1) Nous considérons, l'application :

$$f: \mathbf{R}^2 \longrightarrow \mathbf{R}: f(x_1, x_2) = \frac{1}{3}x_2^3x_1^2 - 3x_1^2x_2 + \frac{1}{5}x_1^5x_2 - 8x_1 + 9.$$

Calculer les dérivées partielles : $\frac{\partial f}{\partial x_1}$ et $\frac{\partial f}{\partial x_2}$. Puis calculer $\frac{\partial^2 f}{\partial x_1^2}$ la dérivée partielle de $\frac{\partial f}{\partial x_1}$ par rapport à x_1 . Puis, $\frac{\partial^2 f}{\partial x_2 x_1}$ la dérivée partielle de $\frac{\partial f}{\partial x_1}$ par rapport à x_2 . Puis, $\frac{\partial^2 f}{\partial x_2^2}$ la dérivée partielle de $\frac{\partial f}{\partial x_2}$ par rapport à x_2 . Et, $\frac{\partial^2 f}{\partial x_1 x_2}$ la dérivée partielle de $\frac{\partial f}{\partial x_2}$ par rapport à x_1 .

2) Considérons $V=\{(x_1,x_2)\in \mathbf{R}^2 \text{ tels que } 2x_2-3x_1\neq 0\}$. Représenter V et montrer que V est un sous-ensemble ouvert de \mathbf{R}^2 . Nous considérons l'application $h:V\longrightarrow \mathbf{R}$ définie par $h(x_1,x_2)=\frac{3x_2-4x_1}{2x_2-3x_1}$. Calculer : $\frac{\partial h}{\partial x_1}$, $\frac{\partial h}{\partial x_2}$ et $x_1\frac{\partial h}{\partial x_1}+x_2\frac{\partial h}{\partial x_2}$.

Soit enfin, l'application $g: V \longrightarrow \mathbf{R}$ définie par : $g(x_1, x_2) = \frac{-x_2}{(2x_2 - 3x_1)^2}$. Calculer $\frac{\partial g}{\partial x_2}$.

Solution de 1:

$$\frac{\partial f}{\partial x_1}(x_1, x_2) = \frac{1}{3}x_2^3(2x_1) - 3(2x_1)x_2 + \frac{1}{5}(5x_1^4)x_2 - 8$$

$$= \frac{2}{3}x_2^3x_1 - 6x_1x_2 + x_1^4x_2 - 8$$

$$\frac{\partial f}{\partial x_2}(x_1, x_2) = \frac{1}{3}(3x_2^2)x_1^2 - 3x_1^2 + \frac{1}{5}x_1^5$$

$$= x_2^2x_1^2 - 3x_1^2 + \frac{1}{5}x_1^5$$

$$\frac{\partial^2 f}{\partial x_2^2}(x_1, x_2) = \frac{2}{3}(3x_2^2)x_1 - 6x_1 + x_1^4$$

$$= 2x_2^2x_1 - 6x_1 + x_1^4$$

$$\frac{\partial^2 f}{\partial x_1x_2}(x_1, x_2) = x_2^2(2x_1) - 3(2x_1) + \frac{1}{5}(5x_1^4)$$

$$= 2x_2^2x_1 - 6x_1 + x_1^4$$

$$\frac{\partial^2 f}{\partial x_1x_2}(x_1, x_2) = -2x_2x_1^2.$$

Solution de 2:

V se représente comme le complémentaire de la droite D d'equation $2x_2 - 3x_1 = 0$. La droite D passe par les points de coordonnées (0,0) et (2,3). Nous laissons au lecteur le soin d'effectuer le dessin. V est défini par une inégalité $(\neq 0)$ et une fonction polynomiale donc continue $((x_1, x_2) \mapsto 2x_2 - 3x_1)$. Il en résulte que V est sous-ensemble ouvert de \mathbb{R}^2 .

$$\frac{\partial h}{\partial x_1}(x_1, x_2) = \frac{(2x_2 - 3x_1)(-4) - (-3)(3x_2 - 4x_1)}{(2x_2 - 3x_1)^2} = \frac{-8x_2 + 12x_1 + 9x_2 - 12x_1}{(2x_2 - 3x_1)^2} = \frac{x_2}{(2x_2 - 3x_1)^2}.$$

$$\frac{\partial h}{\partial x_2}(x_1, x_2) = \frac{(2x_2 - 3x_1)(3) - (2)(3x_2 - 4x_1)}{(2x_2 - 3x_1)^2} = \frac{6x_2 - 9x_1 - 6x_2 + 8x_1}{(2x_2 - 3x_1)^2} = \frac{-x_1}{(2x_2 - 3x_1)^2}.$$

$$x_1 \frac{\partial h}{\partial x_1}(x_1, x_2) + x_2 \frac{\partial h}{\partial x_2}(x_1, x_2) = x_1 \frac{x_2}{(2x_2 - 3x_1)^2} + x_2 \frac{-x_1}{(2x_2 - 3x_1)^2} = \frac{x_1 x_2 - x_1 x_2}{(2x_2 - 3x_1)^2} = 0$$

$$\frac{\partial g}{\partial x_2}(x_1, x_2) = \frac{(2x_2 - 3x_1)^2(-1) - 2(2)(2x_2 - 3x_1)(-x_2)}{(2x_2 - 3x_1)^4} = \frac{(2x_2 - 3x_1)(-1) - 2(2)(-x_2)}{(2x_2 - 3x_1)^3}$$
$$= \frac{-2x_2 + 3x_1 + 4x_2}{(2x_2 - 3x_1)^3} = \frac{3x_1 + 2x_2}{(2x_2 - 3x_1)^3}$$