Mesure et intégration, quelques exercices

1 Mesurabilité

Soient $X, Y : \Omega \to \mathbb{R}$ muni de la tribu des boréliens \mathcal{B} . On suppose que Y est mesurable par rapport à la tribu $X^{-1}(\mathcal{B})$. Montrez qu'il existe $\Phi : \mathbb{R} \to \mathbb{R}$ mesurable telle que $Y = \Phi(X)$.

(On commencera par le cas où Y est une fonction étagée,

puis on utilisera l'écriture dyadique de $Y=\sum_{m\in\mathbb{Z}}\delta_m(Y)2^{-m}$ où $\delta_m\in\{0,1\}$.)

2 Intégration

1. Soit $(A_n)_n$ une suite d'ensembles mesurables de $(\Omega, \mathcal{T}, \mu)$ tels que $\sum_n \mu(A_n) < \infty$. Montrez que pour presque tout ω de Ω , ω appartient a au plus un nombre fini de tels ensembles.

(Etudier la fonction $g = \sum \chi_{A_n}$ où χ_A désigne la fonction indicatrice de A.)

- 2. Soit $f \in L^1(\mathbb{R}, \mathbb{R}^+)$, montrez que pour tout $\varepsilon > 0$, il existe $\delta > 0$ telle que mesure $(A) < \delta$ implique $\int_A f(x) dx < \varepsilon$.

 (Faire le cas où f est bornée puis utiliser $A_n := \{f > n\}$.)
- 3. Soient $f \in L^1(\mathbb{R}, \mathbb{R})$, $F(x) = \int_{-\infty}^x f(t)dt$.

Si F est identiquement nulle sur \mathbb{R} montrez que f est nulle presque partout.

4. Soit $f:[0,1] \to \mathbb{R}$ mesurable et bornée, $m:=-\inf f, M=\sup f.$

Si $\int_0^1 f(x)dx = 0$, montrez que $\int_0^1 f^2(x)dx \le mM$.

(Traiter le cas où f ne prend que deux valeurs ou deux valeurs et la valeur zéro, puis géneraliser aux sommes bien choisies de telles fonctions.)

3 Fubini et changement de variables

- 1. Soit $\|.\|$ une norme de $\Omega := \mathbb{R}^d$.

 Montrez que $\int_{\Omega} \frac{dX}{1 + \|X\|^{\alpha}} < \infty$ si et seulement si $\alpha > d$.

 (On traitera d'abord le cas d = 2 avec Fubini ou en passant en coordonnées polaires.)
- 2. Soient $F: \Omega \to \Omega$, $\varphi: \Omega \to \mathbb{R}$, $\varphi \in C^1$ et nulle en dehors d'un compact, $A \in GL_d(\mathbb{R})$, Y = AX, $|\det A|\phi(Y) = \varphi(X)$. Explicitez la fonction $Y \mapsto G(Y)$ telle que :

$$\int_{\Omega} \nabla_X \varphi(X) . F(AX) dX = \int_{\Omega} \nabla_Y \phi(Y) . G(Y) dY.$$