Feuille 4 Espace vectoriel

Exercice 1 – Soit E un C-espace vectoriel et a un vecteur fixé de E.

1) Déterminer $u \in E$ en fonction de a tel que :

$$2u - \frac{1}{2}a = 3a - 7u \ .$$

2) Déterminer $u \in E$ en fonction de a tel que : tel que :

$$(i+i)u + 3a = -\frac{1}{2}a + (1-\sqrt{3})iu$$
.

3) Déterminer de même $u, v \in E$ tels que :

$$\begin{cases} 3u - v = 4a \\ u - 2v = -a. \end{cases}$$

Exercice 2 – Soit E un Q-espace vectoriel, et $x, u \in E$ et $\lambda \in \mathbb{Q}$. Soit :

$$v = (\lambda - 1)(x + 5u) - 7u - (2x - u).$$

- 1) Exprimer v comme une combinaison linéaire de x, u.
- 2) On suppose u non nul, déterminer en fonction de λ et u les vecteurs x tels que v=0.

Exercice 3 – Démonstrations de quelques résultats généraux :

- 1) Montrer que si u_1, u_2, \ldots, u_p est une famille libre d'un espace vectoriel E, toute sous-famille de u_1, u_2, \ldots, u_p est une famille libre.
- 2) Montrer que si v_1, v_2, \ldots, v_p est une famille génératrice d'un espace vectoriel E, toute famille finie de vecteurs de E contenant v_1, v_2, \ldots, v_p est une famille génératrice de E.
- 3) Soit E un K-espace vectoriel et u_1, u_2, \ldots, u_p une famille libre de E. Montrer que :

$$v \notin \langle u_1, u_2, \dots, u_p \rangle \iff (v, u_1, u_2, \dots, u_p)$$
 famille libre de E .

Exercice 4 – Soit E un **C**-espace vectoriel et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E Soit a de coordonnées (1 - i, 0, 2i), b de coordonnées (i, 1, 0) et c de coordonnées (2 - i, 1, i) dans la base \mathcal{B} .

1) Calculer les coordonnées des vecteurs dans la base $\mathcal{B} = (e_1, e_2, e_3)$:

$$2a - (1+i)b + 3ic$$
 et $((1+2i)[(2+i)(3a+ib) + (1-i)(2ia-3b)]$.

2) Déterminer les coordonnées dans la base \mathcal{B} des vecteurs x satisfaisant la relation :

$$2a - ix = (1 - i)b.$$

Exercice 5 – Soit $u = (1, 1), v = (3, -1) \in \mathbb{R}^2$.

- 1) Montrer par plusieurs méthodes dont une méthode matricielle que (u, v) est une base de \mathbb{R}^2 . Dans les questions suivantes, on procédera également par plusieurs méthodes (résolution de systèmes, matrice de passage, ...).
- 2) Si (x', y') sont les coordonnées d'un vecteur de \mathbb{R}^2 dans la base (u, v), quelles sont les coordonnées de ce vecteur dans la base canonique de \mathbb{R}^2 ?
- 3) Quelles sont les coordonnées des vecteurs (1,0) et (0,1) de la base canonique de \mathbf{R}^2 dans la base (u,v)?
- 4) Exprimer à l'aide de $x, y \in \mathbf{R}$, les coordonnées du vecteur $(x, y) \in \mathbf{R}^2$ dans la base (u, v).

Exercice 6 – Soit E un **R**-espace vectoriel de base $\mathcal{B} = (e_1, e_2, e_3)$. Posons $e'_1 = e_1 + e_2 + e_3$, $e'_2 = e_2 - e_1$, $e'_3 = 2e_1$.

1) Montrer par plusieurs méthodes dont une méthode matricielle que la famille $\mathcal{B}' = (e'_1, e'_2, e'_3)$ est une base de E.

Dans les questions suivantes, on procédera également par plusieurs méthodes (résolution de systèmes, matrice de passage, ...).

- 2) Quelles sont les coordonnées des vecteurs e_1, e_2, e_3 dans la base \mathcal{B}' ?
- 3) Si (x', y', z') sont les coordonnées d'un vecteur de E dans la base \mathcal{B}' , quelles sont ses coordonnées dans la base \mathcal{B} ?
- 4) Si (x, y, z) sont les coordonnées d'un vecteur de E dans la base \mathcal{B} , quelles sont ses coordonnées dans la base \mathcal{B}' ?

Exercice 7 - On considére les systèmes linéaires :

(1)
$$\begin{cases} x - y + z + t = 0 \end{cases}$$
; (2) $\begin{cases} x + 2y - 2z + 4t = 0 \end{cases}$; (3) $\begin{cases} x - y + z + t = 0 \\ x + 2y - 2z + 4t = 0 \end{cases}$

- 1) Pourquoi les ensembles de solutions $S_1, S_2, S_3 = S_1 \cap S_2$ de ces trois systèmes sont-ils des sous-espaces vectoriels de \mathbb{R}^4 ?
- 2) Donner une base de ces trois sous-espaces vectoriels (On suivra l'algorithme de résolution des systèmes linéaires).
- 3) Vérfier que $u=(-4,0,2,2)\in S_1\cap S_2$. Déterminer les coordonnées de u dans ces trois bases.

Exercise 8 - Soit $u = (1, 1), v = (2, -1), w = (1, 3) \in \mathbb{R}^2$.

On appelle relation entre u, v, w, tout $(x, y, z) \in \mathbb{R}^3$ tel que :

$$xu + yv + zw = 0.$$

- 1) Montrer que l'ensemble des relations entre u, v, w est un sous-espace vectoriel de \mathbb{R}^3 .
- 2) Déterminer une base de ce sous-espace.
- 3) En déduire par exemple l'expréssion de w comme combinaison linéaire de (u, v).

Exercice 9 - Soit
$$F = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K) \; ; \quad a+d=0 \}$$
.

- 1) Montrer que F est un sous-espace vectoriel de $M_2(K)$.
- 2) Déterminer une base de F.

- 3) Même question avec les matrices triangulaires supérieures $M_2(K)$.
- 4) Même question avec les matrices diagonales de $M_n(K)$ de traces nulles, puis les matrices de $M_n(K)$ de traces nulles.

Exercice 10 - Soit
$$G = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K) \; ; \; a+d=0 \text{ et } b+c=0 \}$$
.

- 1) Montrer que F est un sous-espace vectoriel de $M_2(K)$.
- 2) Montrer que $\mathcal{B} = (A_1, A_2)$ est une base de G où :

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 et $A_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

3) Montrer que les matrices:

$$U = \begin{pmatrix} 2 & 3 \\ -3 & -2 \end{pmatrix} \quad \text{et} \quad V = \begin{pmatrix} 1 & -5 \\ 5 & -1 \end{pmatrix}$$

forment une base \mathcal{B}' de G.

4) Quelle est la matrice de passage P de la base \mathcal{B} à la base \mathcal{B}' ? Calculer P^{-1} . En déduire les coordonnées des matrices A_1 et A_2 dans la base \mathcal{B}' .