L1 Info 2016-2017 : Algèbre 1

Feuille nº 3

I. Soit

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 & -1 \\ 4 & -1 & 2 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix},$$
$$D = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \qquad E = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

(a) Calculez les matrices suivantes quand elles sont définies :

$$A+B,$$
 $A-D,$ $3B,$ $DC,$ $B^T,$ $A^TC^T,$ $C+D,$ $B-A,$ $AB,$ $CE,$ $-D,$ $(CE)^T,$ $B+C,$ $D-C,$ $CA,$ $EC,$ $(CA)^T,$ $E^TC^T.$

- (b) Vérifier qu'on a $(DA)^T = A^T D^T$.
- (c) Vérifier qu'on a $CD \neq DC$.
- II. Calculer le produit

$$\begin{pmatrix} 2 & 3 & 1 & 4 \\ 0 & -1 & 2 & 1 \\ 5 & 0 & 6 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Quel est le produit des deux matrices dans l'autre sens?

- III. Montrer que si AB est définie, alors B^TA^T est définie, mais A^TB^T peut ne pas être défini.
- **IV**. Soit $A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \end{pmatrix}$. Vérifier qu'on a $I_2A = A$ et AI_3 .
- V. (a) Soit $E = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ et $F = \begin{pmatrix} d & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & f \end{pmatrix}$. Caculer EF et FE. Que voyezvous?
 - (b) Calculer $E^2 = EE$, $E^3 = EEE$ et E^4 . Qu'est-ce que E^n pour n entier?
- **VI**. Soit $U = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Calculer U^2 , U^3 , U^4 . Qu'est-ce que U^n pour n entier?
- VII. Que peut-on dire concernant une matrice qui est à la fois triangulaire supérieure et symétrique?
- **VIII**. Pour quelles valeurs des paramètres x, y les matrices $B = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 2 & x \\ 0 & y \end{pmatrix}$ commutent-elles? (On dit que B et C **commutent** si on a BC = CB.)