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Abstract

We investigate the dynamics of rigid, spherical particles of radius
R sinking in a viscous fluid. Both the inertia of the particles and the
fluid are neglected. We are interested in a large number N of particles
with average distance d � R. We investigate in which regime (in
terms of N and R/d) the particles do not significantly interact and
approximately sink like single particles. We rigorously establish the
lower bound Ncrit ≥ C ( dR)3/2 for the critical number Ncrit of particles.
This lower bound agrees with the heuristically expected Ncrit in terms
of its scaling in R/d. The main difficulty lies in showing that the
particles cannot get significantly closer over a relevant time scale. We
use the method of reflection for the Stokes operator to bound the
strength of the particle interaction.

1 Introduction

1.1 Motivation of the result

We consider the sedimentation of rigid spherical particles of the same radius
in a fluid. The particles interact through the fluid: When one particle moves,
it generates a fluid flow which acts on all the other particles.
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We neglect the inertia of both particles and fluid. In particular, the fluid flow
is quasi stationary and described by the incompressible Stokes system with
no–slip boundary condition at the particles’ surface. Hence the dynamics are
driven by ρ, the difference in weight density between the particles and the
fluid, and e, the gravity field. They are limited by the viscosity µ of the fluid.
The quasi stationarity assumption on the fluid flow means that the fluid
immediately adapts itself to the situation created by the particles’ positions
and their velocities: It does not “remember” anything about the past of the
dynamics. We also neglect the rotation of the particles.

We always assume that the Stokes fluid is at rest at infinity, meaning that
the fluid velocity u satisfies u → 0 for |x| → ∞. In such an environment, a
single particle of radius R sinks with a velocity

Vsingle :=
ρ

6π µ
R2 |e|. (1.1)

A small number N of distant particles will only show little interaction; they
will sink like a single particle. Hence the velocity Vcloud of such a cloud of
particles is approximately equal to Vsingle:

Vcloud ≈ Vsingle.

We call this the “non–interacting scenario”. But if the number N of particles
is large, their interaction may no longer be a small perturbation. In such a
regime, the fact that the fluid at rest at infinity (that is, u→ 0 for |x| → ∞)
may be “screened” from the particles in the interior of the cloud. Hence it is
plausible that a macroscopic fluid flow is generated, which makes the cloud
sink faster. We call this the “screening scenario”. Our goal is to identify the
cross–over between these two regimes. The critical number of particles Ncrit

will depend on their radius R and their average distance d, more precisely,
on the non-dimensional ratio R/d. In this paper, we investigate the scaling
of Ncrit in R/d. The main result is a rigorous lower bound for Ncrit as a
function of R/d, see Theorem 1.1. We now will give a heuristic argument
that this bound is optimal in terms of scaling.

Let us perform a little Gedankenexperiment: The screening scenario is mim-
icked by treating the cloud of particles as a single “meta–particle”. This
meta–particle would have diameter R̃ ∼ N1/3 d and a difference ρ̃ ∼ ρ (R

d
)3

in density with respect to the fluid. Hence it would sink with a velocity which
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scales as

|Ṽcloud| ∼
ρ̃

µ
R̃2|e| ∼ ρ

µ
N2/3 R

3

d
|e|. (1.2)

Folklore suggests that the screening scenario should prevail over the non–
interacting scenario, if and only if the velocity Ṽcloud is larger than the velocity
Vcloud. Hence one obtains from (1.1) and (1.2) the following guess for the
cross–over number Ncrit

Ncrit :=

(
d

R

)3/2

. (1.3)

Unfortunately, by this logic, we would have to choose yet another scenario,
the “clustering scenario”, where the particles form (possibly transient) clus-
ters within the cloud. The extreme case of the clustering scenario is mimicked
by a single “mega–particle”. It would have diameter R∗ ∼ N1/3R and hence
sink with a velocity which scales as

|V∗| ∼
ρ

µ
R∗

2|e| ∼ ρ

µ
N2/3R2|e|,

beating the velocity of the non–interacting scenario Vcloud. Nonetheless, we
will show in this paper that as long as

N � Ncrit,

with Ncrit defined as in (1.3), the particles do not interact and all sink with
approximately the velocity Vsingle of a single particle.

In view of the clustering scenario, it is not surprising that the main issue is
to rule out that particles get too close to each other. Let us make this more
precise and denote by dmin(t) the minimal distance between the particles at
time t. We will assume that initially, all particles are well–separated in the
sense of

R � dmin(0).

The main effort consists in establishing that no clustering occurs over the
relevant time scale

R � dmin(t) for t = O(τ).

What is the relevant time scale? It is the time τ it takes for a single particle
to sink a distance N1/3 d of the order of the cloud diameter. More precisely,
we set

τ :=
N1/3 dmin(0)

|Vsingle|
. (1.4)
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We also denote by Λ the critical parameter

Λ(t) :=
RN2/3

dmin(t)
. (1.5)

The main result of this paper is

Theorem 1.1 There exists a universal constant C <∞ such that if

C R ≤ dmin(0), N ≥ C, and C Λ(0) ≤ 1

we have, where Vk denotes the velocity of particle k,

dmin(t) ≥ 1

2
dmin(0),

sup
k
|Vk(t)− Vsingle| ≤ C Λ(0) |Vsingle|

for all t with
0 ≤ t ≤ C−1 Λ−2(0) τ.

Theorem 1.1 shows that the non-interacting scenario prevails for Λ � 1 as
heuristically expected.

1.2 The underlying dynamics

Let us now give the precise equations of the dynamics. Let i = 1, · · · , N be
an enumeration of the particles. Each particle is assumed to be a spherical
ball of radius R and center Xi, moving with the velocity Vi; we denote the
ball by Bi.
At a given time t, the fluid flow is described by its pressure field p ∈ R, its
velocity field u ∈ R3 and its stress field σ ∈ Sym(R3) related by

σα,β = −p δα,β + µ (∂αuβ + ∂βuα). (1.6)

The flow is assumed to be incompressible, to be at rest at infinity:

∇ · u = 0 in R3 −
⋃
i

Bi and u → 0 for |x| ↑ ∞, (1.7)

and to satisfy the no–slip boundary condition at the particle interfaces

u = Vi on ∂Bi 1 ≤ i ≤ N. (1.8)
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Finally, we postulate quasi stationary balance between viscous and gravita-
tional forces in the bulk and at the interface

∇ · σ = 0 in R3 −
⋃
i

Bi and

∫
∂Bi

σ · n dS + ρR3 e = 0, 1 ≤ i ≤ N,

(1.9)
where n denotes the outer normal of Bi. Notice that ∇ · σ turns into the
Stokes equation for u and p.

The set of assumptions (1.6), (1.7), (1.9) & (1.8) are supposed to be a good
model of the real dynamics if the particles are small enough so that the
Reynolds number of the fluid is much less than 1 but not too small so as to
neglect Brownian motion, and if the density of the particles is comparable
to the density of the fluid (so the inertia of the particles is of the same order
as the one of the fluid and hence negligible too). This model is used for the
computation of sedimentation velocity (see [1], [6] or [9] for instance).

These dynamics are mathematically well–behaved as long as particles do
not get too close. In fact, B. Desjardins and M. Esteban have shown that
the dynamics — even with Navier-Stokes replacing quasi stationary Stokes
— have a solution until the time of first collision between particles (see [5]
and [14] for numerical simulations in this case). Notice however that it is
not known whether collisions actually occur in this model. Even worse, the
assumptions on which the model is based are no longer physically valid in a
spatial and temporal neighborhood of a collision. In [11], it is shown that
in two space dimensions, a particle cannot “bump” into a boundary. This
indicates that in two space dimensions, collisions must occur at zero velocity.
This corresponds to the result of [18] where a weak solution of the dynamics
is defined if there is only one particle. But of course avoiding collisions is not
enough for the asymptotics in N .

For a large number of particles, solving (1.6), (1.7), (1.9) & (1.8) becomes
numerically prohibitive. It is therefore crucial to investigate whether certain
macroscopic aspects of the particle distribution can be predicted without
solving the underlying microscopic dynamics. For instance, one could aim at
deriving an evolution of the macroscopic number density of the particles (in
the physical space when the inertia of the particles is neglected and in the
phase space when it is not). J. Rubinstein and J.B. Keller have thus studied
a limit toward a macroscopic system for particles without inertia (see [16]
and also [4] for a study of a limit system close to this one but with Brownian
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motion). If the inertia of the particles is not neglected, it is possible to derive
kinetic equations (see [13]). A modeling by kinetic equations has also been
studied in the case of a perfect fluid with a potential flow (see [10] and [17]).

Unfortunately, all this limits are formal. In general, we know how to pass
from the microscopic dynamics to a macroscopic evolution only when the
interaction has no singularity. For kinetic equations, the Boltzmann-Grad
limit has been proved by R. Illner and M. Pulvirenti in [12] (see also [3]) but
only for a short time. Concerning Vlasov equations, the convergence is proved
only for regularized forces (see the book by H. Spohn [19] for instance). This
question is also connected with the convergence of particle methods (for the
Vlasov-Poisson equation, more details can be found in [2], [20] and [21]).

However for macroscopic systems (when the velocity of one particle depends
only on its position), the question appears to be easier; for instance, the limit
of point vortex method to the Euler equations has been proved in dimension
2 in [7]. We see Theorem 1.1 as a first step towards rigorously deriving an
evolution of the macroscopic number density. For instance, Theorem 1.1
identifies the meaning of “macroscopic”: Sedimentation is self–averaging on
length-scales up to N

1/3
crit d = d3/2

R1/2 ; hence the macroscopic number density
should be defined with respect to this critical length-scale. Moreover, The-
orem 1.1 gives us hope that particle collisions can be ruled out even in the
limit of infinite interacting particles over the relevant time scales.

1.3 The structure of the dynamics

The system formed of (1.6), (1.7), (1.9) & (1.8) defines an evolution of the
particle centers {Xi ∈ R3}i. The dynamics can be written as

Ẋi = Vi(X1, . . . , XN), 1 ≤ i ≤ N,

where the velocity Vi of each particle is only determined by the configuration
at the same time, i.e all the positions Xj.

The equations (1.6), (1.7), (1.9) & (1.8) are linear in the velocities Vi. There-
fore, it is convenient to introduce the following tensor {gij(X1, . . . , XN) ∈
Sym(R3)}i,j, 1 ≤ i, j ≤ N ; For any U ∈ R3, gij U ∈ R3 is defined through

gij U = −
∫
∂Bi

σ n,
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where (p, u, σ) denotes the solution of (1.6), (1.7) and

∇ · σ = 0 in R3 −
⋃
k Bk

u = U on ∂Bj and u = 0 on ∂Bk for all k 6= j.

We observe that the tensor {gij ∈ Sym(R3)}i,j is symmetric and positive
definite on R3N . Indeed, for {U1

i }i and {U2
i }i we have

∑
1≤i,j≤N

U1
i · gij U2

j = 2µ

∫
R3−

S
i Bi

∑
1≤α,β≤3

∂αu
1
β ∂αu

2
β dx,

where u1 and u2 are the solutions of (1.6), (1.7), (1.9) & (1.8) with {Vi}i
replaced by {U1

i }i resp. {U2
i }i.

With this notation, the velocities Vi are given by the solution of the linear
system

N∑
j=1

gij Vj = Fi, 1 ≤ i ≤ N,

where the right hand side vector {Fi}i is the constant gravity force on each
particle

Fi := ρR3 e, 1 ≤ i ≤ N.

Notice that the dynamics have the structure of a gradient flow with respect
to the metric tensor {gij}i,j and the gravity potential. It is clear that one
has to control the metric tensor {gij}i,j as a function of the particle positions
{Xi}i in order to control the dynamics. The control required is summarized
in Proposition 1.1. We recall the notation

dij := |Xi −Xj|, dmin = min
i6=j

dij and λ =
RN1/3

dmin
.

In order to avoid writing generic universal constants, we from now on use

the notation
<∼ and �.

Proposition 1.1 Provided

R � dmin and Λ � 1
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we have

|g11 − 6πµR id| <∼ µR
R2N1/3

d2
min

, (1.10)

|g12|
<∼ µR

R

d12

, (1.11)

|g13 − g23|
<∼ µRd12

(
(
R

d2
13

+
R

d2
23

) + (
1

d13

+
1

d23

)
R2N1/3

d2
min

)
. (1.12)

2 From Proposition 1.1 to Theorem 1.1

We first give three lemmas which enable us to control the velocity of each
particle and then we prove Theorem 1.1.

2.1 Control on the particles’ velocities

We begin with a completely technical lemma which is also used in the last
section of the paper

Lemma 2.1 For any exponent k ∈ [0, 2], we have∑
j 6=i

1

dkij

<∼ N1−k/3

dkmin
. (2.1)

Lemma 2.2 Provided R� dmin and Λ � 1 we have

sup
k
|Vk − Vsingle|

<∼ Λ |Vsingle|. (2.2)

Lemma 2.3 Provided R� dmin and Λ � 1 we have for all i 6= j

|Vi − Vj|
<∼ RN1/3

d2
min

sup
k
|Vk| dij. (2.3)

Proof of Lemma 2.1. Since the property we want to prove is invariant
by translation, we may suppose that i = 1 and X1 = 0 without any loss
of generality. After that, we rearrange the indices such that the sequence
|X1|, ..., |XN | is non decreasing.
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Since, for any i 6= j, |Xi−Xj| ≥ d, the balls B(Xi, dmin/2) and B(Xj, dmin/2)
do not intersect. Moreover for any i between 2 and n, we know that

i⋃
j=1

B(Xj, dmin/2) ⊂ B(0, dmin/2 + sup
j=1,..,i

|Xj|) ⊂ B(0, 2|Xi|).

Comparing the two volumes, we find that

i

(
dmin

2

)3

≤ (2|Xi|)3,

or

|Xi| ≥
1

4
dmini

1/3.

We finish the proof with an easy comparison of the sum with an integral

N∑
i=2

1

|X1 −Xi|k
≤ 4k

dkmin

N∑
i=2

i−k/3 ≤ 4k

dkmin

∫ N

0

x−k/3dx

≤ 4k

dkmin

[
X1−k/3

1− k/3

]N
0

≤ 4k

1− k/3
× N1−k/3

dkmin
≤ 48

N1−k/3

dkmin
.

Proof of Lemma 2.2. We start by observing that for any i, we have on
one hand ∑

k

gik Vk − 6π µRVsingle = Fi − ρR3e = 0,

and on the other hand∑
k

gik Vk − 6π µRVsingle = (6π µR) (Vi − Vsingle)

+ (gii − 6π µR)Vi

+
∑
k 6=i

gik Vk.

Therefore,

6πµR |Vi − Vsingle| ≤ |gii − 6π µR id| × sup
k
|Vk|+

∑
k 6=i

|gik| × sup
k
|Vk|. (2.4)
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According to Prop. 1.1 we have

|gii − 6π µR id| <∼ µR
R2N1/3

d2
min

,∑
k 6=i

|gik|
<∼ µR2

∑
k 6=i

1

dik
,

which yields with Lemma 2.1

∑
k 6=i

|gik|
<∼ µR

RN2/3

dmin

<∼ µRΛ.

We may consequently deduce from (2.4)

6πµR |Vi − Vsingle|
<∼ µR

(
R2N1/3

d2
min

+ Λ

)
sup
k
|Vk|.

Note also that

R2N1/3

d2
min

=
RN−1/3

dmin
× RN2/3

dmin
≤ R

dmin
Λ ≤ Λ,

so eventually,

6πµR |Vi − Vsingle|
<∼ µRΛ sup

k
|Vk|

<∼ µRΛ sup
k
|Vk − Vsingle|+ µRΛVsingle.

Taking the supremum in i, we obtain

sup
i
|Vi − Vsingle|

<∼ Λ sup
i
|Vi − Vsingle|+ Λ|Vsingle|.

This yields Lemma 2.2 since Λ � 1.

Proof of Lemma 2.3. The argument is almost the same; For any i 6= j,
we write ∑

k

gik Vk −
∑
k

gjk Vk = Fi − Fj = 0,
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whereas we also have∑
k

gik Vk −
∑
k

gjk Vk = (6π µR) (Vi − Vj)

+ (gii − 6π µR)Vi − (gjj − 6π µR)Vj

+ gij Vj − gji Vi

+
∑

k 6=i,k 6=j

(gik − gjk)Vk.

Thus, as in the previous lemma

6π µR |Vi − Vj| ≤
{

2 sup
k
|gkk − 6π µR id|+ 2 |gij|

+
∑

k 6=i,k 6=j

|gik − gjk|
}

sup
k
|Vk|. (2.5)

We apply Proposition 1.1:

sup
k
|gkk − 6π µR id| <∼ µR

R2N1/3

d2
min

≤ µR
R

dmin

RN2/3

dmin
= µR

R

dmin
Λ,

|gij|
<∼ µR

R

dij

<∼ µR
R

dmin
,∑

k 6=i,k 6=j

|gik − gjk|
<∼ µR

{
dij R (

∑
k 6=i

1

d2
ik

+
∑
k 6=j

1

d2
jk

)

+dij
R2N1/3

d2
min

(
∑
k 6=i

1

dik
+
∑
k 6=j

1

djk
)
}
.

According to Lemma 2.1, the last estimate turns into

∑
k 6=i,k 6=j

|gik − gjk|
<∼ µRdij

{
RN1/3

d2
min

+
R2N

d3
min

}

= µRdij

{
RN1/3

d2
min

+
RN1/3

d2
min

× RN2/3

dmin

}
= µRdij

RN1/3

d2
min

(1 + Λ).
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Inserting these three estimates into (2.5) yields

|Vi − Vj|
<∼
{

R

dmin
(1 + Λ) + dij

RN1/3

d2
min

(1 + Λ)

}
sup
k
|Vk|,

and we conclude by observing that Λ � 1 and

dij
RN1/3

d2
min

≥ RN1/3

dmin
≥ R

dmin
.

2.2 Proof of Theorem 1.1

Let C <∞ denote the maximum generic constant in the estimates of Lemmas
2.2 and 2.3. Let t∗ be such that

dmin(t) ≥
1

2
dmin(0) for 0 ≤ t ≤ t∗.

Then we have Λ(t) ≤ 2Λ(0) for o ≤ t ≤ t∗ and therefore, provided Λ(0) was
small enough, we may apply all previous results up to time t∗.
According to Lemma 2.2, we have

sup
k
|Vk(t)− Vsingle|

<∼ Λ(0) |Vsingle|,

and hence in particular, using Λ(0) � 1,

sup
k
|Vk(t)|

<∼ |Vsingle|,

Therefore, we obtain from Lemma 2.3

|Vi(t)− Vj(t)|
<∼ R2N

dmin(0)3
|Vsingle| dij(t),

Let C denote the universal constant implicit in the above estimate, i. e.

|Vi(t)− Vj(t)| ≤ C
R2N

dmin(0)3
|Vsingle| dij(t),

Since
d

dt
dij(t) ≥ −|Vi(t)− Vj(t)|,
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this entails

dij(t) ≥ exp

(
−C R2N

dmin(0)3
|Vsingle| t

)
dij(0)

or

dmin(t) ≥ exp

(
−C R2N

dmin(0)3
|Vsingle| t

)
dmin(0)

for 0 ≤ t ≤ t∗. We conclude by observing that

exp

(
−C R2N

dmin(0)3
|Vsingle| t∗

)
≥ 1

2

is ensured by

C
R2N

dmin(0)3
|Vsingle| t∗ ≤ 1.

On the other hand, by definition of τ ,

R2N

dmin(0)3
|Vsingle| = Λ2(0)

1

τ
.

This shows that we can choose t∗ at least of order Λ−2(0) τ .

3 Proof of Proposition 1.1

We begin with a technical lemma, then we present the method we use to
prove Proposition 1.1.

3.1 The single-particle solution

The main idea is to express the solution operator for the multiple–particle
Stokes problem in terms of the single–particle solution operator Tj

Tj : L
∞
0 (∂Bj) → L∞(R3 −Bj).

The single–particle solution operator Tj is defined as follows: If U is a
bounded velocity field on ∂Bj with zero average normal component (this
defines the space L∞0 (∂Bj)), then u = TjU is the solution of the Stokes equa-
tions in R3−Bj with Dirichlet boundary condition U on ∂Bj. The Ansatz of
writing the solution operator of an elliptic equation with a composite Dirich-
let boundary in terms of the solution operators for the individual components
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is known as the “method of reflections”. It capitalizes on the fact that the
solution operator for the individual component is well–understood. In our
case, Tj satisfies the following estimates, where ‖ · ‖∂Bj

denotes the L∞ norm
on ∂Bj:

Lemma 3.1 If R� dmin

‖TjU‖∂Bi

<∼ R

dij
‖U‖∂Bj

for i 6= j, (3.1)

‖TjU − (TjU)(·+Xk −Xi)‖∂Bi

<∼ dik (
R

d2
ij

+
R

d2
jk

) ‖U‖∂Bj
, for i 6= j, i 6= k,

|
∫
∂Bj

σ(TjU) · ndS| <∼ µR‖U‖∂Bj
. (3.2)

Proof of Lemma 3.1. This result is shown with the explicit integral
formula for u and p. Since the problem is symmetric by translation, we may
suppose that j = 1 with X1 = 0. As it is explained in [15], we have

uα(x) = 1
8πµ

∫
∂B1

Uβ(y)
(
µ
∂Tβα

∂n
− Pαnβ

)
dS(y),

p(x) = 1
4π

∫
∂B1

Uα
(
µ∂Sα

∂n
+ qnα

)
dS(y).

Let us denote

r0 = |x|, x̄ = R2

r20
x, r̄0 = |x̄|,

z = y − x, r = |z|, z̄ = y − x̄, r̄ = |z̄|.

We can now give the formula for T

Tαβ =
δαβ

r
+

zαzβ

r3
− R

r0r̄
δαβ − R3

r30

z̄αz̄β

r̄3
− r20−R2

r0

(
x̄αx̄β

R3r̄

− R
r20 r̄

3

(
x̄αz̄β + xβ z̄α

)
− 2

x̄αx̄β

R3 x̄ · ∇y
1
r̄

)
− (|y|2 −R2)

∂φβ

∂yα
,

whereas for P and φ

Pα = 2µ zα

r3
− 2µR

3

r30

z̄
r̄3
− 2µφα − 4µy · ∇yφα,

φα =
r20−R2

2r30

(
3xα

Rr̄
+ Rz̄α

r̄3
+ 2xα

R
x̄ · ∇y

1
r̄

+ 3 R
r̄0

∂
∂x̄α

log
r̄0r̄+y·x̄−r20
|y|r̄0+y·x̄

)
.

And finally the formulas for S, and q are

Sα = ∂
∂yα

1
r
− R

r30

x
r̄
− R3

r30

∂
∂yα

1
r̄

+ 2x̄α

Rr0
x̄ · ∇y

1
r̄
− (|y|2 −R2) ∂ψ

∂yα
,

q = 2µ (ψ + 2y · ∇yψ) ,
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with

ψ =
1

2Rr0

(
3

r̄
+ 2x̄ · ∇y

1

r̄
+

3

r̄0
log

r̄0r̄ + y · x̄− r2
0

|y|r̄0 + y · x̄

)
.

With these expressions, it is easy (but lengthy) to check that the kernels
of the two convolutions are quite regular away from ∂B1, thus proving the
lemma.

3.2 The multiple-particle solution

In order to express the multiple–particle solution operator in terms of the
Tj’s, it is convenient to introduce the operator

A : ΠN
j=1L

∞
0 (∂Bj) −→ ΠN

j=1L
∞
0 (∂Bj),

which is defined through

AijU =

{
(Tj(U|∂Bj

))|∂Bi
for j 6= i

U for j = i

}
. (3.3)

The next lemma collects the estimates on A and A−1 we later need. We
denote by A−1

ij the component i, j of the inverse of A (and not the inverse of
Aij).

Lemma 3.2 A−1 exists for Λ � 1, R� dmin, and we have

‖AijU‖∂Bi

<∼ R

dij
‖U‖∂Bj

for j 6= i, (3.4)

‖A−1
ij U‖∂Bi

<∼ R

dij
‖U‖∂Bj

for j 6= i, (3.5)

‖A−1
ii U − U‖∂Bi

<∼ R2N1/3

d2
min

‖U‖∂Bi
, (3.6)

in particular ‖A−1
ii U‖∂Bi

<∼ ‖U‖∂Bi
. (3.7)

We now may express the multiple–particle solution operator and thus also
the metric tensor gij in terms of the single–particle solution operator Ti (and
the related Aij). We recall that∫

∂Bj

σ(TiU) · ndS = 0 for j 6= i, (3.8)
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and ∫
∂Bi

σ(TiU) · ndS = 6πµRU for constant U. (3.9)

For a constant vector U , we mean by the notation Aij U or A−1
ij U the com-

ponent i of the operator A or A−1 applied to the function equal to U on ∂Bj

and to 0 on any ∂Bk with k 6= j.

Lemma 3.3 We have for any constant vector U

gijU =

∫
∂Bi

σ(TiA
−1
ij U) · ndS.

Proof of Lemma 3.2.
Estimate (3.4) is an immediate consequence of the definition (3.3) and the
estimate (3.1). We now argue that for all positive integers n

‖(id− A)nijU‖∂Bi
≤

{
(CΛ)n−1 R

dij
‖U‖∂Bj

for j 6= i

(CΛ)n−1 Λ
N
‖U‖∂Bi

for j = i

}
(3.10)

for some universal constant C < ∞. Again (id − A)nij is the component ij
of the operator id − A to the power n and not id − Aij to the power n. To
establish (3.10), we make the Ansatz

‖(id− A)nijU‖∂Bi
≤

{
αnΛ

n−1 R
dij
‖U‖∂Bj

for j 6= i

βnΛ
n−1 Λ

N
‖U‖∂Bi

for j = i

}
(3.11)

and derive the condition

α1 ≥ C0 and αn+1 ≥ 2C0C1αn + C0βn, (3.12)

β1 ≥ 0 and βn+1 ≥ C0C2αn, (3.13)

where C0, C1 and C2 stand for the universal constants with

‖AijU‖∂Bi
≤ C0

R

dij
‖U‖∂Bj

for j 6= i, (3.14)

∑
j 6=i

R

dij
≤ C1

RN2/3

dmin
= C1Λ, (3.15)

∑
j 6=i

(
R

dij
)2 ≤ C2

R2N1/3

d2
min

= C2
Λ2

N
. (3.16)
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We establish (3.12) and (3.13) by induction in n. It is true for n = 1 by
(3.14). Assume now it holds for n. Because of

(id− A)n+1
ij U =

∑
k

(id− A)ik(id− A)nkjU = −
∑
k 6=i

Aik(id− A)nkjU,

and (3.14), we have

‖(id− A)n+1
ij U‖∂Bi

≤
∑
k 6=i

C0
R

dik
‖(id− A)nkjU‖∂Bk

. (3.17)

We first treat the case j 6= i; we obtain from the assumption (3.11)

‖(id− A)n+1
ij U‖∂Bi

/‖U‖∂Bj
≤

(∑
k 6=i,j

C0
R

dik
αnΛ

n−1 R

dkj

)
+ C0

R

dij
βnΛ

n−1 Λ

N
.

(3.18)
We now use the triangle inequality dij ≤ dik+dkj in form of 1

dikdkj
≤ 1

dij
( 1
dik

+
1
dkj

). Hence we have by (3.15)

∑
k 6=i,j

R

dik

R

dkj
≤ 2C1Λ

R

dij
.

Thus (3.18) turns into

Λ−n‖(id− A)n+1
ij U‖∂Bi

/‖U‖∂Bj
≤ (2C0C1αn + C0

1

N
βn)

R

dij

≤ (2C0C1αn + C0βn)
R

dij
.

This establishes (3.12). We now treat the case j = i. Using (3.17) for j = i
and the assumption (3.11), we obtain

‖(id− A)n+1
ii ‖∂Bi

/‖U‖∂Bi
≤
∑
k 6=i

C0
R

dik
αnΛ

n−1 R

dik
.

Using (3.16), this turns into

Λ−n‖(id− A)n+1
ii U‖∂Bi

/‖U‖∂Bi
≤ C0C2αn

Λ

N
,

17



which yields (3.13). This establishes (3.10).

We formally have A−1 =
∑∞

n=0(id − A)n. We now show that this series
converges and that the estimates (3.5) and (3.6) hold. Indeed, for j 6= i we
formally have

A−1
ij U =

∞∑
n=1

(id− A)nijU.

and thus according to (3.10)

‖A−1
ij U‖∂Bi

≤
∞∑
n=1

(CΛ)n−1 R

dij
‖U‖∂Bj

<∼ R

dij
‖U‖∂Bj

.

For j = i on the other hand we formally have

A−1
ii U = U +

∞∑
n=2

(id− A)niiU

and thus according to (3.10)

‖A−1
ii U − U‖∂Bi

≤
∞∑
n=2

(CΛ)n−1 Λ

N
‖U‖∂Bi

<∼ Λ2

N
‖U‖∂Bi

=
R2N1/3

d2
min

‖U‖∂Bi
.

Proof of Lemma 3.3.
Fix a particle j and a constant velocity field U on ∂Bj. Let u denote the
solution of the Stokes equations in R3−

⋃
k Bk with Dirichlet boundary data

δkjU on ∂Bk. We claim that this solution can be written as

u =
∑
`

T`A
−1
`j U. (3.19)

Indeed, the r. h. s. of (3.19) is a solution of the Stokes equations in
⋂
k(R3−

Bk) = R3 −
⋃
k Bk. Its Dirichlet boundary data are as desired given by

u|∂Bk
=
∑
`

(T`A
−1
`j U)|∂Bk

=
∑
`

Ak`A
−1
`j U = δkjU.

This establishes (3.19).
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We now fix a particle i and observe that by definition of the metric tensor
and thanks to (3.19) and (3.8)

gijU =

∫
∂Bi

σ(u) · ndS =
∑
`

∫
∂Bi

σ(T`A
−1
`j U) · ndS =

∫
∂Bi

σ(TiA
−1
ij U) · ndS.

3.3 Proof of Proposition 1.1

Estimate (1.10) is straightforward: According to Lemma 3.3 and to (3.9) we
have

g11U − 6πµRU =

∫
∂B1

σ(T1(A
−1
11 U − U)) · ndS.

Because of Lemma 3.1 and Lemma 3.2, this yields the desired estimate:

|g11U − 6πµRU | <∼ µR‖A−1
11 U − U‖∂B1

<∼ µR
R2N1/3

d2
min

|U |.

Also estimate (1.11) is easy: By Lemma 3.3, Lemma 3.1 and Lemma 3.2 we
have

|g12U |
<∼ µR‖A−1

12 U‖∂B1

<∼ µR
R

d12

|U |.

We now tackle (1.12). We first derive the representation

g13U − g23U =

∫
∂B1

σ(T1(u− u(·+X2 −X1))) · ndS

+

∫
∂B1

σ(T1v1) · ndS −
∫
∂B2

σ(T2v2) · ndS, (3.20)

where

u := T3(−U +
∑
j 6=3

A3jA
−1
j3 U) +

∑
i6=1,2,3

Ti
∑
j 6=i

AijA
−1
j3 U, (3.21)

v1 := T2

∑
j 6=2

A2jA
−1
j3 U, (3.22)

v2 := T1

∑
j 6=1

A1jA
−1
j3 U. (3.23)
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Indeed, according to Lemma 3.3, we have

g13U − g23U =

∫
∂B1

σ(T1A
−1
13 U) · ndS −

∫
∂B2

σ(T2A
−1
23 U) · ndS.

Using

A−1 = 2id− A + (id− A)2A−1,

we rewrite

A−1
13 = −A13 +

∑
i6=1

∑
j 6=i

A1iAijA
−1
j3

= A13(−id +
∑
j 6=3

A3jA
−1
j3 ) +

∑
i6=1,2,3

A1i

∑
j 6=i

AijA
−1
j3 + A12

∑
j 6=2

A2jA
−1
j3 .

In view of (3.21) & (3.22), this means

A−1
13 U = (u+ v1)|∂B1 .

Likewise, we have A−1
23 U = (u+ v2)|∂B2 . Hence we obtain

g13U − g23U =

∫
∂B1

σ(T1u) · ndS +

∫
∂B1

σ(T1v1) · ndS

−
∫
∂B2

σ(T2u) · ndS −
∫
∂B2

σ(T2v2) · ndS.

Because of
∫
∂B2

σ(T2u) · ndS =
∫
∂B1

σ(T1(u(· +X2 −X1))) · ndS, this turns
into (3.20).

We now estimate g13U − g23U based on the representation (3.20). Using
Lemma 3.1, we have

|g13U − g23U |
<∼ µR(‖u− u(·+X2 −X1)‖∂B1 + ‖v1‖∂B1 + ‖v2‖∂B2). (3.24)

Let us start with ‖u − u(· + X2 − X1)‖∂B1 . According to Lemma 3.1 and
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Lemma 3.2 we obtain

‖u− u(·+X2 −X1)‖∂B1

<∼ d12(
R

d2
13

+
R

d2
23

)‖ − U +
∑
j 6=3

A3jA
−1
j3 U‖∂B3

+
∑
i6=1,2,3

d12(
R

d2
1i

+
R

d2
2i

)‖Ai3A−1
33 U +

∑
j 6=3,i

AijA
−1
j3 U‖∂Bi

<∼ d12(
R

d2
13

+
R

d2
23

)(1 +
∑
j 6=3

(
R

dj3
)2)|U |

+
∑
i6=1,2,3

d12(
R

d2
1i

+
R

d2
2i

)(
R

d3i

+
∑
j 6=3,i

R

dij

R

d3j

)|U |. (3.25)

We observe that because of the triangle inequality d3i ≤ dij + d3j, which we
use in form of 1

dijd3j
≤ 1

d3i
( 1
dij

+ 1
d3j

), we have

∑
j 6=3,i

R

dij

R

d3j

≤ R

d3i

(
∑
j 6=i

R

dij
+
∑
j 6=3

R

d3j

)
<∼ R

d3i

RN2/3

dmin
=

R

d3i

Λ � R

d3i

. (3.26)

Furthermore, ∑
j 6=3

(
R

dj3
)2 <∼ R2N1/3

d2
min

=
Λ2

N
� 1.

Hence (3.25) simplifies to

‖u− u(·+X2 −X1)‖∂B1

<∼ d12

(
(
R

d2
13

+
R

d2
23

) +
∑
i6=1,2,3

(
R

d2
1i

+
R

d2
2i

)
R

d3i

)
|U |. (3.27)

Using the triangle inequality again, we have∑
i6=1,2,3

(
R

d2
1i

+
R

d2
2i

)
R

d3i

<∼ (
1

d13

+
1

d23

)(
∑
i6=1

R2

d2
1i

+
∑
i6=2

R2

d2
2i

+
∑
i6=3

R2

d2
3i

)

<∼ (
1

d13

+
1

d23

)
R2N1/3

d2
min

.
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Therefore (3.27) turns as desired into

‖u− u(·+X2 −X1)‖∂B1

<∼ d12

(
(
R

d2
13

+
R

d2
23

) + (
1

d13

+
1

d23

)
R2N1/3

d2
min

)
|U |.

(3.28)

We now turn to ‖v1‖∂B1 . According to Lemma 3.1 and Lemma 3.2 we have

‖v1‖∂B1

<∼ R

d12

‖A23A
−1
33 U +

∑
j 6=2,3

A2jA
−1
j3 U‖∂B2

<∼ R

d12

(
R

d23

+
∑
j 6=2,3

R

d2j

R

dj3
)|U |.

We now use (3.26) for i = 2 and so obtain

‖v1‖∂B1

<∼ R

d12

R

d23

|U |. (3.29)

Since we trivially have

R

d12

R

d23

≤ d12
1

d23

R2

d2
min

≤ d12
1

d23

R2N1/3

d2
min

,

also (3.29) turns as desired into

‖v1‖∂B1

<∼ d12
1

d23

R2N1/3

d2
min

|U |. (3.30)

By symmetry, we likewise have

‖v2‖∂B2

<∼ d12
1

d13

R2N1/3

d2
min

|U |. (3.31)

Combining (3.24), (3.28), (3.30) & (3.31), we obtain (1.12).
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