(v) dv

∣∣∣∣∣+ C εν .

Now on each Ii = [bi, ai+1], a is increasing or decreasing, so that, making
the change of variable∫

Ii

eiξa(v) dv =

∫
a(Ii)

eiξ w
dw

|a′(a−1(w))|

=
1

i ξ

(
eiξ a(ai+1)

|a′(ai+1)|
− eiξa(bi)

|a′(bi)|

)
− 1

iξ

∫
a(Ii)

eiξ w
a′′(a−1(w)

|a′(a−1(w))|3
dw,

by integration by parts. Note that

|a(ai)− a(bi)| ≤ |Ji| ε, |a′(ai)| = ε = |a′(bi)|.

Therefore

|Q(ξ)| ≤
∑
i

|ξ| |Ji| ε
|ξ| ε

+
C

|ξ|

∫
Iε

dv

|a′(v)|2
+ C εν .

Denote
ωk = {v, 2−k−1 < |a′(v)| ≤ 2−k}.

Then for kε = − log2 ε∫
Iε

dv

|a′(v)|2
≤
∑
k≤kε

22k+2 |ωk| ≤ C
∑
k≤kε

22k+2−k ν ≤ C εν−2.

Finally recalling that
∑

i |Ji| ≤ C εν

|Q(ξ)| ≤ C εν +
C

|ξ| ε2−ν + C εν ,

and we conclude by minimization in ε that

|Q(ξ)| ≤ C |ξ|−ν/2.
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Prop. 3.2 might seem disappointing since from the regular case, we would
like a behaviour in |ξ|−θ with ν = θ/(1− θ), i.e. in |ξ|−ν/(1+ν).

Unfortunately it is easy to find examples demonstrating that a bound in
|ξ|−ν/(1+ν) is not possible.

For instance, define vn = −n−k for any n ≥ 0. Take a(0) = 0 and on
[vn, (vn + vn+1)],

a′(v) = v − vn,

whereas on [(vn + vn+1), vn+1] put

a′(v) = vn+1 − v.

The function a′ is lipschitz and vanishes at every vn; as a consequence for
n0 = ε−1/k

|{v, |a′(v)| ≤ ε}| ≤ n0 × ε+ n−k0 ≤ C ε1−1/k.

The function a satisfies (3.1) provided 1− 1/k ≥ ν.
There remains to estimate Q(ξ). Noting that a(vn+1)− a(vn) ∼ (vn+1 −

vn)
2 ∼ n−2k−2, one sees three regions.
The first one corresponds to n ≥ n1 with n−2k−1

1 ξ = 1. On the interval
[vn1 , 0], ξa(v) almost does not change, making the contribution of this region
to Q of order

n−k1 = ξ−k/(2k+1) ≤ ξ−1/(3−ν) ≤ ξ−ν/(1+ν),

for ν small.

In the second region, ξa(v) is almost constant on one interval [vn, vn+1]
but not on several of them. This gives the range n2 ≤ n < n1 with n−2k−2

2 ξ =
1. The part of Q corresponding to this interval may be approximated by

n1∑
n=n2

(vn+1 − vn) e
iξa(vn) =

n1∑
n=n2

(vn+1 − vn) e
iξb(vn),

with b ∈ C∞, coinciding with a at the vn but with b′ non vanishing and of
order n−k−1 on each [vn, vn+1]. b satisfies (3.1) but is regular and so the
corresponding Q is exactly the one given by the regular case or

ξ−ν/(1+ν).
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The last interval in v is for v < −n−k2 . On each subinterval∫ vn+1

vn

eiξ a(v) dv = eiξa(vn) (vn+1 − vn) Q̃((vn+1 − vn)
2 ξ),

with

Q̃(ξ) =

∫ 1

0

eiξ ã(v) dv,

and ã defined by ã(0) = 0, ã′(v) = v for v ∈ [0, 1/2], ã′(v) = 1 − v for
v ∈ [1/2, 1]. Q̃(ξ) behaves exactly like ξ−1/2. Hence

Q(ξ) ∼
∑
n≤n2

ei ξ a(vn)

ξ1/2
+O(ξ−ν/(1+ν)) ∼

∑
n≤n2

e−i ξ n
−2k−1

ξ1/2
∼ ξ−k/(2(k+1)),

which as one may choose k freely as long as 1− 1/k = k/(k + 1) > ν is the
behaviour predicted by Prop. 3.2.
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