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Stabilized spectral element
approximation of the Saint Venant
system using the entropy viscosity
technique

R. Pasquetti1,
J.L. Guermond and B. Popov2

Abstract We consider the Saint Venant system (shallow water equations),
i.e. an approximation of the incompressible Euler equations widely used to
describe river flows, flooding phenomena or erosion problems. We focus on
problems involving dry-wet transitions and propose a solution technique using
the Spectral Element Method (SEM) stabilized with a variant of the Entropy
Viscosity Method (EVM) that is adapted to treat dry zones.

1.1 Introduction

Because high-order methods are known to produce spurious oscillations in
shocks, solving non-linear hyperbolic systems of conservation equations with
high accuracy is a challenging task. Assuming that an entropy does exist
for the considered physical problem, the Entropy Viscosity Method (EVM)
offers an elegant way to stabilize various numerical discretizations, including
the standard Finite Element Method or Spectral Element Method (SEM)
and even Fourier expansions [3]. The basic idea consists of introducing in
the governing equations a nonlinear viscous term based on the residual of the
Partial Differential Equation (PDE) that governs the evolution of the entropy
and to bound from above this term by a first order viscosity.

We consider in the present paper the Saint Venant system, i.e. a simpli-
fied form of the incompressible Euler equations well adapted to describe free
surface flows like rivers or flooding phenomena. We especially focus on prob-
lems involving dry-wet transitions, e.g. the classical dram break problem.
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This class of problems is generally addressed in the finite volume literature
by using Godunov-type methods, i.e. Riemann solvers together with flux or
slope limiters, see e.g. [6] for a review. We introduce a new ingredient in the
EVM that enables the method to handle the dry-wet transition problem sat-
isfactorily. The numerical discretization is based on the SEM in space and on
a standard forth order Runge-Kutta (RK4) scheme in time. Although all the
numerical simulations shown in the paper are one-dimensional, the method
is a priori multi-dimensional. Finally, the proposed approach can be used to
treat problems in gas dynamics with vacuum.

The paper is organized as follows. We introduce the Saint Venant system
and recall its basic properties in Section 2 . The SEM approximation and the
EVM stabilization are described and discussed in Section 3. Some examples
of applications, all of them involving dry-wet transitions, are presented in
Section 4.

1.2 The Saint Venant system

The Saint-Venant system (shallow water equations) is an approximation of
the incompressible Euler equations assuming that the pressure is hydrostatic
and the free surface perturbations are small compared to the water height.
The one-dimensional version of this system is

∂th+ ∂x(hu) = 0 (1.1)

∂t(hu) + ∂x(hu2 + gh2/2) + gh∂xz = 0, (1.2)

where h(x, t) is the water height, u(x, t) the horizontal velocity, g the gravity
acceleration, z(x) the topography, for which it is assumed that ∂xz � 1. The
independent variables are time t ∈ (0, tF ) and space x ∈ D = (xinf , xsup).
These PDEs are obtained by integrating the mass and momentum conserva-
tion equations in the Euler system over the vertical direction. This nonlinear
two equations system has the following properties:

• The system is hyperbolic, which means that discontinuities may develop;
• Assuming that the inlet flow-rate equals the outlet flow-rate, the total

mass is preserved: dt
∫
D
h dx = 0;

• The height h is nonnegative: ∀x, t, h(x, t) ≥ 0;
• Rest solutions are stable: u = 0, h(x, t) + z(x) = constant;
• There exists a convex entropy (actually the energy E) such that:

∂tE + ∂x((E + gh2/2)u) ≤ 0, E = hu2/2 + gh2/2 + ghz. (1.3)
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1.3 Stabilized SEM approximation

The EVM-stabilization is obtained via the introduction of nonlinear viscous
terms in the governing equations. The entropy viscosity is computed from the
residual of the entropy inequality and bounded from above by a first order
viscosity. In case of a scalar conservation law, with δx for the grid size, we
generally set, see [3] for details:

ν = S(min(νmax, νE)) where (1.4)

νmax = αmax
loc
|f ′(u)|δx (1.5)

νE = βδx2|rE |/∆E (1.6)

where rE is the residual of the entropy inequality; f(u),f ′(u) are the flux and
derivative of the flux; α and β are user defined parameters; ∆E is a scaling
parameter equal to the amplitude of variations of the entropy. The local
maximum is generally based on the computational cell. S is a smoothing
operator required by the fact that at the discrete level the residual rE is
oscillatory. For hyperbolic systems f ′(u) is the Jacobian matrix of f , and
|f ′| is defined to be the absolute value of the largest eigenvalue of f ′(u).

Discretization of the Saint Venant system: Set q = hu and, for
any t, let hN (x, t) (resp. qN (x, t)) to be the continuous piecewise polynomial
approximation of degree N of h(x, t) (resp. q(x, t)) built on a discretization of
D = (xinf , xsup); i.e. we use the standard SEM for the space approximation,
see e.g. [5] . Then we propose the following EVM-stabilized weak formulation
of the Saint Venant system:∫

D

(∂thN + ∂xqN )vN = −
∫
D

ν∂xhN ∂xvN (1.7)∫
D

(∂tqN + ∂x(q2N/hN + gh2N/2) + ghNzx)wN = −
∫
D

ν∂xqN ∂xwN , (1.8)

where vN , wN are test functions spanning the approximation space and ν is
the entropy viscosity, still to be defined. As usual, the viscous (stabilization)
terms have been integrated by parts. Note that (i) viscous stabilization is
added to the mass equation and that (ii) the stabilization is done on q in-
stead of u in the momentum equation. This differs from the physically and
mathematically well justified viscous form of the Saint-Venant system, which
makes only use of ∂x(hν∂xu) in the momentum equation [2]. In [4], where
the Euler system is addressed, it is however outlined that the physical stabi-
lization may not be the best suited one for numerical purposes.

Time is approximated using an explicit RK4 scheme.
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Entropy viscosity for the Saint-Venant system: First we define the
viscosity νE associated to the residual of the entropy equation. Using the
expression (1.3) leads to a viscosity νE that depends on z, i.e. on the choice
of the coordinate system. To avoid this arbitrariness, we take into account
the mass conservation equation in (1.3) to derive an expression that only
depends on ∂xz and governs the evolution of an entropy Ẽ which satisfies:

∂tẼ + ∂x((Ẽ + gh2/2)u) + ghu∂xz ≤ 0, Ẽ = hu2/2 + gh2/2 (1.9)

The evaluation of the entropy viscosity is done at each time step before
entering the RK explicit time scheme. This is done at time tn by using a
Backward Difference Formula (e.g. BDF2) for the approximation of ∂tẼN ;
more precisely, denoting by∆ẼN/∆t the approximation of ∂tẼN , we compute

rE = ∆ẼN/∆t+ ∂x((ẼN + gh2N/2)qN/hN ) + gqN∂xz (1.10)

with ẼN = q2N/(2hN ) + gh2N/2, and we set

νE = β|rE |/∆ENδx
2 , ∆EN = max

D
EN −min

D
EN (1.11)

where the grid size δx is that of the Gauss-Lobatto-Legendre (GLL) mesh.
The first order viscosity νmax for the Saint Venant system must be based

on a wave speed that should be larger than λ± = u±
√
gh. We set

νmax = αmax
D

(|qN/hN |+
√
ghN )δx (1.12)

where again δx is the GLL grid-size.
The viscosity is then defined by ν = min(νmax, νE). This viscosity is addi-

tionally smoothed by using a two-step procedure:

• first locally (in each element), e.g. (νi−1 + 2νi + νi+1)/4→ νi
• then globally, by projection onto the space of the C0 piecewise polynomial

of degree N . Note that this is easy to do, since the SEM mass matrix is
diagonal.

We now finally recall how to adjust the values of the EVM control parameters:

• First, one solves the problem with the viscosity νmax and adjust α to obtain
a smooth solution.

• Second, one solves with the entropy viscosity ν and adjust β.

Properties of the approximation: The following properties are ex-
pected from the SEM/EVM approximation:

• Mass conservation: Setting vN = 1 in the equation for hN yields∫
D

(∂thN + ∂xqN ) dx =

∫
D

∂thN dx+ 0 = dt

∫
D

hN dx = 0 (1.13)
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if qN (xsup)− qN (xinf) = 0, which means that the total mass is preserved.
• Conservation of energy for smooth solutions. There is no guaranty here,

because the equation for the energy involves non-linear terms that are
approximated by quadratures.

• Positivity of h. Here again, one may expect difficulties as soon asN > 1, i.e.
when the space approximation is not simply piecewise linear. For problems
in which we are interested in, i.e. involving dry-wet transitions, numerical
difficulties systematically occur when using the standard form of the EVM.
To overcome these difficulties, we suggest to use the first order viscosity
as soon as the fluid height becomes small. We thus supplement the EVM
with the following step:

ν = νmax if hN < hthres (1.14)

where the threshold height hthres is small, i.e. typically 10−3 of the mean
fluid height. Moreover, we have not based νmax on a local but on a global
maximum of the wave speed, see eq. (1.12).

1.4 Examples of applications

The following test-cases have been considered: (i) Lake at rest with an
emerged bump. The surface water should remain flat. This is what one usu-
ally expects of a well balanced scheme. (ii) Oscillations in a parabolic cup.
The solution to this problem being smooth, the energy should remain con-
stant over time. (iii) Dam break on a dry domain. The main problem here
is to get the right velocity at the front of the water wave. (iv) Dam break
on a sinusoidal topography. This problem combines different aspects previ-
ously mentioned. It should be remarked that all these test-cases have dry-wet
transitions. The first three test cases have analytical solutions, see e.g. [1].

Lake at rest with an emerged bump: In this test the free surface
should remain flat and the velocity must be zero at all times. Fig. 1.1 shows
the EVM solution as well as the entropy viscosity. As desired, the viscosity is
maximal in the dry part of the bump. The result is satisfactory, even if one
observes (on an animation) some traveling waves with very low amplitude.

Oscillations in a cup: The topography is a parabolic bowl. The fluid
level, h+ z, at the initial time is defined by an inclined line. Since the solu-
tion to the problem is smooth there is no dissipation and the fluid oscillates
indefinitely. Fig. 1.2 compares the exact solution with the computed one at
the final time, tF = 50. The entropy viscosity is also shown.

It is interesting for this problem to verify how well the energy is conserved.
Fig. 1.3 shows the time evolution of the total energy for both the EVM and
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Fig. 1.1 Bump problem: D = (8, 12), tF = 400, 60 elements, N = 4, α = 1, β = 10,
hthres = 10−4. EVM solution and entropy viscosity at time tF = 400.
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Fig. 1.2 Cup problem: D = (0, 4), tF = 50, 60 elements, N = 4, α = 1, β = 10,

hthres = 10−3. EVM and exact solutions, entropy viscosity at time tF = 50.

the first order viscosity solutions. One observes some oscillations, especially
for the first order viscosity solution, and there is a slight increase in energy
for the EVM solution. The result is however satisfactory since the oscillatory
motion is well maintained, i.e. there is no significant artificial dissipation of
the energy.

Dam break: The dam break on dry domain is a classical test-case. It
is especially of interest to verify whether the velocity of the leading wave is
correct. Fig. 1.4 shows that the results from the EVM are satisfactory, even



1 Stabilized SEM approximation of the Saint Venant system using the EVM 7

 2.78

 2.785

 2.79

 2.795

 2.8

 2.805

 2.81

 2.815

 2.82

 0  5  10  15  20  25  30  35  40  45  50

E
n
e
rg

y

time

first order viscosity
entropy viscosity

Fig. 1.3 Cup problem: Time-variations of the total energy for the solutions obtained with
the entropy viscosity and with the first order viscosity
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Fig. 1.4 Dam break problem: D = (0, 10), tF = 120, 60 elements, N = 4, α = 2, β = 20,

hthres = 10−6. EVM and exact solutions, entropy viscosity at tF = 11. The initial condition
is also shown.

if some slight differences can be observed at the upper left and bottom right
parts of the expansion wave.

Dam break over bumps: We now solve the dam break problem on
a dry domain with a sinusoidal topography. Fig. 1.5 shows a snapshot of
the solution. At the end of the computation one recovers the situation met
previously for the cup problem, i.e. the fluid oscillates between the two bumps
and remains trapped therein indefinitely.
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Fig. 1.5 Dam/bump problem: D = (0, 10), tF = 600, 60 elements, N = 4, α = 1.5,
β = 30, hthres = 10−5. EVM solution and entropy viscosity at t = 129. Initial condition:

h+ z = 0.003 if x < 2, h = 0 if x > 2.
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